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ABSTRACT. This paper proposes a novel clustering approach for detecting impulse noise
in digital images. From the clusters formed, we can identify the impulsive pizels in the
noisy image. Combining it with a detail preserving noise filter using the switching frame-
work, we obtain a high-performance two-stage algorithm for universal impulse denoising.
As opposed to many existing filters that focus only on a particular impulse noise model,
the proposed method, called the Augmented Variational Series and Histogram-Based Clus-
tering (AVSHC) filter, demonstrates excellent performance in suppressing random-valued
and fized-valued impulse noise models, as well as a combination of both models. Extensive
simulations conducted on monochrome test images under a wide range of impulse noise
densities show that the AVSHC filter substantially outperforms other state-of-the-art im-
pulse noise filters in terms of impulse detection, image restoration, and computational
cost.

Keywords: Impulse noise, Augmented variational series, Histogram processing, Clus-
tering, Switching filters, Nonlinear filtering, Image restoration

1. Introduction. Visual data from digital images contain information that is critical
for applications in a broad spectrum of research areas. Unfortunately, digital images are
inevitably subjected to the contamination of impulse noise. Some likely causes of impulse
noise include malfunctioning pixel sensors, faulty memory units, external disturbances
in a noisy environment, imperfections encountered during transmission, electromagnetic
disturbances, and timing errors in analog-to-digital conversion [1-3]. As a result, impulse
noise may severely degrade the image quality and cause data pertaining to important
features in the image to be significantly damaged.

In many applications, noisy images are preprocessed and restored in the early pipeline of
image processing before subsequent image-processing tasks are performed. Preprocessing
is imperative, and even indispensable, because the accuracy of subsequent operations (e.g.,
image classification, enhancement, segmentation, and parameter estimation) is largely
affected by the quality of the filtered image [1, 3]. Recently, more image sensors per
unit area are packed onto chips, and image capturing devices have become increasingly
sensitive toward the exposure to impulse noise. In this respect, manufacturers of image
capturing devices rely primarily on image denoising algorithms to improve the quality of
the acquired image [4]. To this end, a number of techniques have been proposed for the
removal of impulse noise [1-42].

Over the years, nonlinear filtering techniques have been considered state-of-the-art
methods because of their impressive performance. Of these techniques, the median filter
[5], which exploits the rank-order information within a filtering window, appears to be a
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popular choice for suppressing impulse noise. Employed in a similar fashion to window-
based filtering algorithms, the median filter is applied in a raster-scan order, and it treats
all pixels equally, regardless of whether the pixels are corrupted or noise-free. Hence, local
information consisting of image details and edges comprising noise-free pixels is a subject
to be filtered. Ignoring such local information often results in desirable image details
being at best blurred and at worst missing when the image is filtered. Nonetheless, this
drawback has been overcome with the inception of the switching filters framework [1-3,
6-22].

The class of switching filters has been proven to be more effective than its nonswitching
counterparts in many aspects, from detail preservation to noise suppression. Therefore,
switching filters have become a powerful tool for impulse denoising. The crucial role
of switching filters is to discriminate noise pixels from noise-free pixels prior to apply-
ing nonlinear filtering. The process of discriminating noise pixels from noise-free pixels
can be accomplished by incorporating an impulse detector into the conventional filtering
framework. However, early-developed switching filters [7, 9] are found to be nonadaptive
toward impulse noise density variations [15]. At higher noise density interference, the im-
pulse detectors are prone to yield pixel misclassifications. Thus, image details and edges
are blurred, and undetected impulsive pixels create a strong negative visual effect on the
filtered image.

In this paper, we classify existing switching filters into three categories: nonadaptive
[1, 6-13], adaptive [3, 14-17], and iterative [18-22]. Within each category, more advanced
techniques are integrated as part of the switching filters framework to obtain additional
information about the image (e.g., local statistics and thresholds). It is observed that
switching filters that use such additional information can enjoy performance improve-
ments by their impulse detectors and/or filters. These sophisticated techniques include
various types of filtering, including order-statistics [23-26], variational-regularization [3,
27, 28], soft computing [2, 29-37], mathematical morphology [38], threshold Boolean [39],
and decision-based approaches [10, 40]. Technically, these high-complexity techniques
are effective for switching filters because of their adaptive functionalities and advanced
features to approximate nonstationary statistical characteristics of impulse noise [2].

Many of the methods mentioned above have the drawbacks of blurring finely textured
image details, smearing thin lines, and distorting edges. Moreover, these methods are
designed exclusively for filtering images that are heavily corrupted by a specific type of
impulse noise model (e.g., see [16, 22]). By heavily corrupted, we mean the corruption of
more than 25% of the total pixels. Less attention is given to the case of low corruption
rates, in which precise impulse detection is highly desirable [23]. Although some methods
can compensate for different impulse noise models with low noise density, loss of image
details and over-smoothing of edges are still prevalent. Furthermore, methods that require
training and tuning of parameters (e.g., see [2, 33]) are time consuming and less predictable
when implemented [13]. These pitfalls, among others, mark the problems faced by the
class of switching filters. Regardless of impulse noise density, good restoration can be
attained but at the expense of increased computational cost. Roughly speaking, the great
challenge in impulse denoising is to find the best tradeoff between impulse suppression
and detail preservation. Moreover, the computational complexity needs to be kept low
for reason to be cost effective in practical applications. Such observations motivated us
to develop a fast and effective method for impulse denoising.

In this paper, we channel our attention toward developing a robust filter that can
handle any type of impulse noise models and, therefore, can be considered a “universal”
impulse noise filter. Our goal is to effectively suppress impulse noise while retaining
finer details in the image. Therefore, we propose a novel two-stage method, called the
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Augmented Variational Series and Histogram-Based Clustering (AVSHC) filter, based on
the switching-scheme concept. The contributions of this paper are the following:

e We describe and propose two impulse detectors, one based on signal augmentation
clustering and another based on histogram clustering, which can be easily combined
to construct a universal impulse detector.

e We propose an adaptive median filter founded on fuzzy reasoning for accurate
restoration.

e We develop a fast and automated stopping criterion for iterative switching filters
that is based on a newly introduced image “roughness” index.

The advantages of the proposed method include:

e It removes fixed- and random-valued impulse noise, and any mixture thereof.

e It removes visible impulsive pixels as cleanly as possible while maintaining the detail
information and natural appearance of the filtered image.

e It operates at a wide range of impulse noise densities without needing any burden-
some tuning or tedious training of parameters when applied recursively and itera-
tively.

e It has low computational complexity and fast runtime.

The above advantages appear to greatly simplify camera design criteria as modern
consumer cameras seek compact designs for image preprocessing. Instead of embedding
multiple filters for removing different types of impulse noise, a single universal filter that
offers competitive filtering performance is more preferable!. Because impulse noise can
exist in various stages in the canonical image processing pipeline or outside of the image
formation process, impulse noise filters play a crucial role in improving the overall ap-
pearance of the captured image [1, 36]. This is particularly true for filters with universal
behavior, such as the one proposed, and thus such filters have become an imperative de-
sign module among diverse image capturing devices. In fact, image applications in recent
consumer electronic products often include a signal preprocessor customized with an im-
pulse noise filter [9, 34]. In this regard, the proposed AVSHC filter emerges as a natural
choice over other established impulse noise filters because of its competitive advantages
and effectiveness. As will be seen later in this paper, simulation results reveal that both
objective and subjective evaluations favor the AVSHC filter over other state-of-the-art
impulse noise filters.

The outline of this paper is as follows. Section 2 reviews various types of impulse noise
models. The design and implementation of the proposed filter are formulated in Section
3. Simulation results, comparisons, and discussions are provided in Section 4. Finally,
the conclusion is presented in Section 5.

2. Impulse Noise Models. For clarity, we first discuss the different types of impulse
noise models. Considering an image of size M x N stored as 8-bit grayscale pixel resolution,
pixel intensities lie in the dynamic range [Inin, Imax), in which I, and . represent
the lowest and highest intensities, respectively. Regardless of its origin, impulse noise
randomly misfires a certain percentage of pixels with intensity values that are significantly
different from the uncorrupted neighborhood. Thus, an image contaminated with impulse

'In the classical camera design, multiple denoising methods, such as median filtering and weighted
averaging, are embedded in the camera for preprocessing the captured image. Usually, the final image
is averaged from the outputs of each filter. This design is typically slow and sometimes blurs the final
image.
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noise of probability? p can be modeled as:

. f(z,7): with probability p

2(i, ) = { OEi,j;: with probability 1 — p (1)
where (i, j) denotes the pixel at location (i,7) with intensity z, and f(4,j) and o(i, j)
represent the noisy and noise-free images, respectively.

