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Abstract. Regression analysis, an important branch of statistics, is an effective tool for
scientific prediction and management. In this paper, by analyzing the characteristic and
weakness of the existing regression methods, using the concept of quasi-linear function
with good structure and approximation properties, we establish quasi-linear regression
model (denoted by QRM for short). Further we consider the parameter estimation strat-
egy for QRM, propose parameter estimation based on genetic algorithm and the least
squares method, do error testing based on residual analysis. Finally, we analyze the
performance of the model by an illustrative example. The result indicates that QRM pos-
sesses generality and good operability. The regression effect can be satisfied by adjusting
the freedom degree of the quasi-linear regression function. Accordingly, it can be widely
used in many fields such as artificial intelligence and economic management.
Keywords: Regression analysis, Quasi-linear function, Parameter estimation, Genetic
algorithm, Residual, Hypothesis testing

1. Introduction. Regression, proposed by biostatistician Galton, is a useful tool dealing
with the correlation between variables. Its basic idea is from mean aspect to consider
the dependency relationship between random variables and controlled variables using
statistical methods. The correlation exists widely in real life (for instance, height and
weight, working time and achievement, input and output); therefore, the theories and
methods about regression analysis are important in academia and application. There are
numerous contributions focused on this aspect, such as economy, management, engineering
and medicine. Regression prediction model about grain production in terms of summer
rainfall was considered in [1]. A regression prediction model based on time series was
proposed according to China logistics industry [2]. Regression models in animal breeding
can be found in [3]. For the medicine penetration problem in clinical medicine one can
refer to [4] for a regression model. You may also refer to contributions [5-9] for other
applications of regression analysis in military affairs, physics, geography and biology.

Regression model is the basic element of regression analysis. Simple regression model
cannot guarantee the effect of fitting, while complex regression model is difficult to esti-
mate the parameters; therefore, how to construct a general regression model with good
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structure is the key. Traditional linear regression analysis was perfect in theories and
methods, but the model is too simple to describe accurately the correlation among vari-
ables. Accordingly, nonlinear regression analysis attracts more concentration both in
academia and application. There are two ways to process a nonlinear regression problem,
that is, transforming it into a linear one or straightly fitting. Although some interesting
results have been obtained for concrete problems, it is hard to deny that there exist some
defects. Linear transforming methods do not possess generality because there were not
general rules for choosing the transformation function. For straightly fitting methods,
there is no effective selecting mechanism for regression model, and it is hard to estimate
the parameters of the regression function. Based on these defects, helpful discussions have
been given in recent years. Zhou [10] pointed out that the method of least squares can do
nothing to obtain satisfactory regression equation for data with the feature of nonlinearity,
seasonality and strong fluctuation. Wang [11] thought that it is the nonzero mean error
that results in unsatisfactory goodness of fit for regression curve. Xie [12] proposed the
idea of piecewise fitting, but did not give an operable implement strategy. Zhang [13] put
forward the weighted linear regression method and showed that it can approximate to the
best model by an illustrative example, but he could not give an operable data grouping
strategy. Chen [14] thought that almost all parameters cannot be estimated analytically
through the method of least squares for nonlinear regression analysis. Although these dis-
cussions enrich the regression analysis theories and methods to a certain degree, they all
did not give operable regression model and solution methods, and this is very important
for real regression problems.
In the sequel, we have the following work: 1) We propose the quasi-linear regression

model (denoted by QRM for short) and analyze its property from theories; 2) We give
parameter estimation strategy for QRM based on genetic algorithm and the least squares
method; 3) We do error testing and variance estimate based on statistics and residual
analysis; 4) We analyze the performance of QRM by an illustrative example.

2. A Summary of Regression Model. Regression analysis is a statistical method
considering the correlation among random variables and controlled variables; its general
form is that,

y = µ(x) + ε, (1)

where x = (x1, x2, · · · , xp) is controlled variables, µ(x) is the definite relationship on x
(called regression function), ε is random error satisfying E(ε) = 0.
Model (1) simply describes the correlative characteristic between random variable y

and controlled variable. It contains two parts: one is µ(x) with the essence which is the
mathematical expectation E(y); the other is random error ε. If the regression function in
(1) is linear, and ε obeys normal distribution N(0, σ2), then

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε (2)

is called linear regression model. Here, β0, β1, β2, · · · , βp are regression coefficients, and
can be estimated by sample (x1i, x2i, · · · , xpi, yi) and the Least Squares Method, that is,
let

Q =
n∑

i=1

(yi − ŷi)
2 (3)

be an objective function, and determine the estimation β̂i of βi by ∂Q/∂βi = 0. Here,

ŷi = β0 + β1x1i + β2x2i + · · · + βpxpi, and µ̂(x) = β̂0 + β̂1x1 + β̂2x2 + · · · + β̂pxp is called
empirical regression equation of µ(x).
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If the regression function in (1) is nonlinear, then (1) is a nonlinear regression prob-
lem. And for the nonlinear regression analysis, the common used methods lack enough
operability, and the regression effect is usually not ideal.

