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Abstract. There have been several results on the nonlinear control of a ball and beam
system. However, the existing methods often consider a simplified model, and particularly
they neglect the centrifugal force term. In this paper, we propose a full-model based
adaptive state feedback controller with dynamic gain in order to control the ball and beam
system using the centrifugal force term. The dynamic gain calibrates the controller gain
by monitoring the centrifugal force term in an on-line. We give a theoretical analysis of
the proposed controller. We also undertake some experiments to show that the proposed
controller which utilizes the centrifugal force term, improves the control performance
compared with some of the existing methods.
Keywords: Ball and beam system, Adaptive regulation, Centrifugal force term

1. Introduction. The ball and beam system is a well known nonlinear system and sev-
eral researchers have investigated the problem of controlling the ball position of the system
[2,8-11,17,18]. The relative degree of the ball and beam system is not well defined and
thus the system is not fully input-output linearizable. To resolve this difficulty, [8,17]
provide some methods for constructing the approximate input-output linearized system
models. In [11], a state observer that utilizes a coordinate change that transforms the
system into an approximated normal form is presented. For the Jacobian linearized ball
and beam system model, a sliding mode controller is proposed in [9]. In [10], they consider
the effects of parametric uncertainty on tracking performance. Even though the afore-
mentioned methods demonstrate a certain degree of control performances with their own
merits, they commonly neglect the particular high-order term in the system, i.e., the cen-
trifugal force term. Thus, we can say they only consider simplified models in constructing
their controllers.

A non-simplified ball and beam system model can be viewed in the class of perturbed
feedforward systems, i.e., the major body of the system is a feedforward system and there
is one or two non-feedforward terms. The stabilization or regulation of the feedforward
systems has been thoroughly researched and there have been many results published
related to either state or output feedback forms in very recent years [3,13,14,19,20]. How-
ever, in most of these results, the considered systems and control methods are naturally
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limited to a class of feedforward systems only. Thus, if the systems contain some addi-
tional ‘non-feedforward’ terms such as the centrifugal force term, the results of [3,14,19,20]
are not applicable, and this is the case with the ball and beam system.
In this paper, we consider a full (non-simplified) ball and beam system model and design

a state feedback controller with a dynamic gain for regulating the ball and beam system
with the centrifugal force. The proposed dynamic gain involves appropriate powers of
high-order nonlinearity and it is employed in the controller gain to deal with the effect of
the centrifugal force term. Moreover, the dynamic gain has the adaptive feature such that
the growth rate of the nonlinearity does not need to be known. Extending the theoretical
background given in [4-6,12], we propose a control technique using a newly designed
dynamic gain for regulating the ball and beam system. Compared with the dynamic
gain developed in [13], our dynamic gain is continuous and differentiable. We give a
theoretical analysis of the proposed controller and show that the control performance is
indeed an improvement over the existing control methods. This improvement comes about
by considering the effect of the centrifugal force term is clearly shown via the experimental
results.

2. Problem Statement and Preliminaries. We consider the ball and beam system
shown in Figure 1. From [16], the modeling of the ball and beam system is given by

r̈ =
mrarmgR

2

Lbeam(mR2 + Jb)
sin θ − m

Jb
R2 +m

rθ̇2

θ̈ = −1

τ
θ̇ +

K1

τ
Vm (1)

where θ and r are the beam angle and the ball position, respectively. Also, K1 is the
steady-state gain, τ is the time-constant, Lbeam is the length of the beam, m and Jb are
the mass and moment of inertia of the ball, respectively. Moreover, R is the radius of the
ball, g is the acceleration due to gravity, rarm is the distance between screw and motor
gear, and Vm is the input of the system.

Base Load Gear

Ball

Beam

beam
L

r

arm
r

θ

R

Figure 1. Ball and beam system
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We define Kbb = mrarmgR2

Lbeam(mR2+Jb)
and H = m/(Jb/R

2 + m). Let x = (x1, x2, x3, x4)
T =

(r, ṙ, θ, θ̇)T . Then, we can obtain the following state space equations

ẋ1 = x2

ẋ2 = Kbb sin x3 −Hx1x
2
4

ẋ3 = x4

ẋ4 = −1

τ
x4 +

K1

τ
Vm (2)

where the centrifugal force term corresponds to Hx1x
2
4.