Fundamentally, two types of impulse noise models are widely used in image process-
ing literature: the random-valued impulse noise (RIN) model and the fixed-valued im-
pulse noise (FIN) model. The former is also known as uniform impulse (UNIF) noise, in
which the noise pixels can take any intensity values within the image dynamic range, i.e.,
funif(i,7) € [Imin, Imax]. Alternatively, the FIN model assumes a limited number of impul-
sive intensities that appear in certain percentages; for examples, see [15, 30]. In a related
note, the simplest and most frequently used FIN model in contemporary literature is salt-
and-pepper (SNP) noise. Under the assumption of the SNP noise model, impulsive pixels
are assumed to take the minimal and maximal intensities, i.e., fsup(i,7) € (Zmin, Imax)-

In reality, we have a priori knowledge about neither the impulsive amplitudes nor
the impulse noise densities. In fact, impulse noise results from the interference of noise
signals with arbitrary amplitudes. Consequently, the impulsive amplitudes could fall
either inside or outside of the image dynamic range. When the impulsive amplitude lies
within the image dynamic range, the corresponding pixel appears as UNIF noise in the
noisy image. However, if the impulsive amplitude falls outside of the image dynamic range,
the corresponding pixel is saturated and flipped to the maximal or minimal intensity and
emerges as SNP noise. Under these circumstances, it is more appropriate to consider a
more general impulse noise model.

Apparently, real impulse noise is a mixture of the SNP and UNIF noise models. For
this reason, Petrovic and Crnojevic [33] have proposed a simplified but realistic impulse
noise model that contains both the SNP and UNIF noise models. The general impulse
noise model, called mixed impulse (MIX) noise, is given here as:

funif(3,7) : with probability 0.5p
z(i,j) = fsnp(i,7) = with probability 0.5p (2)
o(i,j) : with probability 1 — p

In this way, half of the impulsive pixels are modeled as SNP noise, and the remaining
half are modeled as UNIF noise. If we think of impulse noise in image degradation as
a combination of two independent processes of injecting the image with fq,,(7,7) and
funif(i,7), the question of choosing an appropriate impulse noise model is reduced to
the selection of the MIX noise model. We advocate the use of the MIX noise model in
(2) because it is deemed more suitable and reasonable when testing the performance of
an impulse noise filter. Thus, we will pay particular attention to the MIX noise model,
although the universality of the AVSHC filter can also produce impressive results when
restoring images contaminated with SNP or UNIF noise models.

3. Formulation and Implementation. In this section, we present a detailed descrip-
tion of the development of the AVSHC filter. We adopt a two-stage switching-scheme
concept in which the first-stage impulse detection is cascaded with the second-stage im-
pulse cancellation. These two stages are iteratively executed until the stopping criteria
for iteration, which is based on an image “roughness” index, is satisfied. Figure 1 shows
the overall system architecture of the proposed AVSHC filter.

2Impulse noise probability and density both refer to the percentage of corrupted pixels; thus, these
two terms are used interchangeably in the literature.
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FIGURE 1. The system architecture of the AVSHC filter

For impulse detection, the impulse detectors attempt to distinguish noise pixels from
noise-free pixels. In this case, our main aim is to handle separately pixels corrupted by the
RIN distribution and those of the FIN distribution. This novel feature is critical because
it combines flexibility and effectiveness in removing any kind of impulse noise. Initially,
the first impulse detector segregates the pixels in a local window patch into several clusters
according to their augmented variational series. Then, the second impulse detector further
scrutinizes the isolation of impulsive pixels by segmenting the noisy image histogram into
noise and noise-free clusters. By combining the outcomes of these two impulse detectors,
we can easily distinguish the impulsive pixels because noise-free pixels may be grouped
into a single cluster and the noisy pixels into other clusters. Subsequently, the detected
noise pixels are subjected to the next stage for filtering, or filtering is bypassed if the pixels
are classified as noise-free. As a result of this bypassing, the integrity of the underlying
fine details and textures in the image can be preserved better. For impulse cancellation,
we adopt an adaptive median filter to perform restoration on the noise pixels that are
detected. In addition, fuzzy reasoning is exploited to assist in handling uncertainties
present in the extracted local information.

In this framework, the proposed AVSHC algorithm is recursively implemented in an
iterative manner. The filtered image in the current iteration is used as the input image for
the subsequent iteration. An advantage of the iterative strategy is that some impulsive
pixels located in the middle of large noise blotches can be gradually filtered after each
iteration. Then, the recursive implementation can achieve better performance than the
nonrecursive implementation because the newly restored pixel value takes effect immedi-
ately when the adjacent pixel is inspected by the impulse detectors. As a result, at least
one-half of the pixels in the local window patch are composed of either noise-free pixels
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or previously restored pixels when they are recursively implemented. Additionally, the
recursive behavior of the AVSHC filter speeds its runtime by preventing it from perform-
ing any unnecessary processing of noise-free pixels. As opposed to other methods that
only adopt either recursive (see [1, 7, 10]) or iterative (see [18, 20, 28]) implementation,
we combine both implementations to exploit the advantages of each and overcome their
intrinsic disadvantages.

3.1. Impulse noise detection: cluster-based impulse detectors. Because the inten-
sity of an impulsive pixel is significantly different from the other pixels in its surroundings,
a noise pixel can be easily identified by an impulse detector by the height of the bright-
ness jump in comparison with its neighboring pixels. Therefore, impulse detection can be
performed by analyzing the local image statistics within a window patch the size of which
is bounded by the detector.

Let W, denote the local window with odd (2K, + 1) x (2K, + 1) dimensions centered
at £(0,0), i.e.,

Wy ={(k,))| - Kg <k,l < Kq}, (3)
and let the set of neighboring pixels x(i + &, j + 1) be
Wo = {a(i+k,j + DIk, 1) € Wa, (k1) # (0,0)}. (4)
If the pixels in W, are sorted in ascending order as
W(1) S W,(2) S W,(3) <--- < W (K4 +1)° = 1), (5)
we can denote the sorted neighborgram as W, given by:
W, = {W,(1), Wy(2), Wy(3),..., W, ((2Kg+ 1)* = 1) } . (6)

Subsequently, the variational series V' is obtained by computing the absolute differences
between the adjacent pixel intensities in the sorted neighborgram, i.e.,

V(m) = [Wy(m+1) = Wy(m)|: m=1,2,...,(2Ks —1)* - 2. (7)

As mentioned earlier, impulsive pixels often exhibit intensities that vary greatly from
those of their neighbors. In this case, large absolute differences are produced in the
variational series, and impulsive pixels can be easily identified by the impulse detector.
However, one difficulty arises when some impulsive intensities are near those of their
neighboring pixels, in which case the absolute differences may not be large enough for the
impulse detector to distinguish impulsive pixels from noise-free pixels. Consequently, one
of the following two errors may occur: impulsive pixels can be misinterpreted as finely
textured image details and, thus, remain unaltered, or finely textured image details can
be mistaken for impulsive pixels and, therefore, filtered from the image. The first type
of error may adversely affect the filtered image quality even if only a few impulses are
retained whereas the second type of error may unnecessarily cause image details to be
removed.

One way to minimize the possibility of these errors occurring is to amplify the absolute
intensity differences in V' (m) and yet keep the small differences from increasing too much.
In this case, we use a piecewise-linear fuzzy set p(m) with adjustable parameters to
accomplish this goal. Given the intrinsic vagueness within the noise and noise-free pixels
that gives rise to the two types of errors, the line of fuzzy reasoning is an effective tool
for handling the vagueness and uncertainty present in the image data [6]. Applying p(m)
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FIGURE 2. The plot of the variational series V' and augmented variational
series V, versus the absolute intensity difference. Note that the impulse
detection mechanism of some well-known methods [7-9, 15-22, 26-34] is
represented by V' (i.e., before signal augmentation) whereas our impulse
detection based on signal augmentation approach is represented by V.

on V(m), we get

0.0 : V(m)<FY
Vm—Fl(t)
pm) = Gessr o B <Vim) < B ®)
1.0 : V(m)>FY

where Fl(t) and FQ(t) are two adaptive thresholds in the ¢th iteration (¢ > 1). Within the
dynamic range pu(m) € [0,1], u(m) is kept low if the absolute differences in variational

series V (m) < F{" and the absolute differences in V' (m) are fully amplified when V (m)
surpasses the limit defined by Fg(t). Then, the variational series can be augmented using

Va(m) = exp[10 - p(m)] — 1.0 (9)

where V,(m) represents the augmented variational series.