Because unitary regression is the basis of complex one, and has a wide application, this
research mainly concentrated on unitary regression.

3. Regression Model Based on Quasi-linear Function (QRM).

3.1. Quasi-linear function and its properties. In order to establish an operable non-
linear regression model, this section introduced the concept of quasi-linear function.

Definition 3.1. [15] Let a = a0 < a1 < · · · < an = b, c0, c1, c2, · · · , cn ∈ (−∞,∞). If
f(x) = fk(x) = ck−1 + (x− ak−1)(ck − ck−1)/(ak − ak−1), ak−1 ≤ x ≤ ak, k = 1, 2, · · · , n,
then we say f(x) is a quasi-linear function on [a, b] with freedom degree n, and written as
f(x) = QL((a0, c0), (a1, c1), · · · , (an, cn)) for short.

Theorem 3.1. If f(x) is continuous on [a, b], then there exists a series of quasi-linear
functions {f (n)(x)}∞n=1 on [a, b] such that {f (n)(x)}∞n=1 uniformly converge to f(x).

Theorem 3.2. If f(x) only have finite discontinuous point, there must exist a series of
quasi-linear functions {f (n)(x)}∞n=1 on [a, b] such that {f (n)(x)}∞n=1 converge to f(x) on
the continuous point x.

Please refer to [15] for the proof for Theorem 3.1 and Theorem 3.2.
From the above analysis, we can see that quasi-linear function can be approximated

by any piecewise continuous function, and also has a good description, so we can do
regression analysis by quasi-linear function.

3.2. Quasi-linear regression model (QRM). For given samples (xi, yi), i = 1, 2, · · · ,
n, if the quasi-linear function on [a, b] is employed as the regression function, we say the
model a quasi-linear regression model (QRM) with freedom degree n, that is

y = QL((a0, c0), (a1, c1), · · · , (an, cn)) + ε. (4)

Obviously, (4) is the linear regression model for n = 1, and it is a general model with
different freedom degree. We can construct a QRM as follows: 1) Determine the freedom
degree of quasi-linear function according to the feature of sample data; 2) Determine
the fitting interval [a, b] according to the distribution of sample data; 3) Estimate the
endpoints of the subintervals using the Least Squares Method.

To illustrate this method, we take a quasi-linear regression problem with freedom degree
2 as an example.

For given sample data (x1, y1), (x2, y2), · · · , (xn, yn), we assume, without loss of general-
ity, that x1 ≤ x2 ≤ · · · ≤ xn. Firstly, select [a, b] = [x1, xn], including all xi, as the fitting
interval. Secondly, estimate the endpoints of the subintervals using the Least Squares
Method, that is: 1) assume A(xA, yA), B(xB, yB) and C(xC , yC) (here, xA = a, xC = b)
denote respectively the three points on the quasi-linear curve from left to right; 2) by

µ(x) =


yA − yB
xA − xB

x+
xAyB − xByA

xA − xB

, x ∈ [xA, xB]

yB − yC
xB − xC

x+
xByC − xCyB

xB − xC

, x ∈ [xB, xC ]
(5)

and
n∑

i=1

e2i =
k∑

i=1

(µ(xi)− yi)
2 +

n∑
i=k+1

(µ(xi)− yi)
2, xk < xB < xk+1, (6)
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using the Least Squares Method to determine the estimation values ŷA, x̂B, ŷB, x̂C of yA,
xB, yB, xC , respectively, and empirical regression equation µ̂(x) = QL((xA, ŷA), (x̂B, ŷB),
(xC , ŷC)) of µ(x).
In fact, all the above can come down to the following programming problem:{

min
∑n

i=1 e
2
i

s.t. xA ≤ xB ≤ xC , yA, yB, yC ∈ (−∞,+∞).
(7)

Theorem 3.3. If ε in (4) obeys normal distribution N(0, σ2), then (6) is identical with
the maximum likelihood estimates of yA, xB, yB, yC.