Via a transformation z = (z1, z2, z3, z4)
T = (x1, x2, Kbb sinx3, Kbbx4 cos x3)

T and the
control input

Vm =
τ

K1Kbb cos x3

(
1

τ
Kbbx4 cosx3 +Kbbx

2
4 sinx3 + u) (3)

with a new internal input u, the system (2) is transformed into

ż = Az +Bu+ δ(t, z, u) (4)

The system matrices (A,B) are the Brunovsky canonical pair and the nonlinearity is
δ(t, z, u) = [δ1(t, z, u), δ2(t, z, u), δ3(t, z, u), δ4(t, z, u)]

T where

δ1(t, z, u) = δ3(t, z, u) = δ4(t, z, u) = 0

δ2(t, z, u) = − Hz1z
2
4

K2
bb cos

2
(
sin−1

(
− z3

Kbb

)) (5)

The centrifugal force term is contained in δ2(t, z, u).
Note that the physical operating ranges of the ball position r and beam angle θ are

r ∈ {r ∈ R : |r| ≤ Lbeam/2} and θ ∈ {θ ∈ R : |θ| ≤ π/4}. Then, by choosing a positive
constant α < 1/3 and using |z1| ≤ (Lbeam/2)

1−α|z1|α and 1
cos2(sin−1(− z3

Kbb
))
= 1

cos2 x3
≤ 2, we

obtain

|δ2(t, z, u)| ≤
H

K2
bb cos

2
(
sin−1

(
− z3

Kbb

)) |z1||z4|2 ≤ L|z1|α|z4|2 (6)

where L = 2(Lbeam/2)
1−αHK−2

bb .
Here, we note that the existing methods often neglect the centrifugal force term in their

controller designs. For example, one well-known method outlined in [8] simply designs the
controller based on the input-output linearized part of the system (4) ignoring δ2(t, z, u).
While such a method still shows the improved control results compared to ones using
the Jacobian-linearization based methods, the absence of the centrifugal force term may
degrade the control performance to some degree. Thus, for further improvement, we
propose a new adaptive control method that accommodates the centrifugal force term in
its dynamic gain.

3. Design and Analysis of an Adaptive Controller with Dynamic Gain. To
design a controller using the centrifugal force term, we introduce an adaptive controller
with the dynamic gain as follows.
Controller:

u = K(γ(t))z (7)

where K(γ(t)) = [k1/γ(t)
4, · · · , kn/γ(t)].
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Dynamic gain:

γ̇(t) = γ(t)c+3α−1

( 4∑
i=1

γ(t)−(4−i)|zi|

)1+α

+

(
4∑

i=1

γ(t)−(n−i)|zi|

)3+α

+

(
4∑

i=1

γ(t)−(4−i)|zi|

)2
 , γ(0) = 1 (8)

where the positive constant is 0 < c < 1− 3α. For the existence of the positive constant
c, the condition as α < 1/3 is needed. The reason for the existence of c is explained in
the proof of Theorem 3.1.
Here, we address some mathematical notations and setups. Define a matrix Eγ(t) =

diag[γ(t)−3, γ(t)−2, γ(t)−1, 1]. Let AK(γ(t)) = A + BK(γ(t)). Then, we define K = K(1)
and AK = AK(1). If it is given that AK is Hurwitz, from [6], we can obtain the Lyapunov
equation of AT

K(γ(t))PK(γ(t)) + PK(γ(t))AK(γ(t)) = −γ(t)−1E2
γ(t) with PK(γ(t)) = Eγ(t)PKEγ(t)

from AT
KPK + PKAK = −I where I denotes a 4× 4 identity matrix.

Theorem 3.1. Select K such that AK is Hurwitz. Then, the controller Vm in (3) with
the internal controller (7) and the dynamic gain (8) regulates the ball and beam system
(2).