By considering all possible absolute differences between two pixel intensities (i.e., V/(m)
€ [Imins Imax]), we show the effect of signal augmentation by comparing the membership
values (normalized to the dynamic range [0, 1]) for V(m) and V,(m) in Figure 2. Generally,

we plot the normalized functions for (7) and (9) in Figure 2 with FY =10 and F{M = 250.
Although V' (m) represents the absolute difference between two adjacent intensities in the
sorted neighborgram Wy, it can also serve as the absolute intensity difference between
a center pixel and one of its neighboring pixels as in conventional switching median fil-
tering. In other words, V(m) in (7) represents the core detection mechanism of various
well-known switching median filters, such as those in [7-9, 15-22, 26-34]. Accordingly, we
note that the proposed signal augmentation is an additional step to improve the accuracy
of the impulse detection mechanism employed by these filters. From Figure 2, the nor-
malized membership value curve for V,(m) is upward sloping, and it increases faster as
the absolute intensity difference increases. In contrast, the normalized membership value
curve for V(m) increases linearly with the absolute intensity difference. This linear char-
acteristic contributes to the errors perpetuated by conventional switching median filters
by mistakenly treating high-contrast local image contents (such as edges and thin lines)
as impulse noise, and vice versa.

We argue that such errors can be reduced by using signal augmentation because small
irregularities in absolute intensity differences are neutralized whereas medium and large
absolute intensity differences are further intensified. To support this claim, we perform
an experiment by analyzing the performance of the impulse detector before and after
signal augmentation. Specifically, we test the accuracy of the impulse detection using
V(m) and V,(m) in (7) and (9), respectively. Again, we clarify that the impulse detection
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based on V'(m) represents the impulse detection mechanism of some previously mentioned
switching median filters whereas the mechanism based on V,(m) represents our proposed
impulse detection. In this experiment, we artificially inflict 5% to 50% of MIX noise (as
modeled in (2)) in 5% noise steps on a set of 10 standard test images® before running
the impulse detector twice on each image; the impulse detector is tested initially without
signal augmentation and later with signal augmentation. The conditions for classifying
noise and noise-free pixels are similar to those in [7]. For simplicity, we execute the impulse

detector once (i.e., t = 1), and we select Ky = 1, Fl(l) = 10, and FZ(I) = 250. We assume
that the locations of all the noise and noise-free pixels are known in advance, and then
the impulse detector attempts to classify all of the pixels into two groups: the noise pixels
set and the noise-free pixels set.

The outcome of the experiment is shown in Figure 3 as the error bar charts for compar-
ing the statistics on impulse detection performance (i.e., the average number of correct
classifications and false detections!) before and after signal augmentation. The error
bars represent the standard deviations of impulse detection statistics and the heights of
the bars reveals how tightly the accuracy of the impulse detection statistics is clustered
around the means. We can see from Figure 3(a) that the error bars for correct classifica-
tion have greater height after signal augmentation. This result concurs with our earlier
argument that the signal augmentation process increases the accuracy of the impulse
detector. Furthermore, the height of the bars remain constant across a wide density of
impulse noise, which suggests that signal augmentation works well even when the image
is highly corrupted with impulse noise. In the second plot in Figure 3(b), the impulse
detector employing signal augmentation has shorter error bars than the one without sig-
nal augmentation. The smaller height demonstrates that the signal augmentation process
minimizes the risk of false detections. In summary, signal augmentation introduces good

3The set of 10 standard test images used throughout this paper are the grayscale “Airplane,” “Baboon,”
“Boat,” “Bridge,” “Cameraman,” “Goldhill,” “Lake,” “Lena,” “Pepper,” and “Pentagon” images of size
512 x 512.

4The number of correct classifications is defined as the sum of correctly identified impulses and noise-
free pixels by the impulse detector. The number of false detections is interpreted as the number of
incorrectly identified noise-free pixels.
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FIGURE 4. ITllustration on the signal augmentation process using a 15 x 15
neighborhood for a variety of image local features: corner, edge, smooth,
and texture. Note that the areas bounded by the arrows represent the range
of the noise-free intensities.

noise tolerance into the impulse detector and increases the detection accuracy while re-
ducing the risk for false detections. These criteria are highly desirable for a good impulse
detector framework.

Figure 4 translates the theoretical concept of signal augmentation into action. In addi-
tion, we show evidence that the augmented variational series V,(m) is more useful than the
widely used variational series V' (m), which does not apply signal augmentation. Clearly,
Va(m) has the advantage of easily distinguishing impulsive pixels from noise-free pixels,
even with the presence of delicate details in different image structures. For convenience in
illustration, we perform signal augmentation on a 15 x 15 neighborhood (i.e., K; = 7) for
various image structures, such as corner, edge, smooth region, and texture. We note that
small irregularities, which are composed of pixels with similar local features, that exist in
the variational series V' (m) are smoothed upon augmentation whereas medium and large
bumps in V' (m), because of the presence of impulse noise, are uniformly amplified. Like-
wise, it can be observed that V,,(m) has discontinuities in its augmented variational series
under the presence of impulse noise. These discontinuities support our intuition to classify
noise-free pixels into a noise-free cluster and noise pixels into other clusters. However, it
is trivial to observe that the discontinuities serve as boundaries that separate noise-free
pixels from noise pixels. The nontrivial part of the process is to locate every cutoff point
in the augmented variational series V,(m) with minimal mathematical requirements. To
conduct the search for discontinuities in the augmented variational series, we employ a
predefined threshold T, on V,(m). From T,, we are able to determine the occurrence of
discontinuities in V,(m). Consequently, the number of clusters n, into which all W can
be classified, is determined using

z2—z+1 < Vy(m)>T, (10)
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where z = 1 initially. Accordingly, the pixels in the set of sorted neighborgrams W; are
segmented into the zth cluster

C(z) = {Win)jn=1,2,3,...,(2K;+1)* — 1}. (11)

All of the sorted neighboring pixels Wy are featured in the cluster C'(z) as long as
the criterion V,(m) < T, is satisfied. Initially, C'(1) contains its fixed member W (1).
Then, the condition in (10) is evaluated. If V,(m) > T., Wy(n + 1) falls into a new
cluster, C'(z + 1), i.e.,, C(2) = {W,(2)}. Otherwise, Wi(n + 1) remains in the C(z)
cluster, i.e., C'(1) = {W,(1),W,(2)}. The whole clustering process is repeated until m
and n reach their maximum count of (2K, + 1)? — 2 and (2K, + 1) — 1, respectively.
The largest cluster C', that contains the most members represents the set of noise-free
pixels in the local window Wj;. For the case in which there is more than one cluster
with equal size contending for C7, cluster C'(z) with the smallest standard deviation
is chosen because the smaller standard deviation corresponds to pixels having smaller
absolute intensity differences [33]. Theoretically, a maximum of (2K, + 1)*> — 1 clusters
may be formed when applying (10); however, this situation almost never occurs, which
is not surprising because the above claim can be justified from the strategy adopted by
the AVSHC filter. The recursive implementation ensures that W, contains at least half
of the neighbors with similar intensities, even for pixels on the edges [3]. However, the
iterative implementation gradually decreases the number of corrupted pixels in Wy. These
implementations reduce the total number of clusters and increase the membership in the
noise-free cluster. Correspondingly, the same arguments apply to the case in which the
number of noise-free pixels in a cluster equals that of the noise pixels in another cluster. It
is worth mentioning that C'7, can be found in a straightforward manner, and the tendency
for a tie to form among clusters with maximum memberships almost never occurs.

The impulse detection accuracy can be improved by widening the boundaries of C',. If
we denote the lowest and highest intensities in Cf as [jpyer and Ipper, respectively, we
find through experimentation that some noise-free pixel intensities may lie slightly outside
of the dynamic range [Ljower, Lupper] but within a standard deviation away from Ijoy., and
Lpper- To avoid misclassifying such pixels as noisy, we widen the boundaries between Ijgyer
and Ipper by subtracting and adding the standard deviation o¢, of Cf, from I}y, and to
Ipper, respectively. In practice, the standard deviation is more robust than the average
absolute intensity differences when the number of sample data is small. Furthermore, we
can adaptively extend the range of C';, by using its standard deviation to conform with
the “spreadness” of the pixels data without risking the inclusion of impulsive pixels. If
we define LB and HB as the respective new lower and upper boundaries, LB and HB
can be calculated using:

LB = lLipwer — 0cys (12)
HB = Iyper + 00, . (13)

The center pixel z(i, j) is identified as a noise pixel if its intensity lies outside of the new
dynamic range [LB, HB]. Otherwise, x(i, j) is considered a noise-free pixel. An example
of the impulse detection using augmented variational series clustering is shown in Figure 5,
with K; = 1, Fl(l) = 10, FZ(I) = 250, and T, = 5. This part of the proposed impulse
detection algorithm is sufficient to handle impulse noise density as high as 35%, but
mainly for the RIN model. Nevertheless, we can operate the proposed impulse detection
algorithm at a wider range of impulse density variations by easily incorporating an extra
step for accurate detection of the FIN model.

