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ABSTRACT. This paper presents an adaptive fuzzy control scheme using the sliding-mode
technique for a class of nonlinear SISO systems whose input channel can have a gain
function of full state variables. The proposed controller is composed of three parts: a
nominal controller, a disturbance observer and an adaptive fuzzy compensator. The nom-
inal controller specifies the desired closed-loop dynamics, while the disturbance observer
and the fuzzy compensator compensate for the system perturbation, including parame-
ter uncertainties and unezpected external disturbances. In contrast to existing adaptive
fuzzy control schemes that indirectly extract perturbation information from the tracking
error, the proposed scheme learns directly from a switching signal equivalent to the error
of disturbance compensation; this accelerates the learning process. Moreover, the added
disturbance observer enhances the performance robustness of the adaptive fuzzy system
for exceptional disturbances that cannot be modeled by the fuzzy logic model. Stability
analysis is provided based on Lyapunov stability theory. The experimental results con-
cerning the tracking control of a nonlinear straight-line linkage system are also presented
to illustrate the effectiveness of the proposed scheme.

Keywords: Disturbance observer, Fuzzy control, Motion control, Sliding mode, Stabil-

ity

1. Introduction. Variable-structure systems (VSS) theory offers great advantages over
the traditional linear approach in terms of robustness and efficiency [1]. In particular,
the popular sliding-mode control (SMC) is a robust nonlinear feedback control technique
that utilizes discontinuous control actions to have a system state reach and thereafter stay
within some predefined sliding regime. In sliding mode, all state trajectories are confined
to the sliding regime, and system responses then completely depend on the characteristics
of the sliding regime. However, before the sliding motion occurs, there usually exists a
reaching phase, during which the invariance property of a sliding mode is not guaranteed.
The existence of such a reaching phase deteriorates performance robustness. Moreover,
the discontinuous control actions may excite unmodeled dynamics and lead to oscillations
in the state vector at finite frequency. These oscillations, normally referred to as chatter,
are known to result in low control accuracy, high heat loss in electric power circuits and
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excessive wear of moving mechanical parts [2]. The chattering phenomenon is thus a
serious implementation drawback.

With the advent of artificial intelligence systems, there have been increasing efforts to
improve SMC performance by integrating fuzzy logic systems. This approach has emerged
as a promising one for dealing with uncertain nonlinear systems and relieving SMC imple-
mentation difficulties [3]. To cope with perturbation sensitivity during the reaching phase
of the SMC system, Ha et al. [4], Orowska-Kowalska et al. [5], Yagiz and Hacioglu [6],
and Yorganczoglu and Kémiirciigil [7] presented fuzzy tuning mechanisms that rotate or
shift the sliding surface in such a direction that the reaching time and tracking error can
be significantly reduced. To alleviate the chattering phenomenon, Choi and Kim [8], Fung
et al. [9], and Abdelhameed [10] proposed fuzzy logic systems as tuning mechanisms to
adjust the switching feedback gains of the SMC. However, the stability of these proposed
fuzzy sliding-mode control (FSMC) systems [8-10] is not theoretically justified. In [11-13],
the system to be controlled is approximately represented by a fuzzy model comprised of a
set of linear models at various operating points, while an FSMC integrates SMCs designed
based on those linearized models. Fung, Shaw and Wang [14] proposed a region-wise lin-
ear fuzzy sliding-mode controller for motor-mechanism systems. The FSMC proposed
in [15] includes a fuzzy interpolator that combines two control laws in order to yield a
variable-gain SMC. However, stability proofs for the proposed FSMC systems [14,15] are
not provided. Wang [16] integrated an SMC with a proportional-integral (PI) controller
by using a fuzzy logic system that schedules different control actions according to various
operating conditions. A stability proof is given under the assumption that the functions
describing the dynamics of the plant are precisely known. Barrero et al. [17] proposed
a fuzzy reasoning inference system that combines an SMC and a Pl-fuzzy logic-based
controller, in which the SMC acts mainly in a transient state, while the Pl-like fuzzy
controller reduces the chattering phenomenon in the steady state. The proposed scheme
[17] is designed specifically for a first-order linear-time-invariant system and requires the
information on the time derivative of the plant’s state variable. Moreover, the fuzzy
logic control is assumed to be upper- and lower-bounded by functions proportional to
the plant’s state variable. The above-mentioned FMSC schemes for chatter alleviation
either provide no rigorous proof of the system stability or require precise knowledge of
the plant’s model or strict assumptions. Moreover, the controller parameters are usually
difficult to determine systematically; the design process may also be time-consuming.