Proof: We only need to show that by using the internal controller (7) and the dynamic
gain (8), the system (4) is regulated. Then, the regulation of system (1) naturally follows.
With controller (7), we obtain a the closed-loop system described by

ż = AK(γ(t))z + δ(t, z, u) (9)

Since AK is Hurwitz, there exists PK = P T
K > 0 such that AT

KPK + PKAK = −I and
π1I ≤ PKD + DPK ≤ π2I where D = 1

2
diag[7, 5, 3, 1], π1, π2 > 0. With this, we set the

Lyapunov function V (z) = γ(t)−1zTPK(γ(t))z. Then, we have

γ(t)−1λ1‖Eγ(t)z‖2 ≤ V (z) ≤ γ(t)−1λ2‖Eγ(t)z‖2 (10)

where λ1 = λmin(PK) and λ2 = λmax(PK). Then, along the trajectory of (9), we obtain

V̇ (z) = γ(t)−1
(
żTPK(γ(t))z + zTPK(γ(t))ż + zT ṖK(γ(t))z

)
−γ̇(t)γ(t)−2zTPK(γ(t))z

= −γ(t)−2‖Eγ(t)z‖2 + 2γ(t)−1zTPK(γ(t))δ(t, z, u)

−γ̇(t)γ(t)−2zTEγ(t)(PKD̄ + D̄PK)Eγ(t)z

−γ̇(t)γ(t)−2zTPK(γ(t))z (11)

where D̄ = diag[3, 2, 1, 0].
Note that u = γ(t)−1KEγ(t)z and zTEγ(t)(PKD̄ + D̄PK)Eγ(t)z + zTPK(γ(t))z = zTEγ(t)

(PKD +DPK)Eγ(t)z. Using the inequalities from (11), we have

V̇ (z) ≤ −γ(t)−2‖Eγ(t)z‖2 + 2γ(t)−1‖PK‖‖Eγ(t)z‖‖Eγ(t)δ(t, z, u)‖1
−π1γ̇(t)γ(t)

−2‖Eγ(t)z‖2 (12)

Regarding the term ‖Eγ(t)δ(t, z, u)‖1 of (12), we have

‖Eγ(t)δ(t, z, u)‖1 ≤ Lγ(t)−2|z1|α|z4| (|z4|) ≤ 2Lγ(t)−2|z1|α|z4|‖Eγ(t)z‖ (13)

The upper bound of the term |z1|α|z4| is obtained as

|z1|α|z4| ≤ γ(t)3α‖Eγ(t)z‖1+α (14)
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From (12)-(14), we have

V̇ (z) ≤ −γ(t)−2‖Eγ(t)z‖2 + σγ(t)3α−3‖Eγ(t)z‖1+α‖Eγ(t)z‖2

−π1γ̇(t)γ(t)
−2‖Eγ(t)z‖2 (15)

where σ = 4L‖PK‖.
From (8), it is clear that γ(t)3α+c−1‖Eγ(t)z‖1+α ≤ γ̇(t). Substituting (8) into (15), we

obtain

V̇ (z) ≤ −γ(t)−2‖Eγ(t)z‖2 − π1γ(t)
−3+3α

(
γ(t)c − π−1

1 σ
)
‖Eγ(t)z‖3+α (16)

Looking at the term γ(t)c−π−1
1 σ in (16), we can see that the proposed controller is robust

against an unknown growth rate of nonlinearity because the constant c is positive. The
closed-loop system (9) has a unique solution (z(t), γ(t)) on [0, Tf ) for some Tf ∈ (0,∞]. We
first show that γ(t) cannot escape at t = Tf . To prove this, suppose that lim

t→∞
γ(t) = +∞.