Taking the FIN into account, we will use the global statistics of the noisy image his-
togram in detecting the fixed-valued impulsive intensities. The FIN model, which has a
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based on the augmented variational series, V:
V=1{0,69,4,3,16,163,0}

u =10,0.2458,0,0,0.025,0.6375, 0 }
z=1 Poz= 2 Poz= 3
V,=1{0; 10.685; 0, 0, 0.284; 585.99, 0:}

] L ymy> 7

Z(Sle ilgs:)ce}r clements, C(z): 6. The largest cluster, C, = C(2),
Ry ‘ with mean pe= 77 and
C(2) = 169, 73, 76, 92} standard deviation oc.= 8.

C(3) = {255, 255} 1

7. Local noise-free pixels boundaries, LB and HB:
C,=1{69,73,76,92 }

[Lower = 69 ]Upper = 92

LB=1,,,,-oc.= 61 l HB = I,,,,+ 66.= 100

[x(i,j) > HB > LB]
8. Thus, the center pixel x(i,/) is a NOISE pixel.

FiGURE 5. An illustration of the augmented variational series clustering
algorithm. Note that noise-free pixel intensities and their corresponding
computed elements are displayed in bold.

Possible FIN peaks in the noisy
image histogram
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FiGurE 6. Histogram of “Lena” image corrupted with a general model of
FIN. Impulsive peaks can be gradually removed after a few iterations using
histogram-based clustering.

5979



5980 K. K. V. TOH AND N. A. MAT ISA

long-tailed noise distribution, can be easily detected by analyzing the noisy image his-
togram. Isolated peaks with extremal values in the noisy image histogram will point to
the amplitudes of impulsive pixels [33]. Furthermore, it has been shown that peak intensi-
ties located at the ends of the noisy image histogram represent the fixed-valued impulsive
intensities [1, 17, 33].

Basically, the FIN impulsive intensities can be found by simultaneously traversing the
noisy image histogram from both ends toward the center of the histogram. We suggest
the use of a local maximum in detecting the peak intensities. The local maximum in this
context represents the first peak encountered when traversing the noisy image histogram in
a particular direction (see Figure 6) [1, 17]. Therefore, our search for the peak intensities is
immediately halted once the local maximums from both ends in the noisy image histogram
are found. If the two local maximums encountered are denoted as Iq: and Ipepper, We
may segment the noisy image histogram into three clusters, namely, a noise-free cluster
Chree € [Lpepper +1, Lsair — 1], a pepper-noise cluster Cpepper € [Imin, Ipepper], and a salt-noise
cluster Ciait € [Lsait, Imax]- If the intensity of the center pixel x(7,j) falls within the C'..
cluster, it is considered noise-free; otherwise, x(i, j) is classified as a noise pixel.

The rationale in designing an impulse detector incorporating two different mechanisms
for accurate impulse detection is deeper than merely imposing a single mechanism that
handles both FIN and RIN noise models. Occasionally, FIN and RIN models demon-
strate contradicting characteristics, and the fact that edges and thin lines in an image
can be heavily disguised as impulse noise further complicates the noise detection process.
Furthermore, the FIN model is frequently constructed as SNP noise on the basis of the
assumption that noise pixels assumed only the two extreme values in the image dynamic
range. This assumption, which has been extensively studied in some previous studies of
SNP denoising [6-10, 15-17, 24, 26], does not hold true in real-world applications. Under
some unavoidable circumstances, the SNP noise pixels may be replaced by close approxi-
mations of their actual fixed-valued impulsive intensities. For example, the extremal SNP
noise intensities Ipepper = 0 can be substituted with gray levels 1 or 2, and 4 = 255
with gray levels 254 or 253, for an image stored as an 8-bit integer. We illustrate this
viewpoint in Figure 6 with the fixed-valued impulsive peaks at both ends of the histogram
representing possible FIN peaks in real applications. In this case, impulse detectors (e.g.,
in [9] and [16]) that assume the fixed-valued impulsive intensities are composed of I, and
Inax suffer from truism and will fail to detect impulsive pixels present in the noisy image.
However, our proposed impulse detector can perform well even with the presence of more
than two FIN peaks. Impulsive FIN peaks situated near the ends on the noisy image
histogram can be phased out with successive iterations. This serves as an advantage to
the proposed histogram-based clustering approach over other existing methods because
any FIN noise intensities other than those of I,;, and I,., can also be detected.

At the end of the impulse detection stage, a two-dimensional binary noise map B® (4, 5)
is generated to flag the locations of noise and noise-free pixels. The binary noise map,
which has been a trademark for switching filters, is useful in selecting noise-free pixel can-
didates for restoration. In addition, the binary noise map prevents noise-free pixels from
being unnecessarily altered, which is an advantage over the nonswitching counterparts in
terms of detail preservation and runtime efficiency. In our proposed algorithm, B® (4,7)
is formed from the clusters that contain noise-free pixels:

@) (: 2\ — 0 : LB Sl‘(l,]) S HB A Ipepper S IL‘(Z,]) S Isalt
B (Z’])_{ 1 : otherwise (14)
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At the beginning of each iteration, we assume that all of the image pixels are good, i.e.,
B®W(i,7) = 0. Then, we follow the convention that logic 0’s represent the positions of
noise-free pixels, and logic 1’s represent those of noisy pixels.

3.2. Impulse noise cancellation: locally adaptive fuzzy switching median filter.
According to the switching-scheme framework, the binary noise map B® (i, j) acts as a
“switch” by invoking the filtering mechanism only when noise pixels are detected. Other-
wise, the filtering action is skipped. In this framework, we employ an adaptive switching
median filter, called the Locally Adaptive Fuzzy Switching Median (LAFSM), to perform
the restoration duties. Here, we provide an in-depth theoretical discussion and analysis
on a step-by-step basis in its design and implementation.

The LAFSM filtering algorithm adopts an adaptive size filtering window W; with
(2K;+1) x (2K; + 1) dimensions, given here as

Wi =A{(p,9)| = Ky <p,q < Ky}, (15)

where K is a nonzero positive integer. For every noise pixels detected, Ky is initialized
to one, i.e., W; uses a square-shaped filtering window with odd 3 x 3 dimensions.
The algorithmic description of our LAFSM filtering strategy is summarized as follows:

1. Calculate the number of noise-free pixels in Wy using

Ge(i,j) = Y, =BYi+p,j+q) (16)

(P,9)€Qy

where the operator ‘=" denotes negation operation on B(t)(i +p,j+4¢q) and Qf =
{z(i+p,j+9l(p,q) € Wy, (p,q) # (0,0)}.

2. Iteratively extend W, outward by one pixel at each of its four sides (i.e., Ky < K;+1)
if G¢(i,j) < 1. Repeat Steps 1 and 2 until the criterion G(7,7) > 1 is satisfied.

3. Determine the median pixel M (i, j) using all of the noise-free pixels contained in the
current window W;. The median pixel M (i, j) is given as

M(i,j) = med{z(i +p,j + a)|(p,q) € @, B (i +p,j +¢q) = 0}. (17)
4. Extract the local information L, (i, j) from the current window W} according to
Li(i,7) =max{ |z(i + u,j +v) —x(i,j)|V —1 <wu,v <1} (18)
5. Determine the fuzzy membership value F;(i, j) from the extracted local information
Li(i, )

0.0 : Li(i,j) <T

Fii,j) = ¢ BT 7y < Lii, ) < T, (19)
1.0 : Li(iyj) > Ty

where T and 75 are two predefined thresholds.
6. Compute the restoration term y(i, j) as follows:

It is well known that the median is a robust statistical estimator of location [33]. From
a statistical standpoint, the median estimator will naturally reach its 50% breakdown
point, which means that it remains as a reliable estimator until the number of outliers
enclosed in Wy surpasses the 50% limit. Essentially, the LAFSM filtering is not spared
from this drawback as experienced by other median-based filters. However, the recursive
implementation plays a major role in keeping the median estimator from such a critical
situation [33]. Previously restored pixels used for the estimation of currently processed
pixels minimize the risk, if there is any, for the number of impulsive pixels to exceed
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_ ___(d_)

(a)

FIGURE 7. Extracted local information L; from (a) the original “Lena”
image, with the image corrupted with 30% of (b) MIX noise, (¢) UNIF
noise, and (d) SNP noise

half of the total pixels (i.e., 0.5(2K; + 1)? pixels) in the current filtering window W;. In
addition, the adaptive mechanism employed in LAFSM filtering allows W to change its
window size according to the local statistics. In that way, we are able to produce higher
output correlation and improve the impulse noise suppression capability without blurring
the image details.