When designing a controller, a designer relies on knowledge of the plants that have
either uncertain or nearly unknown dynamics. For example, a designer might have to
offer a user a motor drive with a position controller. However, the user could attach any
linear /nonlinear mechanical load to the motor drive, which is a great challenge to the
designer when designing the position controller. By integrating adaptation techniques
into the FSMCs, Lu and Chen [18] and Huang and Lin [19] proposed schemes of adaptive
fuzzy sliding-mode control (AFSMC) that adaptively tune consequent parameters of a
fuzzy controller so that sliding motion is ensured. However, the input channel of a plant
described in companion form can only have a gain function of partial state variables in
[18]. In the AFSMC [19], the time derivative of the gain function is assumed to be finite,
whereas, in [20], the time derivative of the gain function is assumed to be bounded by
a function of plant’s state variables. These assumptions, however, might not be valid
since the time derivative of the gain function could contain the control input with several
parameters adapted by integral laws. Huang and Huang [21] proposed an AFSMC in
order to tackle system uncertainties. Erbatur and Kaynak [22] introduced a measure for
chattering, and utilized an adaptive fuzzy system to tune an SMC parameter for chatter
alleviation, in which an admissible chattering level needs to be assigned. Chang and
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Yuan [23] and Chang [24] used a model matching technique to adjust a scaling factor
of the AFSMC. However, there was no rigorous proof to guarantee the stability of the
systems proposed in [21-25]. Guo and Woo [26], Tao et al. [27] and Wai [28] proposed
AFSMC schemes that replace the switching control in conventional SMC with an adaptive
fuzzy logic control. However, external disturbances were not dealt with in [26], input
uncertainties associated with the gain functions of input channels were not studied in
[27], and a lumped disturbance involving the control input was assumed to be bounded
by a positive constant in [28]. References [29-31] proposed indirect AFSMC schemes, in
which system functions are approximated by fuzzy models. However, the switching gain
in [29,30] is difficult to determine in practice, and a lumped uncertainty containing the
control input is assumed to be Ls-bounded in [31]. Sadati and Talasaz [32] proposed
an AFSMC scheme which cannot guarantee the existence of a sliding mode. Efe [33]
utilized fractional-order integration in parameter tuning, in which only the convergence
of a switching function is validated. The AFSMC proposed in [34,35] assumed the plant’s
gain function to be a pure time function with known bounds. Although the AFSMC
schemes [18-35] have several excellent features, such as their adaptability and chatter
alleviation, convergence of tracking error can be slow due to the adaptation mechanisms,
leading to poor transient responses. Moreover, their effectiveness in handling exceptional
disturbances that cannot be modeled by a fuzzy logic system might be questionable.

Another approach to diminishing the chattering effect is to employ sliding-mode dis-
turbance observers (SMDOs) [36,37] that use the sliding-mode technique to estimate a
lumped disturbance including unknown disturbances and parametric uncertainties. The
lumped disturbance is found to be equal to the equivalent value of a switching signal in
the SMDO, and its estimate is obtained by feeding the switching signal through a low-
pass filter whose cutoff frequency is sufficiently high to retain the equivalent part of the
switching signal, yet low enough to attenuate its high-frequency components. In contrast
to the SMC, the discontinuous switching action is on an artificially-introduced auxiliary
process of an SMDO rather than on the plant; that is, there is no need for plant state
to alter its phase velocity towards a switching hyperplane using switching control efforts.
In this way, chattering can be alleviated since a continuous feedback control instead of
SMC is applied [37]. However, in the previous SMDOs [36,37], switching gains must be
greater than the bounds on uncertain disturbances, which leads to restricted chattering
alleviation due to large switching gains. Recently, Lu and Chiu [38] and Lu [39] proposed
SMDOs that relax the conventionally assumed upper-bounds restriction on the distur-
bance to the restriction on its estimation error, thus reducing the switching gain required
for ensuring the existence of a sliding mode. This reduction in the switching gain further
alleviates the chattering phenomenon.

A system perturbation can generally be divided into two parts: a modelable part that
is usually due to the uncertainties associated with system functions, and an unmodelable
part that includes exceptional external disturbances. An adaptive fuzzy logic system
can be employed to model and compensate for the modelable perturbation, but it is
inappropriate for dealing with unexpected external disturbances. On the other hand,
an SMDO would yield phase lag in estimating a time-varying modelable perturbation,
but is suitable for alleviating the effect of disturbances that cannot be modeled. This
paper, therefore, proposes an AFSMC scheme augmented with an SMDO, referred to
as the SMDO-AFSMC, combining the best features of an adaptive fuzzy logic system
and an SMDO. The adaptive fuzzy logic system is gradually adjusted to model state-
dependent system perturbations, while the SMDO compensates for the modeling error
of the fuzzy logic system and exceptional disturbances that cannot be modeled. In the
proposed scheme, precise knowledge of system functions is not required, and external
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disturbances and input uncertainties are handled. In addition to introducing the SMDO
to the AFSMC system, another salient feature of the proposed scheme is the utilization
of a switching signal in the adaptation of the AFSMC. Unlike existing AFSMCs [18-35]
that extract perturbation information indirectly from the tracking error, the proposed
AFSMC employs the switching signal shown to be equivalent to the error of perturbation
compensation. This speeds up the learning process, while the active compensation by the
SMDO further improves transient performance of the learning system. The stability of
the proposed SMDO-AFSMC system, in which the input channel of the plant can have
a gain function of full state variables, is theoretically verified using Lyapunov analysis.
Experiments are conducted to demonstrate the effectiveness of the proposed scheme in
practical applications.

2. Design of a Sliding-Mode Disturbance Observer-Based Adaptive Fuzzy Slid-
ing-Mode Controller (SMDO-AFSMC).

2.1. Problem statement and controller structure. Consider an nth-order nonlinear
system

2™ = f(x,t) + b(x,t) (u+ d) (1)
in which the scalar z is the output of interest, the scalar u is the control input, x =
[ T1 Ty 0 Tpo1 Tn ]T = [ x .. =2 g0l ]T is the state vector, f(x,t)

and b(x,?) are uncertain system functions of state variables and time, and the scalar d
denotes an unknown external disturbance. Without loss of generality, assume that b(x,¢)
is strictly positive.

