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Abstract. The Algorithm Based Fault Tolerance (ABFT) approach transforms a sys-
tem that does not tolerate a specific type of faults, called the fault-intolerant system, to
a system that provides a specific level of fault tolerance, namely safety and/or recovery.
ABFT techniques are most effective when employing a systematic form. The error de-
tection is employed based on a high-rate real convolution code. This paper addresses new
methods for performing error correction when real number codes are involved. The parity
values are determined according to a systematic real convolution code. Detection relies
on two sets of parity values which are computed in two different ways, one set from the
input data but with a simplified combined processing subsystem, and the other set directly
from the output processed data, employing the parity definitions directly. The ABFT
philosophy leads directly to a model from which error correction can be developed. By
employing an ABFT scheme with effective real convolution code, the design allows high
throughput as well as high fault coverage. The simulations show that the great difference
between the round-off error and the computer-induced error is large enough to be distin-
guished.
Keywords: Algorithm based fault tolerance (ABFT), Convolution code, Parity values,
Round-off error, Redundancy

1. Introduction. In the case of fault tolerance, real convolution codes are primarily
used for error detection, providing the vector space separations, and detected abnormal
behavior leads to recomputation of the corrupted results. While the theory of real number
coding is similar to codes over finite fields, the decoding for error-correcting purposes is
more complicated. Algorithm based fault tolerance, proposed by Huang and Abraham
[1], is a fault tolerance scheme that uses Concurrent Error Detection (techniques at a
functional level). ABFT techniques are most effective when applied in a systematic form.
The redundancy necessary for the ABFT method is commonly defined by real number
codes, generally of the block type [2-8]. It has been used to reduce redundant hardware.
ABFT methodologies used in [9,10] present parity values dictated by a real convolution
code for protecting linear processing systems. A class of convolution codes called burst-
correcting convolution codes is introduced in [10,11]. These codes provide error detection
in a continuous mode using the same computational resources as the algorithm progresses.

The motivational model underlying ABFT as applied to linear processing of blocks
of real data is shown in Figure 1. The ABFT error detection technique relies on the
comparison of parity values computed in two ways. Number data processing errors are
detected by comparing parity values associated with a convolution code. This article
proposes a new computing paradigm in order to provide fault tolerance for numerical
algorithms. The data processing system is protected through parity values defined by a
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Figure 1. ABFT technique

high-rate real convolution code. Parity comparisons provide error detection, while output
data correction is affected by a decoding method that includes both round-off error and
computer-induced errors. In order to use ABFT techniques efficiently, a systematic form
is desirable [11-13]. Performing error correction when infrequent intermittent errors ap-
pear in the protected output values is appealing in several settings. If corrupted output
values are recomputed after error detection, the necessary control structure becomes very
complicated and the overall processing speed throughput is degraded accordingly. In an-
other situation, data and the related real-number parity values are located in storage and
when they are required again, the occurrence of data errors is detected. Then correcting
a few errors may be much simpler and faster than recomputing the original data, even if
the same processes are still active. However, error correction would probably be employed
if a viable error-correcting procedure was available.
The goal is to describe new protection techniques that are easily combined with normal

data processing methods, leading to more effective fault tolerance. The error detection
structures are developed and they not only detected subsystem errors but also corrected
errors introduced in the data processing system. Concurrent parity values techniques are
very useful in detecting numerical error in the data processing operations, where a single
error can propagate to many output errors.
The following contributions are made in this article. In Section 2, the Convolution

code, mean-square error (MSE) and majority logic decoding are discussed. In Section 3,
the architecture of ABFT is proposed. In Section 4, the protected detector and corrector
system is discussed. In Section 5, the simulations and experiment results are presented
and finally in Section 6, conclusions are presented.

2. Convolution Codes and Mean-Square Error (MSE). Convolution codes repre-
sent an efficient method for adding redundancy to the data symbols in a data processing
system to combat additive error effects at the processed data and only systematic forms
of convolution codes will be considered. Convolution codes differ from block codes in that
the encoder contains memory and the encoder outputs at any given time unit depend