Although noise-free pixels are relatively easy to select with the aid of the binary noise
map B® (i, j), choosing the number of noise-free pixels to be used as candidates for restora-
tion poses a challenge. Loss of fine image details and blurring can be introduced into the
filtered image if the median pixels used for restoration belong to nonlocal neighbors [13].
For certain regions in images with more impulsive pixels, we want to enlarge the size of
W;; whereas for certain regions with fewer impulsive pixels, we want to use a smaller
window and stop the window expansion process. The key is how to select an appropriate
number of noise-free pixels for the restoration process. Therefore, we impose a limit for
W; to contain a minimum number of noise-free pixels, and we choose the limit to be one,
as in Step 2 before the window expansion is halted. Note that only a minimum of one
noise-free pixel is required for the termination of window expansion because determining
the precise number of noise-free pixels is relatively difficult. Similarly, the stopping cri-
teria for window expansion based on local image statistics, e.g., image’s fine details and
edges, are complicated because the presence of impulse noise cannot be ignored. However,
the rough estimation of the required number of noise-free pixels could be offset by the
powerful local information extraction to be done later in our LAFSM filtering algorithm.

In Step 4, the LAFSM filtering algorithm extracts the local information L;(i, j) from
the noisy image using the MAX-operator in (18). The idea of local information extraction
means highlighting important image features, i.e., fine image details, thin lines, edges, and
textures, even after the image has been degraded by noise. To this end, we propose the
use of MAX-operator because it is a fairly simple mathematical concept that possesses
powerful abilities to distinguish between noise pixels and image details [1, 17]. Figure 7
illustrates the extracted local information from the original and noisy “Lena” images.
From Figure 7(a), the dark regions represent the areas in the original “Lena” image that
are composed of homogenous regions with smoothly varying intensities. Conversely, the
bright lines indicate image details and edges that have considerably high contrast with
their surrounding pixels. The presence of impulse noise results in high absolute deviations
between pixels in the noisy images and, thus, significantly increases the overall brightness
of the images in Figures 7(b)-7(d). Most of the impulsive pixels are set to occupy the
highest intensity whereas the noise-free pixels take on other intensities in the noisy image
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FIGURE 8. Fuzzy membership function of the LAFSM filtering

dynamic range. In essence, the intensity brightness of the extracted local information
L;(i, j) represents the grade of uncertainties present.

In Step 5, the LAFSM filtering algorithm estimates the “fuzziness” of the extracted
local information L;(7,j). Because a noteworthy feature of fuzzy paradigms is its han-
dling of imprecise and conflicting input data [32], fuzzy reasoning is adopted to handle
uncertainties that are present in the extracted local information. These uncertainties,
e.g., pixels at edges or thin lines being mistaken as noise pixels, are caused by the non-
linear statistical characteristics of the impulse noise. Therefore, the fuzzy membership
function prescribed in (19) is used to address the imprecision in extracted local informa-
tion. Furthermore, the function provides a rule base for restoration that emulates the
basic sharpening enhancement rules as follows: 1) small changes in intensity should be
neutralized, 2) dark regions should remain dark (or possibly darken), and 3) bright re-
gions should maintain bright (or possibly brighten) [44]. The first two rules are achieved
through the extracted local information in subdomain L;(7,5) < T of (19). The third
and last rule is represented by the subdomain L;(i,j) > T3, in which impulsive pixels
are smoothed while image sharpness is preserved. Extracted local information in the
subdomain T < L;(i,j) < T3 is adaptively decoded and inferred by (19) on its level of
uncertainties. These three subdomains in (19) are graphically illustrated by the three
segments in Figure 8. The outcome of the inferencing using the rule base represented
by (19) is a numerical fuzzy membership value F;(i,j) for restoration that articulates
linguistic variables such as detail preservation, partial correction, and full restoration.

Subsequently, the fuzzy membership value F;(i, j) is used to approximate an accurate
restoration term y(, j) in Step 6. The performance of LAFSM filtering depends on the
weight provided by F;(i,j). Instead of crisply replacing the noise pixel z(i,j) with the
median pixel M (i, j), as practiced by switching median filters [7-10, 12-16, 18-22], F;(i, j)
determines whether more of x(i,j) or M(i,j) is restored during the LAFSM filtering.
Generally, Step 5 complements Step 6 by providing it with a means for “soft-switching”.
It is this mechanism of the LAFSM filtering that allows it to adapt to a wide variation
in impulse noise densities. Correspondingly, the newly restored pixel y(7,j) is used for
clustering in the detection action of the subsequent adjacent pixels. As a result, the image
details are very well preserved after restoration.

3.3. Stopping criteria for iteration. Many of the iterative filtering schemes available
[18, 19, 22] take a relatively long runtime to converge, and the convergence point is
usually not the best restoration for the filtered image. For simplicity, the filters found
in the literature fix the number of iterations 1) according to the empirical observations
made on a small subset of test images [20, 21] or 2) based on the impulse noise densities
[28, 34]. Fixing the number of iterations cannot yield optimal filtering performance for
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FIGURE 9. Evolution of the extracted local information as the number
of iteration increases. Extracted local information of the filtered “Lena”
images after the (a) first, (b) third, and (c) fifth iteration. The “Lena”
image is originally contaminated with 30% MIX noise. Note that impulses
are successively removed after each iteration without degrading fine image
details.

two reasons. First, different images have different image contents and global statistics;
thus, they require different numbers of iterations, even when they are corrupted with
the same density of impulse noise. Second, impulse noise density is not known a priori
in real-world applications. For these reasons, filters that are iterative in nature should
attempt to automate their iterative stopping criteria based on image information (e.g.,
noise contents and image details) in the simplest manner possible.

The impulse detection and cancellation algorithms of the AVSHC filter are iteratively
performed until the stopping criteria, to be developed in this section, are satisfied. In this
framework, we introduce a no-reference image “roughness” index, called the Normalized
Local Information (NLI), to estimate the image contents and noise levels in the filtered
image. The NLI index provides a quantitative measure of the true image content (i.e.,
sharpness and contrast as manifested in visually salient geometric features such as edges
and textures) in the presence of noise. To achieve fast runtime for feasible implementation,
we do not wish to introduce any lengthy computation involving complex mathematical
formulations. As a rule, we strive for a simple stopping criterion by using the information
already available from previous processes. Therefore, the NLI roughness index for the
filtered image is computed as an extension of the local information extraction in (18)
using

=0 j5=0

M-IN-L [ r(t), -
S EE) o

where Lgt) and ¢ denote the extracted local information for a pixel at location (i, j) and

the NLI roughness index, respectively, in the tth iteration. Because iterations should be
halted when the noise pixels are almost eliminated, the impulse detection and cancellation
operations are discontinued when the difference between two consecutive NLI roughness
indices |<p(t) —plt=1) | is small. To restate this stopping criterion more concisely, the impulse
detection and cancellation operations are stopped when the first local minimum is found,
ie.,

— (| = D)) =0, (22)

where ¢(® = 0.0.
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At each iteration, we apply the adaptive threshold FQ(t) in (8) as a decreasing function
of

FY = FY — 50 (23)

to ensure high accuracy in impulse detection. Figure 9 shows the extracted local informa-
tion of filtered “Lena” images with increasing numbers of iterations. Note that the number
of small patches, which indicate the remaining impulsive pixels, is successively reduced
with increasing iterations. The decreasing impulse noise densities after each iteration jus-
tify the lowering of FZ(t). Together, Fl(t) and FZ(t) are used to control the tradeoff between
the degree of detail preservation and the sensitivity of impulse detection, respectively.
The manner in which FQ(t) decreases is crucial because it can affect the NLI roughness
index in the later stage and, therefore, jeopardize the determination of the optimal num-
ber of iterations. At early iterations when the impulsive pixels are still abundant in the
noisy image, the proposed impulse detectors identify only the pixels that are likely to be
noise candidates with the large FZ(t) threshold. Then, we decrease FZ(t) in the subsequent
iterations to further scrutinize impulsive pixels disguising as “noise-free” pixels near fine
image details that are much more difficult to identify.