Since γ(t) is monotonically nondecreasing and c is a positive constant, there exists a finite
time t∗ ∈ (0, Tf ), such that

γ(t) ≥ (π−1
1 σ)1/c (17)

for t ∈ [t∗, Tf ). From (16) and (17), it follows that

V̇ (z) ≤ −γ(t)−2‖Eγ(t)z‖2 (18)

From (10) and (18), we obtain, for t ∈ [t∗, Tf )

‖Eγ(t)z‖ ≤
√

λ2

λ1

‖Eγ(t∗)z(t
∗)‖e−

1
2λ2

∫ t
t∗ γ(s)−1ds

(19)

Note that, from (8),

γ(t)ρ − γ(t∗)ρ

= ρ

∫ t

t∗
γ̇(s)γ(s)1−3α−cds

= ρ

∫ t

t∗

(
‖Eγ(s)z(s)‖1+α

1 + ‖Eγ(s)z(s)‖3+α
1 + ‖Eγ(s)z(s)‖21

)
ds (20)

where ρ = 2− 3α − c > 1. From (19), ‖Eγ(t)z‖1 ≤ 2‖Eγ(t)z‖ ≤
√

4λ2

λ1
‖Eγ(t∗)z(t

∗)‖. With

this and (20), we have

γ(t) ≤ (ρ1(t− t∗) + γ(t∗)ρ)
1
ρ (21)

where ρ1 =
(

4λ2

λ1

)(1+α)/2

‖Eγ(t∗)z(t
∗)‖1+α +

(
4λ2

λ1

)(3+α)/2

‖Eγ(t∗)z(t
∗)‖3+α +

(
4λ2

λ1

)
‖Eγ(t∗)

z(t∗)‖2. Then, from (21), we obtain∫ t

t∗
γ(s)−1ds ≥ ρ2

(
(ρ1(t− t∗) + γ(t∗)ρ)1−

1
ρ − γ(t∗)ρ−1

)
(22)

where ρ2 = ρ−1
1

(
1− 1

ρ

)−1

. Using (19) and (22), we obtain∫ t

t∗

(
‖Eγ(s)z(s)‖1+α

1 + ‖Eγ(s)z(s)‖3+α
1 + ‖Eγ(s)z(s)‖21

)
ds

≤
∫ t

t∗
ρ1e

− ρ3ρ2
2λ2

((ρ1(s−t∗)+γ(t∗))
1− 1

ρ−γ(t∗)ρ−1)
ds (23)
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where ρ3 = 1+α. To help understand this, the boundedness of the right-hand side in (23)

can be considered as the boundedness of
∫ t

0
ηe−εsθds where η ≥ 0, ε > 0, and 0 < θ < 1

are constants.
Now, we investigate the boundedness of

∫ t

0
ηe−εsθds < +∞. Let sθ = k.∫ t

0

ηe−εsθds ≤
∫ tθ

0

η

θ
k

1−θ
θ e−εkdk (24)

Let ω be the minimum integer such that ω ≥ 1−θ
θ
. Note that k

1−θ
θ ≤ 1+ kω for k ≥ 0 and∫

kωe−εkdk = e−εk
ω∑

j=0

(−1)j ω!kω−j

(ω−j)!(−ε)j+1 from [21]. From these inequalities, we get

∫ tθ

0

η

θ
k

1−θ
θ e−εkdk

≤
∫ tθ

0

η

θ
(1 + kω)e−εkdk = − η

εθ
e−εk

∣∣∣tθ
k=0

+

∫ tθ

0

m1

θ
kωe−εkdk

= − η

εθ
e−εk

∣∣∣tθ
k=0

+
η

θ
e−εk

ω∑
j=0

(−1)j
ω!kω−j

(ω − j)!(−ε)j+1

∣∣∣tθ
k=0

(25)

Then, from (24) and (25) and ε > 0, we have∫ t

0

ηe−εsθds < +∞ (26)

From (20), (23), and (26), we have

+∞ = γ(Tf )
ρ − γ(t∗)ρ

≤ ρ

∫ t

t∗

(
‖Eγ(s)z(s)‖1+α

1 + ‖Eγ(s)z(s)‖3+α
1 + ‖Eγ(s)z(s)‖21

)
ds

≤ ρ
√
n

∫ t

t∗

(
|Eγ(s)z(s)‖1+α + ‖Eγ(s)z(s)‖3+α + ‖Eγ(s)z(s)‖2

)
ds

< +∞ (27)

this leads to a contradiction. Thus, the dynamic gain γ(t) is well defined and bounded
on [0, Tf ).
Next, we claim that z is well defined and bounded on the interval [0, Tf ). From (16),

we have

V (z)− V (z(0))