Proof: If (xi, yi) is taken as the observed values of (xi, Yi), then Yi obeys normal
distribution N(µ(xi), σ

2), i = 1, 2, · · · , n, and they are mutually independent, further we
have the joint distribution density function of Y1, Y2, · · · , Yn:

L(y1, y2, · · · , yn) =
n∏

i=1

1

σ
√
2π

exp

[
− 1

2σ2
(µ(xi)− yi)

2

]
. (8)

Clearly, (8) is the likelihood function of Y1, Y2, · · · , Yn corresponding to y1, y2, · · · , yn.
The maximum value of L(y1, y2, · · · , yn) is identical with the minimum value of (6), which
shows that the conclusion is true.
This theorem means from statistics that it is feasible to determine the quasi-linear

regression function using (6).

Theorem 3.4. If ε in (4) obeys normal distribution N(0, σ2), and the expressions of
µ̂(x) = QL((xA, ŷA), (x̂B, ŷB), (xc, ŷc)) on [a, x̂B] and [x̂B, b] are identical with the lin-
ear regression estimate functions of samples (x1, y1), (x2, y2), · · · , (xk, yk) and samples
(xk+1, yk+1), (xk+2, yk+2), · · · , (xn, yn), respectively, (here, xk < x̂B < xk+1 and k > 2,
n− k > 2), then the variance σ2 can be estimated as

σ̂2 =
1

n− 4

[
k∑

i=1

(µ̂(xi)− yi)
2 +

n∑
i=k+1

(µ̂(xi)− yi)
2

]
, (9)

which is unbiased.

Theorem 3.4 can be directly proved using linear regression theories.
The above conclusion cannot be thought as the general principle to estimate the random

error, but it can be an approximate estimate method under some condition.

Remark 3.1. The above discussions hold for quasi-linear fitting problems with freedom
degree n.

Remark 3.2. Because regression analysis is a kind of empirical inference, it is difficult
to construct the internal relationship between variables. In order to obtain the random
error with fixed distribution, we can improve slightly the object function of (7). Of course,
the improvement should keep first the total squares sum of error attaining its minimum
and also give consideration to the stability of average errors for all linear section.

Remark 3.3. Theorems 3.3 and 3.4 with the basis of Central Limit Theorem further
enrich the parameter estimate methods of (6), and lay theory foundation for the above
discussions. In real, many correlation elements interact on many random phenomena,
but theses micro effect cannot bring great influence, and the sum of these independent
factors with micro effect is approximate normal distribution. Accordingly, the condition
in Theorems 3.3 and 3.4 is reasonable.



STUDY ON QUASI-LINEAR REGRESSION METHODS 6263

4. Solving Strategy for QRM Based on Genetic Algorithm. Genetic algorithm
[16,17] is a useful tool in intelligent computing and complex system optimization. Next
we consider the solving strategy based on genetic algorithm for QRM with freedom degree
2.

1) Coding. In this paper, we use real value coding directly. Take a quasi-linear
function with freedom degree 2 as an example. For the coordinates of connection points,
then the real-code is (yA, xB, yB, yC).

2) Fitness function. This paper selects G(x) = [1 +
∑n

i=1 e
2
i ]

−1 as fitness function.
3) Selection operator. This paper selects proportional selection operator.
4) Crossover operation. This paper introduces bit by bit arithmetic crossover oper-

ator as follows. For a given crossover probability pc ∈ [0, 1], crossover bit by bit the gene
in populations X = (yA, xB, yB, yC) and Y = (y′A, x

′
B, y

′
B, y

′
C), for the first bit, we have:

X ′
1 = ryA + (1− r)y′A, Y ′

1 = (1− r)yA + ry′A, (10)

r is a random number in [0, 1], and same to the other bit.
5) Mutation operation. In (7), xB is influenced by the range of [a, b]. To avoid infea-

sible solutions, we use the following mutation methods: for any given mutation probability
pm ∈ (0, 1), operate the individual yA, xB, yB, yC bit by bit as follows:

x
′

B =

{
xB + r(b− xB), 0 ≤ r ≤ 1
xB − r(xB − a), −1 ≤ r < 0

, y
′

i = yi + ri, i = A,B,C, (11)

r is a random number in [−1, 1], ri is a random number with normal distribution N(0, σ2).
For convenience, we abbreviate the above genetic algorithm as GA-QRM. Following

considers the convergence of GA-QRM through Markov Chain theories.