Generally speaking, the NLI roughness index gives a rough estimation of the remaining
noise content and detail degradation after each iteration. For example, the more impulsive
pixels that are swarming the homogeneous regions in the filtered image, the greater the
NLI roughness index becomes. As the number of iteration increases, the NLI roughness
index diminishes and eventually reaches a steady state when only nonremovable image
details contribute to the index. To support these claims, we performed an experiment
to investigate the changing trend of | — ¢=D| and the effect of varying F2(t) with
increasing iterations. In this experiment, we added 5%, 25%, and 50% of MIX noise into
the set of 10 standard test images. Each noisy test image is filtered using the AVSHC
filter with 10 iterations (i.e., 1 < ¢ < 10), and this process is repeated for fixed FQ(t) =
50, FQ(t) = 250, and adaptive FQ(t), as defined in (23). For reasons that will become

apparent in the following section, we set the remaining parameters as K; = 1, Fl(t) =10,
T, = 50, T, = 10, and T, = 50 throughout this experiment®. Plots of the experimental
results are given in Figure 10. The NLI difference between two consecutive iterations
is recorded, and the average NLI difference from the set of 10 noisy images is plotted
with varying iterations. For the sake of completeness, we also use the mean-squared
error (MSE) metric to test the restoration performance of the AVSHC filter with growing
numbers of iterations, i.e., the MSE from each iteration is recorded and then averaged.
We observe that our proposed NLI index consistently terminates the iterations at different
impulse noise strengths when the lowest MSE values are attained. The behavior of the
NLI index not only provides an optimized iteration number but also tends to reveal
advantageous and interesting behavioral characteristics of the AVSHC algorithm to which
it is applied in a completely unsupervised fashion and without access to a reference image
or an estimate of the MSE. As a case in point, the NLI difference decreases drastically
after the first few iterations, indicating that most of the impulses are removed, and then
it rises slightly in the subsequent iterations because of the unnecessary removal of fine
image details. This phenomenon is observed most strongly in the experiments with 5%

SFor the case of adaptive F2(t), it is worth noting that the initial condition is set as F2(0) = 250. As the
number of iterations ¢ increases, the condition F2(t) < Fl(t) will be developed when ¢ > 5, in which (8) will
be violated. For (8) to hold true, the condition F2(t) > Fl(t) must be satisfied, and hence, an additional
condition FQ(t) > 50 is imposed for ¢ > 5. Further discussion of the choice of parameters is presented in
Section IV-A.
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FIGURE 10. The no-reference NLI index as an estimate of the MSE. The
NLI difference and MSE are averaged from 10 noisy test images and then

plotted as a function of iteration for different choices of FQ(t).

and 25% noise densities. Furthermore, we observe that varying the FQ(t) parameter renders
a more accurate and smooth termination of iteration than using a fixed Fg(t).

In general, the proposed iterative stopping criterion based on the NLI roughness index
can achieve satisfactory results after two iterations. However, we want our stopping cri-
terion to end the iterations neither too early nor too late for any level of impulse noise
densities. Insufficient numbers of iterations often indicate unfiltered noise patches in the
filtered image [43]. Fortunately, our proposed stopping criterion can restrain this problem
by employing (22). However, stopping the iterations too late can cause blurring, and
each additional iteration increases the computational cost significantly. From the simu-
lation results in Figure 10, we set an additional terminal point to the stopping criterion
for operations to end at a maximum of five iterations (i.e., 1 < ¢ < 5) if the conver-
gence requires more than five iterations before the difference between the successive NLI
roughness indices can reach a steady state bounded by (22). This additional termination
criterion is also effective to avoid stopping the iterations too late. As is demonstrated in
the next section, the AVSHC filter shows excellent restoration results with a relatively
fast runtime.

4. Simulation Results and Discussions. In this section, we evaluate the performance
of our proposed AVSHC filter using the 10 aforementioned 8-bit monochrome standard
test images 512 x 512 in size. Each of the test images is superimposed on the MIX, UNIF,
and SNP noise for noise densities ranging from 5% to 50% in 5% noise steps. For com-
parison, the noisy images are also restored using several well-known impulse noise filters.
These state-of-the-art methods are the switching-bilateral (SB) [13], directional weighted-
median (DWM) [18], contrast enhancement-based (CE) [20], robust impulse noise variance
estimation (RINVE) [21], new adaptive switching median (ASWM) [22], functional mini-
mization effective median (FMEM) [28], genetic programming (GP) [33], triangular-based
linear interpolation with differential evolution (TLIDE) [34], and adaptive kernel-based
semi-parametric regularization (KASPR) [42] filters. These methods also represent the
wide array of approaches used to address impulse noise filtering problems in the current
literature.
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Some of the filters mentioned above work with a number of tuning parameters. In our
simulation, we used the parameter values as suggested in the corresponding references,
as follows. For SB, N =2, p =40, 05 = 2, ogr = 40, [Tky, Tke] = [30, 15] for SNP noise
removal, and [T'ky, Tks] = [25, 5] for UNIF and MIX noise filtering. For DWM, w,, = 2,
To = 510, Npmax = [5, 10], and window size is 5 x 5. For CE, K is initialized as K = 1 and
varied as K = K +t where ¢t = (10, 15, 20, 25, 30); a 3 x 3 window is used when the impulse
noise density is below 40% and a 5 x 5 window otherwise. For ASWM, L =1, 6 = 0.1,
e = 0.01, g = 20, and a1 = 0.8¢v, for n > 0. For FMEM, [dg, d1, d2, 03] = [40, 25, 10, 5],
rmax = 3, and s = 0.6 for noise density greater than 30%, and s = 0.1 otherwise. For GP,
o= %, w =5, and a 3 x 3 window is used for filtering. For TLIDE, t; =5, t, = 10, t3 = 3,
a = 0.030, b = —0.589, § = —0.155, 7 employs a 32 x 32 non-overlapping Q(i, j) block,
and detection window size of 5 x 5 is used for impulse noise density estimation; [Sliding
window sizes, t3] are [3x3—to—11x11, 1—to—29] and [5x 5—to—13 x 13, 3—to—28| for the
first and second epochs, respectively, and [t;,ts] =[0—to—13, 12—to—25] for the tuning
parameters. For KASPR, L = 6, i = (0.01,0.1,0.5, 5,50, 100), x5 = (0,0,0,0.1,1,3),
mo=(2,2,1,1,1,0), §= (3,3,1), po = 0.1, v =3, A=1,0 =3, and &= (1,1,1,1,1,1),
vector N takes the values (5,5,5,5,5,5), (5,5,5,7,7,7), (7,7,7,7,7,7), (7,7,7,9,9,9)
whereas 7 is (0.1,0.1,0.1,0.1,0.2,0.2) for images with a medium number of edges and
(0.2,0.2,0.1,0.1,0.2,0.4) for images that contain many edges. However, it should be
noted that some of these values need to be heuristically modified, depending on the
image contents, to obtain the best restoration for fair comparison.

4.1. Selection of parameters. The AVSHC filter is implemented according to the sys-
tem architecture as shown in Figure 1. Noisy image is processed in a raster-scan fashion,
i.e., every pixel is scanned row-by-row from the top-left corner to the bottom-right corner
of the noisy image. The LAFSM filtering is invoked when a pixel is identified as noise by
the impulse detectors. Additional iterations are performed only if the filtered image does
not satisfy the stopping criteria for iteration as defined in Section 3.3.

From extensive simulations, we empirically determined the threshold values for the
parameters used by the proposed AVSHC filter. We used the MSE metric to select the
optimal values for the parameters. The MSE, defined as

il 5 (i) — ofi, )

M- N ’
quantitatively measures the error that occurs if we use y as an approximate for o at pixel
location (i,7). Hence, we seek the set of parameter values that can produce the lowest
MSE for optimal performance of the AVSHC filter.

In impulse denoising applications, the question of selecting optimal parameter values
has not been fully answered from a theoretical perspective. As noted in [13], parameters
employed in the impulse detection stage have a more significant impact on the restoration
performance of the switching-based filter than those used in the impulse cancellation
stage. Because the proposed AVSHC filter is a switching-based filter, its restoration
performance is very dependent on the impulse detectors. In this respect, the K, parameter
controlling the size of the detection window Wy(i, j) and the clustering threshold T, play
important roles in the overall performance of the AVSHC filter. Similarly, the remaining
two parameters, Fl(t) and Fg(t), engaged in the impulse detection stage determine the
optimal number of iterations and, thus, avoid the unnecessary removal of image fine details
that could lead to blurring of the filtered image. However, the 77 and T, parameters for
the impulse filtering process assist in the sharpness preserving ability of the AVSHC filter.
The choice of T} and T5 is robust and does not significantly affect the quality of the filtered

MSE = (24)
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FIGURE 11. Selection of K; and T, parameters based on the MSE metric
and runtime

image. The behaviors of these parameters are well understood, and we refer the reader
to our previous work in [1] for detailed discussion of T} and T5.

To begin, we set up an experiment to investigate the effect of changing K, and T, across
various impulse noise densities. In this experiment, we test the restoration ability and the
runtime consumption of the AVSHC filter using various combinations of K, and T,.. We
then run the AVSHC filter by fixing K; = 1 while varying T, = (5, 50, 150), and we repeat
this process with Ky = 2. On the basis of the outcome of earlier experiments, as shown in
Figure 10, we select Fl(t) =10, FQ(O) = 250, T} = 10, and T5 = 50. The set of 10 standard
test images, each corrupted with 5 to 50% of MIX noise in 5% noise steps, is used in this
experiment. The MSE and runtime obtained in the simulation are averaged and plotted
against the MIX noise densities, and the plots are shown in Figure 11. The selection of
K, and T, is fairly simple because the performance of the AVSHC filter is tightly bounded
with minimal difference in MSE when T, lies in a wide range [5, 150]. Examining the plot
in Figure 11(b), we choose Ky = 1 instead of K; = 2 to minimize the runtime taken by
the AVSHC filter without any significant detrimental effect on restoration.