For tasks involving the tracking of a desired output r, assumed to be n-times differen-
tiable with respect to time, let the tracking error e = x — r. Moreover, define a filtered
tracking error s to be

5= (p”_1 + Cpop" P4 ep + 00) e (2)

where the differential operator p = d/dt, and the c}s are constant parameters chosen so
that the dynamics associated with s = 0 are asymptotically stable. Consider the control

U = Upg + Ugo + Uf, (3)

where u,, denotes the nominal control, and ug4, and wuy, are the control components
generated by a disturbance observer and a fuzzy compensator, respectively. Here, the
nominal control, u,,, designed based on the pole-assignment technique, is described by

tpa = b7 (%) [~ f(x,1) + 1] (4)

where f(x,t) and l;(x, t) are the estimates of functions f(x,¢) and b(x,t), respectively,
and

h=r" — (cuop™ "+ 4+ c1p” + cop) e — As (5)
where \ is a positive constant parameter. Substituting (3) and (4) into (1) gives
iy = bt [f = 0b L (007 = 1) Bt b (g + o + ) (6)

After rearrangement, (6) yields
in=h+Db [bé—lufz + gy + 8‘1{5] (7)
where the perturbation term & is described by

3 (x, b 'h+ udo,t) —f—bb ' f+ (b — lS) (E*Ih + udo> + bd (8)
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Substituting the definition of h into (7) gives
§=—As+b (b?flufz + gy + 13*15) (9)

Without the SMDO-AFSMC, that is, ug, = us, = 0, one obtains s = —\s + £. More-
over, in the ideal situation when the perturbation term vanishes, i.e., £ = 0; then one has
$+ As = 0, implying asymptotic convergence of the tracking error. Thus, the nominal
control u,,, where the c;s and A are design parameters, is used to specify the desired
closed-loop dynamics. In other words, provided that the external disturbance d vanishes,
and the nominal functions f(x,t) and b(x,t) coincide with the actual functions f(x,)
and b(x,t), respectively, the closed-loop error dynamics without the SMDO-AFSMC can
be characterized by

(p+ ) (pn_1 + Cpap" P ep+ co) e=0 (10)

which represents the desired error dynamics. In practice, however, perturbation often
arises and causes the resultant error dynamics to deviate from the desired dynamics in
an adverse way, such as an undesirable overshoot or, more severely, system instability.

2.2. Sliding-mode disturbance observer (SMDO). This paper presents the SMDO
and the AFSMC in order to generate uq, and uy,, respectively, so as to compensate for the
perturbation £. Since the expression for the desired closed-loop dynamics is s + As = 0,
the ideal compensation for £ is depicted by blA)’lufz + ugo + 8*1§ = 0. In order to effect
this, consider an artificially introduced auxiliary process described by

£ = h+ bpsgn (o) (11)
where z is the state variable of the auxiliary process, ¢ is a switching gain, sgn(-) denotes
the signum function, and the switching function o is defined by

o=, — % (12)

Taking the derivative of (12) with respect to time, and substituting (7) and (11) into the
resulting equation gives

6=b [bl;*lufz + g +b 1€ — ngn(a)] (13)

Provided the switching gain ¢ > ‘bl;_lufz + uge + b7
satisfied, i.e., 06 < 0 if o # 0. Assigning the initial condition of the auxiliary process
such that z(0) = z,(0), one has 0(0) = 0. This, together with the satisfaction of the
sliding condition, yields o(t) = 0 for ¢ > 0, meaning that the sliding mode o = 0 exists

throughout an entire response. Since o(t) = 0, one has 6(t) = 0, which gives, according
to (13)

, then the sliding condition is

psgn (o) = bB_lufz +uge + b7 (14)
in the sense of equivalent values [1]. Hence, the switching signal ¢sgn (o) represents the
perturbation compensation error by the SMDO-AFSMC.

Consider the following integral law for disturbance compensation

Ugo = —kaotpsgn (o) — k.,bs (15)

where kg4, and kg, are arbitrary positive constant parameters. The unknown perturbation
¢ defined in (8) can be divided into two parts: one that can be modeled and approximated
by a fuzzy model, while the other part can be regarded as some exceptional, abrupt distur-
bances that cannot be modeled. In this paper, the AFSMC is designed to compensate for
the modelable part of . However, the control component us, produced by the AFSMC
is initially zero and adaptively adjusted afterwards, implying that the AFSMC cannot
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effectively compensate for the modelable part of ¢ during an initial period. The SMDO is
proposed here to compensate for the unmodelable part of &, as well as the compensation
error by the AFSMC. With this in mind, the switching signal @sgn (o) in (14) can also
be interpreted as the compensation error by the SMDO. Hence, @sgn (o) is employed to
update ug4, in the integral law (15).

2.3. Adaptive fuzzy sliding-mode controller (AFSMC). Although the SMDO can
compensate for the modelable part of £ without the need to model it, the integral law
(15) for the SMDO leads to a phase lag that would yield compensation error in the
modelable part of £&. As a remedy, the AFSMC is designed to adaptively compensate
for the modelable part of . Since £ is a function of x and (b~'h 4 ug,), the AFSMC
employs a T-S fuzzy model with (n + 1) inputs and m rules in its rule base, represented
by Ry, Rs,: -+ , Ry. The general form of the jth rule is

R;: If (z1 is A{) A (o is A%) A Az, is AL) A (lAflh + ug,) is A{lH , then uicz =D;

(16)
where A denotes the AND intersection operation, Ag, t=1,2,---,n+ 1, are fuzzy sets
characterizing the corresponding variables of the premise in the jth rule, u}z is the output
from the jth implication, and p; is the consequent parameter. Here, no exact membership
functions are specified for the output linguistic variables. Since there are m rules to define
the rule base of the fuzzy controller, and each rule can give a distinct value of the output,
the weighted average of the individual output, u;z, j=1,2,---,m, is used to obtain the
output, uy,. The weighting assigned to each uicz is the firing strength of the jth rule,
designated as w;, and is determined from

w; = min {Mf(xl), M (3), -+, Mj(wn), My i (b "h + udo)} a7

where M/ (v,) is the value of the membership function at v, in the fuzzy set A?. The final
output of the fuzzy controller is inferred from

L g Wi D Wb
fz = =

Z;nﬂ wj 2511 wj
where the optimal value of the consequent parameter p; is unknown and is to be obtained
through learning.