≤ −
∫ t

0

γ(Tf )
−2‖Eγ(s)z(s)‖2ds

−
∫ t

0

π1γ(Tf )
−3+3α

(
γ(Tf )

c − π−1
1 σ
)
‖Eγ(s)z(s)‖3+αds (28)

The boundedness of γ(t) and (20) implies that
∫ t

t∗
‖Eγ(s)z(s)‖3+α<+∞ and

∫ t

t∗
‖Eγ(s)z(s)‖2

< +∞ on [0, Tf ). Using these inequalities and
λ1

γ(Tf )
‖Eγ(t)z‖2 ≤ V (z), from (28), we obtain

‖Eγ(t)z‖2 < +∞ on [0, Tf ). This, with the boundedness of γ(t), implies that z is well
defined and bounded on the interval [0, Tf ).
In summary, we have shown that γ(t) and ‖Eγ(t)z‖ are well defined and bounded on

the maximally extended interval [0, Tf ). From the boundedness of γ(t) and ‖Eγ(t)z‖2 on
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[0, Tf ) together with (13) and (14), we obtain, for t ∈ [0, Tf ),∥∥∥∥d(Eγ(t)z)

dt

∥∥∥∥ ≤ γ(t)−1‖AK‖‖Eγ(t)z‖+ ‖Eγ(t)δ(t, z, u)‖1

+γ̇(t)γ(t)−1‖D̄‖‖Eγ(t)z‖ < +∞ (29)

Letting Tf → +∞, we get γ(t) < +∞, ‖Eγ(t)z‖ < +∞,
∫ t

0
‖Eγ(s)z(s)‖2ds < +∞, and∥∥∥d(Eγ(t)z)

dt

∥∥∥ < +∞ on [0,+∞). This yields z → 0 as t → +∞ by Lemma 7 [7] and the

boundedness of γ(t). Therefore, the regulation of system (4) is achieved. Trivially, the
regulation of the system (1) follows by Vm in (3) with (7) and (8).

Remark 3.1. In implementing the proposed controller for our experiment, there may be
a case where a small measurement error can drive γ(t) → ∞ as t → ∞, which results in
K(γ(t)) → 0 as t → ∞. Let e(t) = r(t) − x1(t) where r(t) is the reference signal. The
following modified dynamic gain may provide robustness against the measurement noise
issue outlined above.

γ̇(t) = β(γ(t), z)q(‖e(t)‖ − ε)

q(‖e(t)‖ − ε) =

{
1, if ‖e(t)‖ − ε > 0
0, if ‖e(t)‖ − ε ≤ 0

(30)

where

β(γ(t), z) = γ(t)c+3α−1

((
n∑

i=1

γ(t)−(n−i)|zi|
)1+α

+

(
n∑

i=1

γ(t)−(n−i)|zi|
)3+α

+

(
n∑

i=1

γ(t)−(n−i)|zi|
)2
)
.

Here, ε > 0 is a pre-specified value that sets the tolerance for measurement errors. Under
this modified dynamic gain, once the system is regulated, any measurement error smaller
than ε will not cause further switching. The proposed controller, in the main part, consists
of a pole-placement part and a dynamic gain part. The pole-placement part is in the typical
form of a linear controller and is very easy to implement. The dynamic gain part involves
only one integrator. As a whole, our proposed controller is simple in structure and as such
does not require any heavy computations. As shown in the next section, our controller
performs well in real-time experiments.