Next, we analyze the effects of Fl(t) and FQ(t) on the restoration performance of the
AVSHC filter. From extensive simulations, we have elected to conserve space in this
presentation, and thus, do not include the redundant simulations for Fl(t). We found that
the performance of the AVSHC filter is not dependent on the Fl(t) parameter as long as
the condition Fl(t) < FZ(t) is satisfied, which is also a mathematical condition for (8) to be
valid. We focus on the selection of F2(t), and Figure 10 shows the effects on the average
MSE and NLI values using fixed and varying F2(t)’s. A large F2(t) is more favorable than
a smaller FQ(t) because larger values (i.e., FQ(t) > 150) ensure the removal of impulses that
include some image fine details. Conversely, smaller FQ(t) values may retain some impulses
while keeping the fine details of the uncorrupted image intact in the filtered image. This
justifies the higher MSE values, which correspond to the presence of impulses when a
smaller FZ(t) is used. These observations allow us to achieve optimal performance for the
AVSHC filter by decreasing the FQ(t) value after each iteration, as dictated by (23). A
strategy such as this will aggressively remove impulses that present during the first few
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TABLE 1. Impulse classification ratio

Mixed Impulse (MIX) Noise

Methods 10% 20% 30% 40% 50%

SB [13] 94.2593% | 93.5416% | 92.4933% | 91.6965% | 90.7276%
DWM [18] 96.9735% | 93.9974% | 87.4331% | 81.6935% | 72.5556%
RINVE [21] || 94.6107% | 94.2894% | 92.4951% | 89.8740% | 90.3767%

GP [33] 94.9380% | 94.2533% | 93.5368% | 92.7556% | 91.7816%
KASPR [42] || 24.9438% | 29.4550% | 35.9226% | 44.4183% | 52.7861%

AVSHC 97.9735% | 95.9925% | 94.6682% | 93.5786% | 93.0097%

Uniform Impulse (UNIF) Noise
Methods 10% 20% 30% 40% 50%
SB [13] 93.1590% | 91.4258% | 89.6313% | 87.5417% | 84.9315%

DWM [18] 95.9537% | 92.3431% | 87.9035% | 83.7352% | 76.8979%

RINVE [21] || 96.7526% | 92.6450% | 89.8975% | 87.6937% | 87.3658%
GP [33] 94.3759% | 93.0823% | 91.6686% | 90.0738% | 87.8980%

KASPR [42] || 24.3616% | 28.5599% | 34.9993% | 43.4948% | 52.0448%
AVSHC 97.6046% | 95.8053% | 93.6806% | 91.4118% | 89.1572%

Salt-and-Pepper (SNP) Noise
Methods 10% 20% 30% 40% 50%
SB [13] 96.2663% | 96.2815% | 96.3096% | 96.3236% | 96.3115%

DWM [18] 97.6942% | 94.1643% | 83.6273% | 74.7181% | 63.9815%

RINVE [21] || 97.1581% | 95.6141% | 93.7031% | 89.0645% | 88.0760%
GP [33] 95.4975% | 95.3506% | 95.1837% | 94.9023% | 94.1219%

KASPR [42] || 24.1121% | 28.7113% | 31.8078% | 44.2901% | 52.3459%
AVSHC 98.9052% | 98.4784% | 98.0928% | 97.6023% | 97.2830%

iterations with larger Fg(t), before subsequent iterations with decaying FQ(t) scrutinize the
detection of impulses that are more difficult to identify. As a result, we successfully deliver
a detail-preserving AVSHC filter for effective image restoration.

Additionally, extensive simulations suggest that K, = 1, T, = 50, Fl(t) = 10, F2(0) = 250,
Ty = 10, and T5 = 50 could yield excellent restoration results, both qualitatively and
quantitatively. Therefore, this set of parameter values is used in the remaining simulations
to develop the main results for comparison with other impulse noise filters. Note that
this set of values is robust, and thus, it appears advantageous to our proposed method
in the sense that it does not need further modifications when applied to any images
corrupted with a wide variation of impulse noise densities. Intuitively, the performance of
the AVSHC filter can be further improved if the parameters can be made locally adaptive,
i.e., if they can be fine-tuned to remove precise amounts of impulse noise present in the
detection window. Unfortunately, such an ideal solution would be time consuming, and
the best way to fine-tune the parameters is not immediately known.

4.2. Impulse detection performance. To appreciate the effectiveness of the proposed
impulse detector, we first demonstrate the impulse detection performance of our AVSHC
filter. The real power of the proposed AVSHC filter is revealed in Tables 1 and 2, which list
the average impulse classification and detection ratios, respectively, from 10 standard test
images. The impulse classification ratio is defined as the number of correctly identified
pixels (i.e., the sum of the correctly detected impulses and the noise-free pixels), divided
by the total number of pixels in the image. Then, the impulse detection ratio represents
the number of detected impulses divided by the total number of impulses. Consequently,
a good impulse detector should be able to accomplish greater classification and detection
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TABLE 2. Impulse detection ratio

Mixed Impulse (MIX) Noise

Methods 10% 20% 30% 40% 50%

SB [13] 89.2515% | 89.0440% | 88.9730% | 88.8681% | 88.6098%
DWM [18] 82.7296% | 82.5717% | 88.0129% | 89.2414% | 94.0920%
RINVE [21] || 89.0322% | 88.5840% | 87.3573% | 92.0469% | 92.9268%

GP [33] 91.9303% | 92.0090% | 91.9711% | 91.7583% | 91.3783%
KASPR [42] || 99.6795% | 99.7154% | 99.7410% | 99.7383% | 99.7381%

AVSHC 98.4002% | 97.9928% | 97.6891% | 97.4911% | 97.2881%

Uniform Impulse (UNIF) Noise
Methods 10% 20% 30% 40% 50%
SB [13] 79.8180% | 79.5961% | 79.4344% | 79.0596% | 78.4005%

DWM [18] 69.4603% | 69.2360% | 77.3089% | 79.2271% | 87.7817%

RINVE [21] || 78.4272% | 76.3152% | 76.8840% | 85.5316% | 87.1314%
GP [33] 86.1804% | 86.2233% | 85.9802% | 85.6050% | 84.7283%

KASPR [42] || 99.3752% | 99.3977% | 99.4644% | 99.4563% | 99.4496%
AVSHC 98.6348% | 97.9981% | 97.7521% | 97.5488% | 97.2845%

Salt-and-Pepper (SNP) Noise
Methods 10% 20% 30% 40% 50%
SB [13] 97.6161% | 97.5622% | 97.5349% | 97.5243% | 97.4222%

DWM [18] 93.9857% | 91.7035% | 92.8547% | 90.4002% | 91.3965%

RINVE [21] || 96.9710% | 97.2430% | 95.9838% | 97.7319% | 97.1115%
GP [33] 77.0493% | 97.5646% | 97.4085% | 96.9915% | 95.8811%

KASPR [42] || 99.9919% | 99.9953% | 99.9977% | 99.9975% | 99.9982%
AVSHC 100.000% | 100.000% | 100.000% | 100.000% | 100.000%

ratios for high accuracy impulse detection. In Tables 1 and 2, we use a bold-face font to
highlight the highest ratio in each column.

It can be seen that our proposed impulse detector has the highest average classification
rates for all three impulse noise models simulated compared with the KASPR filter in
Table 1. However, the KASPR filter has higher average impulse detection rates than our
AVSHC filter for the MIX and UNIF noise models in Table 2. Nevertheless, our proposed
impulse detection scheme records a clean 100% average detection rate for the SNP noise
model. The higher average impulse detection rates, coupled with low impulse classification
rates, suggest that the KASPR filter made a number of false impulse detections, and
thus, more noise-free pixels were misclassified as impulsive pixels. In fact, if we regard
the total errors produced by an impulse detector as the sum of missed detections and false
detections, our proposed AVSHC detection yields the lowest average errors for all types
of impulse noise models, as shown in Figure 12. We further note that the switching filters
generally have lower average errors in impulse detection than the nonswitching KASPR
filter. Among the switching filters, our AVSHC filter, which employs signal augmentation
has higher impulse detection rates than filters without signal augmentation (e.g., SB,
DWM, RINVE, and GP filters).

4.3. Comparison in image restoration. The performances of all filters are evaluated
qualitatively through visual inspection and quantitatively by using the peak signal-to-
noise ratio (PSNR), defined as

12
PSNR = 101log <Mm—§]):f)> . (25)
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FIGURE 12. Sum of missed detections and false detections of pixels; graphs
plotted as the average errors from 10 standard test images versus impulse
noise density for the MIX noise (left column), UNIF noise (center column),
and SNP noise (right column) models
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FIGURE 13. The graphs of average PSNR, (dB) versus impulse noise density
for MIX noise (left column), UNIF noise (center column), and SNP noise
(right column)

The PSNR assessment is used for measuring the differences and similarities between the
original and restored images [45]. In terms of detail preservation, the PSNR by itself
cannot directly measure any underlying information such as fine image details because
different combinations of image distortion and residual impulse noise can offset the effects
of one another [46]. As a remedy, we have chosen the mean absolute error (MAE) as-
sessment to account for the detail-preserving characteristics of filters implemented. The
MAE is given as

Yite Sy lyli 5) — oli, 4)|
M-N '
For the MAE assessment scheme, smaller MAE value indicates better detail preservation
in the restored image. In contrast, greater PSNR value signifies better noise suppression
in image restoration.
We plot the graphs of average PSNR and MAE versus impulse noise density in Fig-
ures 13 and 14, respectively, for simulations using the MIX, UNIF, and SNP noise models.