Definition 4.1. [16] Let
−→
X = (X1(t), X2(t), · · · , XN(t)) be the tth population of genetic

algorithm, f ∗ = max{f(X)|X ∈ S} denote the global optimal value of the individuals,
Zt = max{f(Xi(t)), i = 1, 2, · · · , N}. If P{|Zt − f ∗| < ε} → 1 (t → ∞) always holds

for any ε > 0, then we say the genetic sequence {
−→
X (t)}∞t=1 converges. Here, P (A) is the

probability of event A happening.

Theorem 4.1. The GA-QRM using the elitist preserving strategy (that is, the contempo-
rary optimal individual persevered to the next generation) is globally convergent.

5. Implementing Steps of Quasi-linear Regression Analysis.

5.1. Implementing steps of quasi-linear regression. This section will propose the
steps of regression analysis: 1) Select fitting interval and freedom degree according to the
feature of sample data; 2) Determine the regression parameter based on Genetic Algo-
rithm, including coding, fitness function and genetic operators; 3) Test the effectiveness
of regression estimate function and the random error combining with some strategy.

5.2. Testing problem of quasi-linear regression. Because the parameter estimates
of quasi-linear regression function is hard to express by analytical methods, the correlation
rationality test and the estimate of variance are hard to realize by analytical methods.
Considering that residual analysis does not require the exact estimates of parameters,
the corresponding test of quasi-linear regression can be processed by combining residual
analysis with some strategies. Residual graphics are the basic tool for residual analysis.
Following will give the concrete implementing strategies of each testing.



6264 F. LI, C. JIN, Y. SHI AND K. YANG

5.2.1. Normality test based on residual. Because the real error in regression is unknown,
using residual to approximately analyze the feature of the error is a key method. Based
on statistics theories, following will give several criteria to infer the feature of the er-
ror. Firstly, we assume the random errors corresponding to controllable variables are
identically and independently distributed.
Criterion 1 If they all have normal distribution N(0, σ2), then with a larger probability

the residual coordinate should be symmetric around the line e = 0.
Criterion 2 If they all have common normal distribution, then with a larger probability

the residual histogram should appear “Bell”-type.
Criterion 3 If they all have common normal distribution, then with a larger probability

all (ei, fi) should be distributed around a straight line in the normal probability paper.
Here, fi = ni/n, n is the sample size, ni is the number of samples whose residual is less
than or equal to ei.
Criterion 4 If they all have common normal distribution, then with a larger probability

the residual histogram of any subsample should be similar to the residual histogram of
all samples.

Remark 5.1. All the criteria above base on the statistical theories: If the random er-
rors corresponding to the values of controllable variable are identically, independently and
normally distributed, then the residuals ei corresponding to sample points (xi, yi) could be
considered approximately as sampling from the same population.

Remark 5.2. All the criteria above depend on the regression estimate function, so the
selection of the regression model is the key to determine whether the test could be passed
through. For QRM, the test can be passed step by step by raising gradually the level of
freedom degree. But it should be noted that the raising of the level may result in the
linear increasement of computing complexity. So we should select the one which has small
freedom degree under the condition of passing through all tests.

5.2.2. Correlation test based on DW. Correlation test of error is to judge whether the
corresponding random error ε(x) of controllable variables x is dependent. The common
method to test the correlation between the residuals of two neighbored samples is DW-
method, and the test statistic is

DW =

∑n
i=2(ei − ei−1)

2∑n
i=1 ei

2 , (12)

and its illustrative explanation is as Figure 1.

A B C D E

0 dL dU 2 4−dU 4−dL  4

Figure 1. Paraphrase for DW-test

In Figure 1, 1) dL and dU are the correlation critical values that can be obtained by
lookup table, and they depend on the significance level λ and the size of sample. For
n = 60, if λ = 0.01, then dL = 1.38, dU = 1.45, if λ = 0.05, then dL = 1.55, dU = 1.62.
For λ = 0.05, if n = 100, then dL = 1.65, dU = 1.69. 2) A = [0, dL] represents the
positive correlation accepting region, C = [dU, 4 − dU] the non-correlation accepting
region, and E = [4 − dL, 4] the negative correlation accepting region, B = (dL, dU)
and D = (4 − dU, 4 − dL) the region whose correlation cannot be judged. It should be
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noted that only for normal variables, independence is equivalent to non-correlation. So
DW-method could answer partially the problem of independence.