Remark 3.2. We consider a cart-pole system with small length with strong gravity effects
[15]

ẋ1 = x2

ẋ2 = x3 + κ
x3x

2
4

(1 + x2
3)

3
2

ẋ3 = x4

ẋ4 = u (31)

As discussed in [15], this is an underactuated system. With δ2(t, x, u) = κ
x3x2

4

(1+x2
3)

3
2
, we have

|δ2(t, x, u)| ≤ κ|x4|2. Compared with (6), we see that α can be set as 0. Thus, with the
proposed controller, the dynamic gains with appropriate powers of the nonlinearity can
be implemented, similarly. Our control scheme is widely applicable to various practical
systems.
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Figure 2. Experimental setup

0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

time[sec]

ba
ll 

po
si

tio
n 

(c
m

)

0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

time[sec]

ba
ll 

po
si

tio
n 

(c
m

)

(a) (b)

0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

ba
ll 

po
si

tio
n 

(c
m

)

time[sec]
0 5 10 15 20

−20

−15

−10

−5

0

5

10

15

20

time[sec]

ba
ll 

po
si

tio
n 

(c
m

)

(c) (d)

Figure 3. Ball position trajectories: (a) proposed controller, (b) controller
from [8], (c) controller from [1], and (d) PID controller
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4. Experiment Results.

4.1. Experiment setup. The experiment setup is shown in Figure 2. Our proposed
controller and other existing controllers are engaged on the Quanser ball and beam system
in which the beam is actuated with a DC servomotor. A P4 2.40GHz computer with
Quanser Q4-PCI-DAQ is used to process feedback signals and derive the control input
for the system. There is also a power op-amp module between the DAQ and DC servo
providing input signals for the motor. The power module used is the Quanser UPM1503
with ±10V and 3A output. The data acquisition board used is a Q8 controlPaQ-FW and
the rotary servo plant is SRV02. This model is equipped with a Vishary Spectrol model
132 potentiometer and tachometer. The potentiometer is a single turn 10kΩ sensor with
no physical stops and has an electrical range of 352 degrees. The tachometer prevents
any latencies in the timing of the response and ensures that the speed of the motor is
accurately measured. The mechanical system parameters used were Lbeam = 42.55cm,
rarm = 2.54cm, R = 1.27cm, m = 0.064kg, g = 9.81m/s2, Jb = 4.1290 × 10−6kg·m2,
K1 = 1.76rad/sv, and τ = 0.0285s.

4.2. Experiment results. Figures 3 and 4 show the ball position and input trajectories
generated by the proposed controller and various existing controllers. While the existing
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Figure 4. Input trajectories: (a) proposed controller, (b) controller from
[8], (c) controller from [1], and (d) PID controller
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Figure 5. Evolution of γ(t)

controllers from [1,8] and PID controller are designed without considering the centrifugal
force term, our proposed controller is designed by considering the powers of high-order
nonlinearity in the centrifugal force term and adaptively regulates the ball and beam
system without the knowledge of the growth rate in the nonlinearity. Note that there is
noticeable high overshoot and slow convergence in the ball position response in Figures
3(c) and 3(d) by the controller [1] and the PID controller. In Figure 3(b), the controller
based on approximate input-output linearization in [8] exhibits better results than those of
[1] and the PID controller. As explained in [8], the controller based on approximate input-
output linearization generates better performance compared to the controller designed
based on Jacobian linearization. Now, with the additional dynamic gain compensating
for the centrifugal force term, our controller further improves on the control performance
of [8] as shown in Figures 3(a) and 3(b). For a fair comparison, we use the same eigenvalues
of −5 for both our controller and the one from [8]. The evolution of the implemented
dynamic gain is shown in Figure 5.

5. Conclusions. We presented a state feedback controller that considers the centrifugal
force term in a ball and beam system. The proposed controller is based on a fully de-
scriptive ball and beam system model and adaptive dynamic gain that takes account of
the centrifugal force term is employed. We carried out the system analysis with the pro-
posed controller and illustrated its improved control performance compared to previous
controllers via experiment. The experimental results show that our proposed controller
provides the better ball position control than the several existing methods. One defi-
ciency of our control scheme is that only a fractional power of the centrifugal force term
is utilized (|z1||z4|2 → |z1|α|z4|2, α < 1/3). In future work, we will further generalize our
current results so that the controller can utilize the full power of nonlinearity.
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