A FRAMEWORK FOR FAULT TOLERANCE TECHNIQUES 5085

not only on the inputs at that time unit but also on some number of previous inputs
[14-20]. With convolution codes, the incoming bit stream is applied to a K-bit long shift
register. For each shift of the shift register, k new bits are inserted and n code bits are
delivered, so the code rate is k/n. A rate R = k/n convolution encoder with memory
order m can be realized as a k-input, n-output linear sequential circuit with input memory
m; that is, inputs remain in the encoder for an additional m time units after entering.
The input digits are grouped together by segments of k digits, called symbols, because
of the way the encoder introduces redundancy at the transmitting end. The encoding
of a symbol produces a corresponding group of n output digits, each also an element of
GF (q). Symbolically the encoding process may be written as

u = {u0, u1, u2, . . . , ui−1, ui, ui+1, . . .}, input sequence (1)

ui = (ui0, ui1, . . . , ui(k−1)), input symbol i (2)

where the k input digits uij ∈ GF (q), and encoded sequence, codeword,

v = {v0, v1, v2, . . . , vi−1, vi, vi+1, . . .} (3)

vi = (vi0, vi1, . . . , vi(n−1)), encoded symbol i (4)

where the n output digits vij ∈ GF (q).
A new error criterion will be introduced by associating an integer with each input

symbol ui. In making this assignment, the k components in ui = (ui0, ui1, . . . , ui(k−1)) are
weighted so that the (k−1)th element, ui(k−1), has the largest numerical impact, while the
zeroth one, ui0, has the least. This fixes the numerical ordering for the k input positions,
effectively indexing each input symbol ui with an integer from zero through (qk − 1). A

similar weighting is attached to the respective components in
_
u i, the decoder’s output.

A new performance criterion, the overall mean-square error, is employed under these
conditions.

Ξ2 = E

{[
ui −

_
u i

]2}
(5)

where ui and
_
u i are viewed as real numbers, ui ↔ k input digits, and

_
u i ↔ n decoded

digits. The positions in the input and output symbols are treated differently by this
criterion. The minimization process guarantees that the (k−1)th position will enjoy more
error protection than the other positions because of the quadratic nature of the square
error criterion. The goal is to minimize the overall mean-square individual symbols, Ξ2,
by simultaneously choosing the encoding and decoding functions.

Thus

Ξ2
i = E

{[
ui −

_
u i

]2}
, i = 0, 1, 2, . . . (6)

The subspace of the convolution code that effects the encoding and decoding of a
single input integer will be examined first. We restrict our attention to time-invariant
convolution codes, as the extension to a time-varying code is a straightforward matter.
The system is assumed to be in steady-state operation with i > k, and the decoding

decision for output integer
_
u i will be made based upon the outputs from the detectors

for nm code digits, beginning with the output due to ui.
The mean-square error criterion is interesting in its own right because many systems

are designed on its basis. Nevertheless, we can relate the outputs of the mean-square error
decoder to those of conventional decoders. When both systems use the same optimum
encoding rule, the minimum mean-square error decoding rule produces the same outputs
as the majority logic decoding (MLD). The mean-square error decoder always attempts to
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confine any error during overload situations to the statistically least significant positions
in the decoder’s outputs.

2.1. Majority logic decoding. Viterbi [18] decoding is an optimum decoding method
for convolution codes. Its performance depends on the quality of the channel, and the
decoding effort is fixed and grows exponentially with code constraint length. Hence, it is
only useful for short-constraint-length codes. The performance of sequential decoding is
slightly suboptimum, but its decoding to be used long constraint lengths. The number
of computations needed to decode a frame of data is a random variable. Although most
frames are decoded very quickly, some undergo long searches, causing a few to be incom-
pletely decoded or erased. This variable nature of the decoding effort has led sequential
decoding to be referred to as a probabilistic decoding method. An algebraic approach can
also be taken to the decoding of convolution codes. Majority-logic or threshold decoding
differs from Viterbi decoding and sequential decoding in that the final decision made on
a given information block is based on only one constraint length of received blocks rather
than on the entire received sequence. The implementation of the decoder is much simpler
[20]. This has led to the use of majority-logic decoding in applications such as fault tol-
erance and reliability, where a moderate amount of coding gain is desired at a relatively
low cost. In the general case of an (n, k,m) systematic code with generator matrix

G =


IP0 0P1 0P2 · · · 0Pm

IP0 0P1 · · · 0Pm−1 0Pm

IP0 · · · 0Pm−2 0Pm−1 0Pm

· ·
· ·

·

 (7)

where I and 0 are identity and all zero k × k matrixes respectively and Pi with i = 0 to
m is a k × (n− k) matrix whose entries are, [18]:

Pi =


g
(k+1)
1,i g

(k+2)
1,i · · · g

(n)
1,i

g
(k+1)
2,i g

(k+2)
2,i · · · g

(n)
2,i

...
...