The aim of the learning task is to modify the consequent parameter such that uy,
compensates for £. Rewrite (14) as

b (bug. +€) = wsgn (0) — g (19)

which can be considered to be the compensation error by wy,. Thus, the consequent
parameters of the fuzzy model are updated as

(18)

B; = | =0 (03gn(0) — tigo) — ksubs + kaotigo| —mi— (20)
D it Wi

where 7 is the learning gain, and the terms (—ksvl;s + kgougo) are required to ensure
system stability. Unlike previous learning laws that update parameters using the filtered
tracking error only, the proposed learning law adjusts the consequent parameters and thus
uy,, based on the switching signal (psgn(o) — ug,) that is equivalent to the compensation
error by uys,. In this way, the learning process can be sped up since the fuzzy model
is updated directly from its compensation error, rather than indirectly from the filtered
tracking error s. Figure 1 shows the structure of the proposed SMDO-AFSMC system. It
can be seen that the control is in an additive form and is composed of three components,
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Upa, Udo and uys,, which are generated by the nominal controller, the SMDO and the
AFSMC, respectively. The nominal control specifies the desired closed-loop dynamics,
while the SMDO-AFSMC counteracts the perturbation. The auxiliary process, in which
a sliding mode occurs, generates the switching signal psgn(o), revealing information on
the compensation error due to the SMDO-AFSMC. The switching signal is then fed to
both the SMDO and the AFSMC. Here, the SMDO compensates for the unmodelable part
of the perturbation and the compensation error by the AFSMC, whereas the AFSMC is
adaptively adjusted to compensate for the modelable part of the perturbation.

Auxiliary Process
SMDO
Z= h+5¢sgn(a), psgn(o) n
z’}d'o = daQ’Sgn(o-)i k_wbs
g=x,—Z.
udo
AFSMC
h 4
v = Zj:leuj? _ Zj:lwfpf 4 Plant
i/ m m >
Z =1 Wi j=1 Wi +
u, v MO A=+
P, = [— n((psgn(cr)—uda)—kwbs+kdauda + & 4 b(u+d) B
+
X Wj .
Z:;l Wi X
U,
Nominal Controller
u, =61} J o],

h=r® f(c,,_zp"‘l et p? +c0p)efﬂs,
5= (p"'l te,_p +---+c1p+cn)e.

r 1 1

FIGURE 1. Structure of the SMDO-AFSMC system

2.4. Simulation example. Consider the control of a scotch yoke mechanism, in which
the linear position of load is determined by the angular position of a crank driven by a
rotational electric motor. The kinematic constraint on this mechanism can be described
as ¢ = ( (1 — cosq), where z is the load position to be controlled, ¢ is the angular position
of the crank, and / is the crank length. The dynamic model, including parasitic dynamics
that represent the mismatch between nominal model dynamics and actual plant dynamics,

is given by
Im - [m . Cr .
R R

2sin2q) " Bsintq ?sin’q) " Using’

T, +v=1u

where wu is the control input, v is the state variable of the first-order parasitic dynamics,
7, is a small time constant, M is the load mass, I, is the motor inertia, and C; and C,
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are the viscous friction coefficients of the translational and rotational parts, respectively.
Simulation parameters to be employed are ¢ = 1, M; =5, I, = 1073, C, =5, C, = 1,
7, = 1/300, (0) = 0.2, and #(0) = 0.

For comparison studies, consider the AFSMC schemes presented in [19,21,34]. These
existing control laws can be described by v = wup, + uys,. The nominal control w,, is
set to zero in [19,21], whereas the nominal control in [34] is determined by a function
approximation technique based on the truncated Fourier series. The nominal control
allows us to incorporate knowledge of the plant model into the controller design and
improve transient performance. In the following comparison study, the nominal control
is defined by (4), and different adaptation laws for us, are compared. In [19,21,34], uy, is
the same as in (18), and the adaptation law (neglecting the dead-zone and the so-called
e-modification for comparison study) is given by

g Wi
When compared with the proposed scheme, it can be seen that when wg,, 7 and kg, in (15)
and (20) are set to zero, the proposed scheme becomes the previous schemes in [19,21,34].
Thus, the previous learning schemes are actually special cases of the proposed learning
scheme.

IAE

T T T T T 3
*
E
024 i
w
<
0.1% -
6 WMW%W%M
2 4 6 8 10 12 14 16 18
ksv x 10°

FI1GURE 2. TAE by the previous scheme with various values of ki,

For the controller design, the nonlinear scotch yoke mechanism is modeled simply as
a pure double integrator described by: & = wu; that is, f — 0 and b = 1. The controller
parameters common to both schemes are: ¢y = 50 and A = 50. Concerning the fuzzy
model, the universe of discourse for each linguistic variable is assigned as [0, 2], [—-25, 25]
and [—2000, 2000] for x, & and (8_1h+udo), respectively, in which five linguistic values with
equally spaced triangular membership functions are defined for each linguistic variable,
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0 005 01 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5

2 i i i i i i i
0 0.05 0.1 015 0.2 026 03 035 04 045 05

0 0.05 01 015 02 025 03 035 04 045 05

FIGURE 4. Response by the proposed scheme
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giving 125 fuzzy rules in the rule base. The control task is to track a periodic reference,
whose first cycle is described by
10 15 6
r(t) =0.2+1.6 [(;t?’ - —tt+ —t5> (H(t) — H(t — 0.061))

T 75

+ (;2( 0.122 — t)* — i—i( 0.122 —t)* + %( 0.122 — t)5> H(t — 0.061)]
where 7 = 0.061, and H(-) denotes the unit-step function. For the simulation period
[0,0.5], Figure 2 shows the integral absolute error (IAE) with respect to kg, for the pre-
vious scheme in which, though the IAEs show no obvious trend towards instability with
increasing kg,, the control input becomes oscillatory and shows signs of instability as ks,
increases. Figure 3 shows the dynamic response with k,, = 1.5 x 10°, which yields the
minimum IAE of 0.019. For the proposed scheme, let n = 10*, k4, = 100, kSUlA) = 100, and
¢ = 2000. Figure 4 shows the dynamic response with the proposed scheme, whose IAE
is 0.004. Unlike the previous scheme, which gives the minimum IAE of 0.019, the pro-
posed scheme yields much better performance in the sense of IAE. The major difference
between the proposed and previous schemes is that the switching signal which directly
reveals the compensation error by the fuzzy control is utilized in the learning process of
the proposed scheme. By this means, the proposed scheme yields more effective learning
than the previous scheme does by learning indirectly from the filtered tracking error s.