MAE =

(26)
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FiGure 14. The graphs of average MAE versus impulse noise density for
MIX noise (left column), UNIF noise (center column), and SNP noise (right
column)

Obviously, our AVSHC filter achieves significant improvement over other filters in terms
of average PSNR and MAE. The higher average PSNR values and relatively lower av-
erage MAE values of the proposed filter clearly indicate the ability of the AVSHC filter
to process only the impulsive pixels in the noisy image while leaving the uncorrupted
pixels unchanged. Regarding visual comparison, Figure 15 displays the subjective visual
qualities of the filtered “Lena” images initially corrupted with 50% of MIX noise. It is
clearly seen that our AVSHC filter produces the most appealing visual result by success-
fully suppressing impulses and preserving image details. The filtered image using our
proposed AVSHC filter in Figure 15(1) remains sharp, and the edges are not smeared.
The difference in detail preservation between other filters and our AVSHC filter can be
easily observed by carefully comparing the appearance of the eyes and the face of the
woman and the feathers on her hat.

To demonstrate the universality of the proposed AVSHC filter in removing different
types of impulse noise models, simulation results for the enlarged portion of the filtered
“Baboon” images previously contaminated with 50% UNIF noise are shown in Figure 16.
Figure 17 presents the enlarged portion of the corresponding results for the filtered “Boat”
images formerly degraded with 50% SNP noise. These images were chosen specifically be-
cause they are rich in details and textures. From Figures 16(1) and 17(1), we observed
that the proposed AVSHC filter consistently exhibits excellent impulse attenuation per-
formance. Loss of fine image details is negligible, and subjective sensations are very well
reconstructed in the filtered images. The UNIF noise filtering results in Figure 16 show
that only the GP filter yields competitive results (in terms of PSNR and MAE). However,
the zoomed portion of the filtered image in Figure 16(k) shows that some noise blotches
are easily visible. Furthermore, it is obvious that the proposed AVSHC filter produces
much better edge preservation when the dark-colored nose and the brightly colored cheek
of the animal in Figure 16(l) are examined. In case of SNP noise filtering, the ASWM
filter in Figure 17(f) cleanly removes visible impulsive pixels but at the expense of the
image fine details. However, the AVSHC filter exhibits better restoration results than the
others, as its filtered image in Figure 17(1) is almost indistinguishable from the original
input image in Figure 17(a).

When comparing the simulation results in Figures 15-17, we found that our AVSHC
filter clearly outperforms other filters regarding the cancellation of impulse noise and
preservation of image details. It is also interesting to note that some filters perform
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FIGURE 15. (a) A portion of original “Lena” image. (b) Cropped “Lena”
image corrupted with 50% MIX noise. Filtered “Lena” images using: (c)
TLIDE [34], (d) FMEM [28], (e) DWM [18], (f) ASWM [22], (g) CE [20],
(h) KASPR [42], (i) RINVE [21], (j) SB [13], (k) GP [33], and (1) proposed
AVSHC filters.

differently, depending on the impulse noise type and density. Although the selection of
parameters for the AVSHC filter is based on the MIX noise model, our proposed AVSHC
filter performs well over a wide range of impulse noise densities, regardless of the impulse
noise models tested. The success behind such performance delivery is mainly attributed
to the high accuracy impulse detection, together with the effective restoration scheme, of
the AVSHC filter.

4.4. Runtime efficiency. In the following analysis, we compare the runtime of our
AVSHC filter with those of other filters implemented in this framework. All of the algo-
rithms are written in C and MATLAB, and runtime simulations are conducted using a
Dell laptop with 1.66-GHz Centrino Duo Processor. Figure 18 graphically illustrates the
average runtime (in milliseconds, or ms) calculated from 10 standard test images versus
impulse noise density for MIX, UNIF, and SNP noise models. On average, the KASPR
filter consumes the highest runtime, with a minimum of 1.2 x 10° ms per image execution.

6The curves for the KASPR filter are omitted to avoid impinging the ‘Average Runtime’ graph scales
in Figure 18.
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FIGURE 16. (a) A portion of original “Baboon” image. (b) Cropped “Ba-
boon” image corrupted with 50% UNIF noise. Filtered “Baboon” images
using: (c) TLIDE [34], (d) FMEM [28], (e) DWM [18], (f) ASWM [22], (g)
CE [20], (h) KASPR [42], (i) RINVE [21], (j) SB [13], (k) GP [33], and (1)
proposed AVSHC filters.

Despite being an iterative filtering algorithm, our AVSHC filter consumes a relatively low
runtime because the proposed filter employs a small 3 x 3 detection window throughout
the detection stage. In addition, our strategy to minimize the computational load in the
AVSHC filter’s design contributes to the relatively fast processing time. Generally, the
number of iterations required by the proposed filter does not exceed five iterations as
bounded by one of the proposed iterative stopping criteria, and the runtime is less than
1.1 s on average per image execution.

5. Conclusion. In this paper, we presented a novel two-stage method for impulse noise
reduction based on a switching-scheme concept. The proposed AVSHC filter is applied
recursively in iterative manners. In the first stage, an impulse detector inspired by a
two-level clustering procedure is used to segregate noise-free pixels into a single cluster.
If the center pixel belongs to the cluster containing noise-free pixels, then it is left un-
changed. Otherwise, the second stage is invoked to restore any detected noise pixels using
an adaptive switching median filter that uses the local information from the surround-
ing neighborhood. Fuzzy reasoning is exploited as part of the detection and filtering
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FIGURE 17. (a) A portion of original “Boat” image. (b) Cropped “Boat”
image corrupted with 50% SNP noise. Filtered “Boat” images using: (c)
TLIDE [34], (d) FMEM [28], (e) DWM [18], (f) ASWM [22], (g) CE [20],
(h) KASPR [42], (i) RINVE [21], (j) SB [13], (k) GP [33], and (1) proposed
AVSHC filters.

mechanisms to handle the uncertainties present in image data. In addition to the major
contribution of this work, which is a clustering-based approach for impulse detection, we
introduced a fairly simple no-reference roughness index for measuring noise levels and
image contents in a filtered image. From this roughness index, we then proposed stop-
ping criteria to determine the optimal number of iterations. Furthermore, we studied the
behavior of the parameters used in our framework through a series of experiments before
we empirically tuned these parameters for optimal restoration performance.

One of the attractive properties of the AVSHC filter is its ability to accurately suppress
impulse noise while minimizing the destruction of a clean portion of pixels, including fine
image details and textures. Moreover, AVSHC can be considered a universal impulse
noise filter because of its capability to remove different types of impulse noise models
that are commonly encountered in practical cases. This universal behavior gives the
AVSHC filter a competitive advantage over many impulse noise filters. Extensive simu-
lation results verify the excellent impulse detection and restoration performances of the
filter, both visually and quantitatively, over other filters. The relatively fast runtime and
simplicity in implementation can be seen as tremendous advantages that contribute to
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FIGURE 18. The graphs of average runtime (ms) corresponding to various
impulse noise densities for MIX noise (left column), UNIF noise (center
column), and SNP noise (right column)

the feasibility of the AVSHC filter. In conclusion, the AVSHC filter offers a good tradeoff
between computational complexity and image restoration performance for practical image
applications.

In our framework, the performance of the proposed method is dependent on a set of
parameters, and it is necessary to carefully select the values for the parameters that are
used. This necessity is undesirable, and our ongoing research aims at addressing this
issue. In this regard, we foresee the attempt to cast our framework into a nonparametric
approach may reduce the number of parameters used. Although our proposed method
already has a fast runtime, it should be noted that the runtime of our method can be
further improved. The implementation of the proposed AVSHC filter can be easily par-
allelized to take advantage of modern processors with multiple cores. This is possible
because the proposed impulse detectors, namely, the augmented variational series and
histogram-based clustering, are performed independently for each pixel before their out-
comes are combined and evaluated. The use of other unsupervised clustering algorithms
to effectively segment pixels according to local image features can be considered as well.
Going forward, we envision extending the clustering approach based on signal augmen-
tation to other image denoising problems, such as Gaussian, uniform, and mixed noise
filtering. It is also possible to extend the NLI roughness index as a general no-reference
image quality metric. These are some of the interesting directions that are worth pursuing
in future work.
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