...

g
(k+1)
k,i g

(k+2)
k,i · · · g

(n)
k,i

 (8)

The parity-check matrix is given by:

H =



P T
0 I

P T
1 0 P T

0 I
P T
2 0 P T

1 0 P T
0 I

· · · · · · ·
· · · · · · ·
· · · · · · ·

P T
m 0 P T

m−1 0 P T
m−2 0 · · · P T

0 I
P T
m 0 P T

m−1 0 · · · P T
1 0 P T

0 I
P T
m 0 · · · P T

2 0 P T
1 0 P T

0 I
· ·

· ·
· ·



(9)

where in this case, I is (n − k) × (n − k) identity matrix and 0 is the (n − k) × (n − k)
all-zero matrix (T stands for the transposed matrix). The syndrome equations, denoted
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by vector S, are given by:
S = HvT = HeT (10)

where v is the received sequence and e is error vector. The value of HvT is dependent
only on the error vector and is independent of the codeword. Syndromes of the code
words are 0. There are (n − k) syndrome sequences, one corresponding to each parity

error sequence, and s =
(
s
(k+1)
0 , . . ., s

(n)
0 , s

(k+1)
1 , . . . , s

(n)
1 , s

(k+1)
2 , . . . , s

(n)
2 , . . .

)
.

3. ABFT Methodology. The ABFT techniques that are applied to detect errors rely
on the comparison of parity values computed in two ways. The parallel processing of input
parity values produce output parity values comparable with parity values regenerated from
the original processed outputs. The model basic ABFT as applied to linear processing of
blocks of real data, Figure 1.

The parity values are determined according to a systematic real convolution code. De-
tection relies on two sets of parity values which are computed in two different ways, one set
from the input data but with a simplified combined processing subsystem, and the other
set directly from the output processed data, employing the parity definitions directly.
These comparable sets will be very close numerically, although not identical because of
round-off error differences between the two parity generation processes. The effects of
internal failures and round-off error are modeled by additive error sources located at the
output of the processing block and input at threshold detector. This model combines the
aggregate effects of errors and failures and applies them to the respective outputs. Ba-
sic coded system model is presented in Figure 2, clearly indicating the computer-induced
error (which may represent hardware failures in certain situations) and the round-off com-
putational error introduced the syndrome calculations. The part of model accounting for
computational effects is widely employed in signal processing systems [7-12]. This round-
off error is usually considered white and uncorrelated with all other processes associated
with the signal. The error corrector must operate on the syndromes as they are the only
observable items which are data-independent. The input data are generally restricted to
a large but finite alphabet, e.g., fixed-point integer values, so that round-off error in the
processing, encoding, and parity generation operations does not cause intrinsic errors,
even before other effects are included. The upper bound on the numerical values associ-
ated with the alphabet is affected by the dynamic range of the processing system whereas
the precision determines round-off error tolerance levels.

4. Protected Detector and Corrector System. To achieve fault detection and cor-
rection properties of convolution code in data processing with the minimum additional
computations, the block diagram is proposed in Figure 3. This figure summarizes an

Figure 2. Basic coded system model
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ABFT technique employing a systematic convolution code to define the parity values.
The data processing operations are combined with the parity generating function to pro-
vide one set of parity values. The k is the basic block size of the input data, and n is
block size of the output data, new data samples are accepted and (n − k) new parity
values are produced. Convolution codes are usually used over the transmission channels,
through which both information and parity bits are sent. The upper way, Figure 3, is the
processed data flow which passes through the process block (data processing block) and
then feeds the convolution encoder (parity regeneration) in order to produce parity values.
On the other hand, the comparable parity values are generated efficiently and directly
from the inputs (parity and processing combined, see Figure 3), without producing the
original outputs. The difference in the comparable two parity values, which are computed
in different ways, is called the syndrome; the syndrome sequence is a stream of zero or
near zero values.
The convolution code’s structure is designed to produce distinct syndromes for a large

class of errors appearing in the processing outputs. Figure 3 employs convolution code
parity in detecting and correcting processing errors. One error correction method shown
at the output of Figure 3, an error protection subsystem is included the decoding opera-
tion, as shown in Figure 3, guarding against overload situations that exceed the correcting
capabilities of the code. Such final output checks are very common in fault-tolerant sys-
tems. The corrected outputs are tested by recomputing the syndromes and employing
a threshold detector which is a checker containing small thresholds for round-off error
tolerance. The basic dichotomy for a corrector of real number convolution codes is shown
in Figure 3. However, errors may occur in the corrector itself and so additional error
detection capabilities are included after the corrector by reforming the syndrome of the
final output corrected. If there have been failures in the original syndrome formation or
error-correction parts, the correction compute v(t), see Figure 2, will be erroneous, intro-
ducing detectable errors in output corrected. Furthermore, when the corrector attempts
correction of large computer-induced errors in excess of the code’s capabilities, the sto-
chastic estimate introduces additional large errors in the final compute. The syndrome
reformation process detects this situation too. The fault tolerance detector parts of Fig-
ure 3 perform the final checking function. Such final output checks are very common in
fault-tolerant systems. The corrected outputs are tested by recomputing the syndromes

Figure 3. Protected detector and corrector system
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and employing a threshold detector which is a totally self-checking checker containing
small thresholds for round-off error tolerance [21,22] .