3. Stability Analysis. To analyze system stability, the following assumptions are made:

Assumption 3.1. [18,19,26, 30, 31] There exist optimal values for the consequent param-
eters of rules p* = [ P Dy D ]T such that

|buf, + & <e (21)

where £ is the minimum positive parameter for all possible values of the consequent pa-
rameters, and u}, is the inferred output of the fuzzy rule base with the vector of consequent

parameters p = [ P1 P2 ot Dm ]T equal to p*.

Assumption 3.2. [29,40] The gain function is upper- and lower-bounded; that is, there
ezist bmax (X, 1) and byin(X,t) such that byax > b > byin > 0.

Assumption 3.3. There exists positive v such that

3> ot g { (b = 8)" (b =)}

Assumption 3.4. There exist u € (0,2) and positive v, such that

. k kg .

> 0 bk |2 4 22 (14 B 2)
77 v + min { 2 + 2/1/ + max

Remark 3.1. The validity of Assumptions 3.8 and 3.4 requires the parameter \ in the

nominal controller and the learning rate n in the AFSMC, respectively, to be large enough.

Theorem 3.1. If these assumptions are valid, boundedness of the tracking error is guar-
anteed, and overall system stability is maintained by employing the control law, (3), (4),
(15) and (18) with the learning law (20), on system (1). Moreover, provided the optimal
approzimation error vanishes, i.e., € = 0, the tracking error converges asymptotically.
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To prove this, consider the following Lyapunov candidate V'

2V = kys” +ug, + (p— )" (P —P°) (22)
Its derivative with respect to time along any system trajectory is
V = ksv&é + udoudo + (p - p*)TI.) (23)

Substituting (9), (15) and (20) into (23), and using (18) yields
V= = Nigys® + bgpsh (007 g+ 1tgp + 7€) = FiaotS, — Kasttanh™ (bug. +€)

— kypbsug, — nB_l(bufz + & (up, —uj,) — ksvgs(ufz —u},) + kaougo(up, — uf,)

(24)
Replacing (buy, + &) with [b(ug, —u},) + (bu}, + )] in (24) yields
V = — Miyys® + ks (b, + &) + kypsb (up. — uf,)
— kgou’, — kaob “tige (bu’}z + {) — kgob M ugeb (ufz — u’}z) (25)

— b "b(ug. — up,)? —nbt (buj, + &) (up. — uf,)
— ksvl;s(ufz —u},) + Kaotao(us. — u},)
Let A = 750 + Y51, where 750 > 0 and 75 > 0. Rewrite some terms in (25):
—Mkgys® + kgos (buf, + &) = —Ysoksvs” + kso [—7515° + 5 (bu}, +€)] (26)

The fact that — [yss — 3 (buf, + 5)]2 < 0 indicates

1
—2 8%+ Ys1s(bu}, + &) — Z(bu’}z +6)2<0 (27)
Combined with assumption (21) this gives
1 g2
—va 8%+ s(buf, + &) < but, + €)* < 28
st ( I 5)_4%1( f 5)_4%1 (28)
Substituting (28) into (26) yields
X kspe?
_)\ksv52 + ksvs[bufz + 5] S _’)/soksvs2 + m (29)

Likewise, let kg = (Va0 + Va1)kao, Where 40 > 0, v41 > 0, and 40 + 71 = 1. Rewrite
some terms in (25)

—kdouﬁo - kdol;_ludo(bu’}z + f) = —’}/dgkdouzo - kdo fydluﬁo + l;_ludo(bu}iz + f) (30)

. 2
The fact that — |yg1uq, + %b_l(bu’}z +&)| <0 yields

. 1o,
_,731“?[0 - ’Ydludob_l(bu;z + 5) - Zb 2( Ugy + §)2 <0 (31)
which, in combination with assumption (21), gives
o (bu%, + €)? g2
—Yaru, — taoh ! (b}, + &) < — < = (32)
40y Ay b?
Substituting (32) into (30) gives the relation
“ . kgoc?
—kaoty — kaob™ " tigo (buf, + ) < —Yaokaot3, + ML (33)

47a1 b2
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Furthermore, let n = (v0+v71)n, where 79 > 0, vs1 > 0, and vo+71 = 1. Rearranging
some terms in (25) yields

— b (g — up)? = b (g — ) (buf, + €)

i ) (34)
= —yponb (up, —uf,)? — bt [ypb(ups — ub,)? + (ups — uf,) (buf, +€)]

Using assumption (21) and the fact that — [yp1b(us. — u},) + (buj, + 5)]2 < 0 leads to

(buj, + &) < g2

—ypb(up, —ut,)? — (up, —ut,)(bub, +€) < < 35
(g — up,)” = (upe — up,)(buy, + ) yo; po; (35)
Substituting (35) into (34) yields the relation
7-1 2 -1 71 , | b le?
Subsequently, substituting the three relations (29), (33) and (36) into (25) gives
V S - 750ks1182 - 7d0kdou30 - ’onni)ilb(ufz - U}Z)Z + (5 (37)
+ kgos(b — ) (ug. — u},) + Kaottao(1 — b 10) (uy — uj,)
where § = % (%’ + % + Zi—;;) Rearranging the following relation
ksv 7 2 7 * ksv %
= S D) (b — (g — u}) — (g — )
; (39)
=~ 22— b)s — (ug. — u,)]
gives
7 * kso 7\ 12 kso x )2 kso 7 x \12
b0 = B)sluags =) = S2[(6 = D)5+ "2 g, — ) = 22 (b= b)s — (g — ) (39)

Moreover, consider the following identity relation

rdokq _ ~_ .
L+ ankastian [ (1= 6D (g, — )]

a0 = (1 = 857"z — )]
(10)

’}/ko — 7— *
= — e Ly (1= b (e — )]

2 Yazkao
2

where positive 74 is constrained to fulfill 2v49 > 740 > 0, and the term Ygokgotqo [7;21(1_

b10) (ug, — u’}z)] is equal to kgottgo(1 — bb) (uy, — u},). Rearranging this equality then

gives

~ ko ko — 7— * 2
asttao(1 = b70) (. — ) = L2203, + B o (1 — b (. — )|

Yazkdo — a_ *
= 2 gy — v (1= B0~y — )|

) (41)
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Subsequently, replacing the last two terms in (37) with (39) and (41) gives

: b—b)?
V S - [780 - ( ) ] ksv82 - (7d0 - M) kdou?lo

2 2
~ k Yaok _ ENE . 42
U e (PR T YRS 42)
ksv 7 % 2 Yd kdo — 7T— % 2
=2 b= b)s = (upe —up) | = 25 [uao =75 (1 = 07 g, — u)
Based on Assumption 3.3, one can have positive 7y, satisfying
1 . .
Y5z = Yoo = 5 max { (ax = ), (buin — )} >0 (43)
Define a constant 43 = Yao — Yaz/2. Since 7y, satisfies 49 > v42/2 > 0, one has
Y
Yd3 = Vdo — % >0 (44)
According to Assumption 3.4, there exists positive v, satisfying
« k k .
Yr2ll = Yo — Db {ﬂ + (1 + bilaxb_Q)] >0 (45)
2 2742

Substituting (43)-(45) into (42) gives

V S _'YSkavSQ - 7d3kdou§o - ’7f2778_1b(ufz - uj‘z)2 + ) (46)

where § = % (lfy_f + 7’;‘1*5'2 + ng’b ' ) Define the following compact sets Q; = {s‘ |s| <

i } 0y = {udo gl < /-2 } and Q, = {(p _pY) “ufz —up| < /i }

The relation (46) implies that
V < 0 when s ¢ Qy, ugo & Qq4, or (p—p*) ¢ Q, (47)

This shows the boundedness of the tracking error as well as the stability of the overall
system. When the approximation ability of the fuzzy model is enhanced and the unmode-
lable part of the perturbation ¢ vanishes, then € and thus 6 approach zero. In this case, V
is negative definite along any system trajectory, and the tracking error e converges asymp-
totically. Therefore, provided the fuzzy model can perfectly model the perturbation &,
the tracking error asymptotically converges to zero and the SMDO-AFSMC completely
rejects the unknown perturbation &.

Remark 3.2. Assumptions 3.1-3.4 are required to obtain Theorem 5.1. Although the
fuzzy model is considered as a universal approximator, it yields nonzero approxrimation
error in practice. Assumption 3.1 supposes that the approximation error is bounded by
a positive parameter. Assumptions 3.2-3.4 are relevant to the gain function of the in-
put channel, b(x,t). To the best of the authors’ knowledge, the problem of ensuring the
stability of AFSMC' systems with uncertain gain functions of full state variables has yet
to be thoroughly solved. A contribution of this paper is the stability analysis of the pro-
posed AFSMC' system, in which the gain function of the plant’s input channel can be an
uncertain function of full state variables. Assumption 3.2 can also be found in [29,40].
Assumption 3.3 supposes that feedback gain in the nominal control is high enough, while
Assumption 3.4 requires the learning gain in the fuzzy control to be sufficiently large. Al-
though the theoretical result presented might be conservative, Theorem 3.1 is developed to
qualitatively demonstrate the stability of the proposed AFSMC system. Note that when
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there is no uncertainty associated with the gain function; i.e., as b= b, then Assumptions
3.2-3.4 are no longer required.

4. Experimental Study.

4.1. Plant description. Consider the position control of the Hoekens straight-line link-
age shown in Figure 5. This planar four-bar mechanism is comprised of the fixed link
(link 1), the shorter pivoting link (link 2), the coupler or connecting arm (link 3), and
the longer pivoting link (link 4). A permanent-magnet ac servomotor fixed to the frame
drives link 2, which in turn steers link 3, while link 4 is pivoted on the middle of link 3
and then connected to the frame by a pin joint. Especially, the point P on link 3 will
move in an approximately straight line. The four-bar-linkage system has the following
specifications:

¢y =105.20 [mm], ¢y =47.83 [mm], {3 =267.86 [mm], ¢, =133.93 [mm],
M, = 58.44 [g], Ms=251.19 [g], My = 180.74 [g],
I, =155x 1072 [gm?], I[3=153[gm?, I,=292x10"" [gm?]

in which ¢;, M; and I; denote the length, the mass and the moment of inertia, respectively,
of link 7. Since link 1 is fixed, information on M; and I; is not required. The four-bar
linkage under study can be described by

J,(2)3 + Cy(7)i® = Ky Kypeu + 74 (48)

where the angular position of the second link, x, is the output, v denotes the control input,
T4 represents the disturbance torque, K; is the torque parameter of the motor, and K,
is the current gain of the power amplifier. The coefficient terms, J, and Cj, denote the
generalized inertia and the centrifugal and Coriolis term, respectively. Note that .J, and
(), are periodic in z, and that the dynamics of this planar linkage are highly nonlinear.
Figure 6 shows the configuration of the servo system, in which the ac servomotor
driven by a regulated current converter is Mitsubishi Electric model HC-KFS73. The
shaft encoder mounted to the ac servomotor has a resolution of 8,000 lines, which yields

| Fixed to |
. Frame )