5. Simulations and Experiment Results. The basic operations needed for testing and
simulating the new techniques explored in this approach are well-suited to MATLAB.
Several simulation schemes modeling the ABFT method for detecting numerical level
errors are described in MATLAB, version 2010a, where the modeling errors were assumed
Gaussian with zero means and statistically independent from symbol to symbol. Errors
are allowed in the parity values computed by the combined data parity generator, Figure
3, and in the processed data symbols. The MATLAB code forms the basis for a simulation
program that explores the role of the threshold τ . If the threshold τ is set too low, even
occasional round-off errors will exceed it, indicating failures leading to recomputation of
parity values unnecessarily. It is generally permissible to accept a few small errors that are
in the range of round-off levels. Nevertheless, the simulations examine how the threshold
choice impacts undetected errors. The simulation program randomly selects the random
magnitude error. The magnitude of each error is chosen from a Gaussian population with
zero mean and fixed variance 2 × 10−4. For small thresholds, large errors always lead
to detection, whereas large thresholds increase the undetected error performance. The
threshold is varied over a wide range so as to see the transition between low detected
errors and high levels of missed errors. The input data size is 50 samples and each sample
point is averaged over 500,000 random choices.

Figure 4 shows the simulation results after 500,000 iterations. In Figure 4, the syndrome
sequence in the absence of any errors is shown and nonzero values are due to round-
off errors. The syndrome in most cases is less than ±3 × 10−3. However, there are
also a few errors as great as ±3.5 × 10−3. Therefore, we will select a threshold value
equal to 17.5 × 10−3 for error detection purposes. The linear data processing system is
then subjected to errors due to failures every 50 steps at data processing block outputs
(W (t) in Figure 1) and at comparator output (V (t) in Figure 1). It is clear that the
syndrome contains single nonzero values for injected errors. If there is only a single error
in every constraint length the majority logic decoding can correct the error. The results

Figure 4. Syndrome sequence for no error condition (error-free condition)
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(a)

(b)

Figure 5. (a) Plot probability that number of errors greater than 1 and
(b) plot probability that number of errors greater than 0 from 500,000
iterations

are compared to determine the probability of errors. The experiment shows that there
is positive probability of computer-induced errors greater than 0, and the probability of
computer-induced errors greater than 1 is zero as shown in Figure 5. Beside the probability
of error range, the MSE and the maximum MSE form 500,000 iterations are evaluated.
The mean-square error performance for the fault-tolerant processing system protected by
the (6, 5, 2) code is displayed in Figure 6.
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(a)

(b)

Figure 6. (a) The MSE and (b) maximum MSE form 500,000 iterations

The mean-square errors vs. injection error boundary and error detection performance
vs. threshold, when error occurred in the linear data processing system, are shown in
Figures 7(a) and 7(b). When the maximum error level is large, the error detection perfor-
mance drops quickly versus the detection threshold as shown in Figure 8(a). Figure 8(h)
shows the error detection performance curve corresponding to the error level below 0.125
the maximum of data input. The mean square error in this case is 0.9402 (or −0.2678dB).
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(a)

(b)

Figure 7. (a) Mean square error vs. error injection level and (b) detection
performance vs. threshold

The threshold can be selected based on the error condition and the detection performance
curve. Error detection performance of the data processing system when the error injection
level does not exceed, 16, 8, 4, 1, 0.5, 0.25 and 0.125 times the maximum data input value
are shown in Figure 8.
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Figure 8. Error detection performance of the data processing system when
the error injection level does not exceed, (a) 16, (b) 8, (c) 4, (d) 2, (e) 1,
(f) 0.5, (g) 0.25 and (h) 0.125 times the maximum data input value

6. Conclusions. The ABFT technique employs real convolution error-correcting codes
to encode the input data. In order to reduce the round-off error from the output de-
coding process, systematic real convolution encoding is employed. This paper proposes
an efficient method to detect the arithmetic errors using convolution codes at the output
compared with an equivalent parity value derived from the input data. Number data
processing errors are detected by comparing parity values associated with a convolution
code. These comparable sets will be very close numerically, although not identical because
of round-off error differences between the two parity generation processes. The effects of
internal failures and round-off error are modeled by additive error sources located at the
output of the processing block and input at threshold detector. The detection performance
in the data processing system depends on the detection threshold, which is determined by
round-off tolerances. The simulations show that the great difference between the round-off
error and the computer-induced error is large enough to be distinguished.
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