FI1GURE 5. Photo of the straight-line mechanism
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FiGure 6. Hardware configuration of the experimental system

a resolution of 32,000 pulses/rev after the A and B signals from the encoder have been
processed by the field-programmable gate array (FPGA), model XCV50PQ240-C6 from
Xilinx, Inc. Designed with VHDL, both position counting and velocity detection are
implemented in the FPGA. The controller core is a floating-point TMS320C6711 digital
signal processor (DSP), which obtains position and velocity information from the FPGA,
calculates the control algorithm, and sends the control effort to the regulated current
converter through a 12-bit digital-to-analog converter (DAC). A sampling rate of 12.2
kHz was chosen, and the integration in the control algorithm is made discrete by the
trapezoidal method.

4.2. Plant model and controller design. For the controller design, this nonlinear
straight-line linkage system is modeled simply as a linear double integrator with a lumped
term consisting of unmodeled nonlinear functions and unknown external disturbances:

i=b(u+d) (49)

where d denotes the lumped perturbation, and b = KKy./(In + G), where I, is the
inertia constant of the motor, and G = Myl3/4+ I+ M303 = 6.24x 10~* [kgm?] represents
a rough estimate of the linkage inertia. The values of the drive’s parameters are found to
be K,K,, = 7.83[Nm/V] and I,, = 1.51x10~* [kgm?], giving the parameter b = 1.01x10*.

The control task is to have this nonlinear system track a periodic reference trajectory,
whose first cycle is described by the following equation in radians

r(t) = — 2 K%ﬁ - gt“ + %5) (H(t) — H(t - 0.209))
10 ;5 15 s 6 5 (50)

+ <§(0.418 —t)° — ﬁ(0'418 —t)" + ;(0.418 — 1) ) H(t - 0.209)}
where 7 = 0.209. According to (4), the pole-placement design with both desired poles at
—50 gives: up, = l;_lh, where h = 7 — cygé — As, s = € + coe, ¢g = 50 and A = 50. The
auxiliary process is described by: z = h + bpsgn (o), with the switching gain ¢ = 1.5.
For the SMDOQO, the parameter ky, is set to 150, and another parameter k,, = 12/(3 is
chosen. For the second-order plant (48), the input variables of the fuzzy model are: =z,
i and (b'h + ug,). According to the operation range of the system, the universe of
discourse for each linguistic variable is assigned as [—0.1,2.1], [—-25, 25] and [—4, 4] for =,
Z and (13_1h + ugo), respectively, in which there are five linguistic values defined for each
linguistic variable. Equally spaced triangular membership functions are used to describe
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these linguistic values. Thus, the total number of regular fuzzy rules in the rule base is
5 x 5 x 5 =125, with all consequent parameters initially set to zero. In the AFSMC, the
learning gain is set to 50. Concerning computation issues, the computational requirement
of a control algorithm is often a problem in the real-time implementation of a complex
control system. To realize the proposed scheme, most of the computational burden is on
the AFSMC since the controller needs to determine each rule’s firing strength and tune its
consequent parameter. In the experiments, there are three inputs to the fuzzy model. Due
to the use of equally spaced triangular membership functions for each linguistic variable,
there are only eight rules fired at any instant. That is, the DSP only needs to deal with
eight rules in an interrupt interval, making the real-time implementation feasible.

4.3. Experimental evaluation. To examine the performance of the SMDO, the nominal
controller with the SMDO (i.e., u = Uy, + Ug,) is compared with the nominal controller
without the SMDO (i.e., u = u,,). Figure 7 shows the tracking performance by the
nominal controller with and without the SMDO, demonstrating that the SMDO can
improve tracking precision without introducing much chatter. However, since the SMDO
is designed to on-line estimate an unknown perturbation that is obviously time-varying in
this case, its dynamics with limited bandwidth cause inevitable estimation error, and there
is still some perceptible tracking error with the compensation by the SMDO, as shown
in Figure 7. Subsequently, the AFSMC, with all consequent parameters being initially
zero, is incorporated. Figure 8 shows the tracking responses by the proposed controller
(i.e., U = Upq + Ugo + uy,) and the SMDO-augmented nominal controller (i.e., u = u,, +
ug4o), demonstrating that the AFSMC adaptively and stably improves tracking precision
without introducing much control chatter. It can also be observed that the proposed
controller outperforms the SMDO-augmented nominal controller. Figure 9 shows the
time evolution of the proposed control and its two components, ug4, and ug,. During
the initial period, the AFSMC, whose consequent parameters are initially zero, has not
been well trained and cannot effectively compensate for system perturbation, and the
SMDO takes primary control. Subsequently, as the AFSMC continually adapts itself
to compensate for system perturbation, the output of the SMDO diminishes. Because
the AFSMC has been trained to compensate for most system perturbations, the SMDO
becomes less indispensable in the steady state. That is, the AFSMC gradually replaces
the SMDO and further improves the tracking performance. The AFSMC compensates
for system perturbation better than the SMDO does in steady state because, whereas the
SMDO estimates system perturbation in real time without the learning capability, the
AFSMC learns and stores the information on system perturbation in the fuzzy model; this
lookup-table-like compensation structure can rapidly and effectively counteract strongly
time-varying perturbations. Figure 10 shows the dynamic responses in two experiments by
the proposed control: the experiment with all consequent parameters being initially zero
is considered as the first trial, while in the second trial the initial values of consequent
parameters are obtained from the tuning result of the first trial. That is, the initial
consequent parameters of the second trial are assigned by reloading the final values of
consequent parameters of the first trial. It can be seen that, although both trials have
similar steady-state performance, the previous learning experience of AFSMC in the first
trial helps to improve the transient performance in the second trial. This reveals that
useful information on system perturbation is continually updated and stored in the fuzzy
model for efficient perturbation compensation.

We now define an artificially introduced input disturbance H (¢ — 1.675) V. Figure 11
shows the dynamic responses with and without the additional disturbance by the pro-
posed scheme. It can be seen that immediately after the instant of the unit-step jump in
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FiGure 8. Tracking responses by the proposed controller and the SMDO-
augmented nominal controller

the additional disturbance, the proposed scheme quickly develops a control against this
additional disturbance, and the degradation in the tracking performance is hereafter little
affected by this additional disturbance. Figure 12 shows the detailed time evolution of
two components of the proposed control with and without the additional disturbance,
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F1GURE 9. Time history of the proposed control and its components
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FIGURE 10. Dynamic responses by the proposed control in two consecutive trials

demonstrating that the SMDO generates a counter control immediately after the occur-
rence of the unit-step jump, alleviating the influence of this additional disturbance on
the tracking performance. In addition, the AFSMC gradually models the disturbance
and compensates for it, replacing the role of the SMDO and reducing the SMDO’s out-
put. Therefore, the purpose of introducing the SMDO is two-fold: one is to improve the
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FiGure 12. Time evolution of two components of the proposed control:
(a) with the additional disturbance, (b) without the additional disturbance

transient performance of the adaptive system, and the other is to compensate for system
perturbation that cannot be modeled by the AFSMC.

In contrast to the existing AFSMC learning laws that update consequent parameters
entirely according to the filtered tracking error s, the proposed learning law (20) contains
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Ficure 13. Comparisons of the performance with and without the switch-
ing signal

the switching signal ¢sgn (o), which is equivalent to the perturbation compensation error
by the SMDO-AFSMC. To investigate the effect of this switching signal on the learn-
ing performance, the proposed control law is simplified to approximate the conventional
control law [19,21,34] by setting two design parameters: k4, and 7 in (15) and (20), to
zero so that the switching signal has no influence on the control. The performance of the
control law without the switching signal, where k4, = 7 = 0, is compared with that of the
original one, as shown in Figure 13. It can be seen that the control without the switching
signal leads to a slow convergence of the tracking error because this control learns the
system perturbation information indirectly from the filtered tracking error. Conversely,
the proposed control that learns from the switching signal equivalent to the compensation
error of the SMDO-AFSMC speeds up the learning process.

The switching signal is available only when the sliding mode ¢ = 0 exists. However, the
existence of the sliding mode depends on the appropriate choice of the switching gain, ¢,
whose value is required to be greater than the magnitude of the compensation error of the

SMDO-AFSMC; that is, the inequality ¢ > [bb 'uy, + ug, + irlg‘ should be fulfilled to

ensure the existence of the sliding mode. However, the bound on the compensation error
of the SMDO-AFSMC is sometimes difficult to determine. To eliminate this requirement
of manually tuning the switching gain, the switching-gain adaptation law proposed in [39]
is employed here. This law ensures that the sliding mode occurs in finite time; it is given
by

, —B, if |07 + psgn(o)| +p <
P 7+ s (@) +u<e (51)
ablo| + B, otherwise

where p, o and (§ are design constants set to 0.1, 100/(3 and 1.5, respectively. Please
refer to [39] for more details on the meaning of these design constants. Figure 14 presents
the dynamic responses subject to the artificially-introduced input disturbance by the
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FIGURE 14. Dynamic responses with and without switching-gain adaptation

proposed scheme with and without the switching-gain adaptation. In the experiment, the
switching gain to be adapted is initially set to zero. It can be seen from Figure 14 that
while the tracking performance with the switching-gain adaptation is almost identical to
that with the fixed switching gain, the designer is not required to determine the switching
gain in advance. Figure 15 shows the time history of the adapted switching gain, in
which the switching gain is automatically adjusted from zero to an average value, rapidly
and stably. Since the disturbance varies with time, the adapted switching gain is also
time-varying and is reduced whenever possible. The adaptation result confirms that the
previously selected constant switching gain is not conservative. Moreover, just after the
step jump of the additional input disturbance occurs, the switching gain increases, but a
decrease in the switching gain follows. This decrease is due to the reduced compensation
error of the SMDO-AFSMC, and the switching-gain adaptation mechanism can adapt the
SMDO-AFSMC to different operating conditions without the need to manually readjust
the switching gain.

5. Conclusions. This paper presents the design of an SMDO-AFSMC scheme for a
class of nonlinear systems. The proposed control is composed of three components: the
nominal control, the SMDO and the AFSMC. The nominal control specifies the desired
closed-loop dynamics, while both the SMDO and the AFSMC counteract unknown system
perturbation. The SMDO compensates for the unmodelable part of the system pertur-
bation and improves transient performance of the learning system, while the AFSMC is
adaptively adjusted to compensate for the modelable part of system perturbation. Since
the SMDO, which has dynamics of limited bandwidth, yields estimation errors to time-
varying perturbations, the AFSMC is ideal for compensating for the modelable part of the
system perturbation, which can be strongly time-varying. The stability of the proposed
SMDO-AFSMC system, in which the plant’s input channel can have a gain function of
full state variables, has been verified through Lyapunov analysis. In contrast to the exist-
ing AFSMC schemes, the proposed scheme both improves the transient performance by
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FiGure 15. Time history of switching gains and the additional disturbance

introducing the SMDO, and speeds up the learning process by utilizing a switching signal
that is equivalent to the compensation error of the SMDO-AFSMC. Simulation and ex-
perimental studies have been conducted on nonlinear four-bar linkage systems; the results
confirm the effectiveness of the proposed scheme in improving the tracking performance
of the system.
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