Remark 5.3. Significance level λ is a decision risk parameter. The smaller (bigger) λ
is, the bigger (smaller) non-correlation accepting region is, usually, we use λ = 0.05 or
λ = 0.01 in real application; the smaller (bigger) n is, the bigger (smaller) non-correlation
accepting region is. And in Section 6, we use λ = 0.01 and n = 60.

5.2.3. Error estimation based on subsample. Statistical law is a decision technology based
on large test, and small data cannot assure high reliability decision. That the form of
regression function is unknown reminds us that the main task for regression analysis is to
decide the distribution of the error and the parameters estimate. In order to make high
reliable decision, we consider the feature of the random error from different aspects. We
start from the feature similarity of subsamples to give a couple of methods for testing
error features and estimating variance.

Criterion 5 If the random errors for controllable variables are independently dis-
tributed with mean 0, then the average of residuals of all subsamples should with a large
probability fall over (−δ

′
,+δ′). Here, δ

′
is a given positive threshold value.

Criterion 6 If the random errors for controllable variables are independently identically
distributed with mean 0, then the average of residual squares for any subsample should
fall over a moderate interval [a, a + β] with large probability, and the residual diagrams
appears similar symmetry. Here, β > 0 is a given positive threshold value.

According to the discussion above, if the random errors for controllable variables are
identically independently distributed with mean 0, then we can take σ̂2 = 1

k

∑k
i=1 σ̂

2
i as

the estimate of the variance of random error. Here, k represents the size of the subsample
and σ̂2

i the square of the average residual of ith subsample.

Remark 5.4. All the above criteria base on the following statistical theories: 1) Sample
mean is an unbiased estimate of population mean; 2) 2-order origin moment of sample is
an unbiased estimate of population variance if the population mean is 0.

6. Case Study. In this section, we will consider the feature and effectiveness of QRM
through an example.

Case description. With the development of science and technology, many things
including the people’s living standards, working conditions, environmental consciousness,
artistic appreciation changes greatly, and some enterprises gradually realize the mech-
anization and IT application in both production and management, which brings many
electrical appliances popularization to a certain degree. In order to raise the level of ser-
vice and management, Power Co. A made a series of investigation, which show that air
temperature is a major factor influencing the power consumption. All the investigated
data are listed in Table 1, the dependency relationship between Peak loads (KW) and
temperature (◦F) is expected to obtained using the data in Table 1 (here, T denotes
temperature, PL denotes Peak loads).

From Table 1 we can see that, there does not exist exact numerical dependency relation-
ship between Peak loads and temperature, but correlativity that power consumption is
greater when temperature is higher or lower, and smaller when temperature is moderate.
Following consider the correlativity from regression analysis.

We can see from the sample scatter diagram (See Figure 2) that the relationship be-
tween peak load and temperature appears V-type, which is not suitable for straight line
fitting. We can use a quadratic function y = ax2 + bx + c or a quasi-linear function
y = QL((a0, c0), (a1, c1), (a2, c2)) with freedom degree 2 to fit. Using Matlab and the solv-
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Table 1. Peak loads (KW) in terms of temperature (◦F)

T 55 55 56 56 57 57 58 59 60 62 65 66
PL 120 118.3 118.9 117.6 113.9 117.4 115.8 111.8 110.5 109.5 99.5 100.2
T 61 63 63 64 64 67 67 68 69 70 70 71
PL 109.5 105 106 105.2 102.8 96.5 101.6 96.3 95.6 92.5 94.5 90
T 71 72 74 74 76 79 84 85 86 87 77 78
PL 93.6 88 90.4 92.4 96.1 103.1 114.9 114.8 116.8 120 97 102.1
T 80 81 82 83 81 82 88 89 89 90 92 94
PL 104.5 108.1 111.3 112.1 106.7 108.1 124.1 125 127.8 127.8 134.1 138
T 95 96 97 98 100 100 108 106 96 94 95 86
PL 140.7 142 145.2 147.4 150.1 153.9 170.8 166.1 143 138 139 121.4

50 60 70 80 90 100 110
80

90

100

110

120

130

140

150

160

170

180

Figure 2. Scatter diagram for data in Table 1

ing method for QRM given in Section 4, we can obtain the quadratic estimate function
and the quasi-linear estimate function with freedom degree 2 as follows:

ŷ∗ = 0.0625x2 − 8.8692x+ 415.1326, (13)

ŷ∗∗ =

{
216.9694− 1.7680x, x ∈ [50, 71]
−82.3854 + 2.3430x, x ∈ [71, 110],

(14)

the corresponding residuals list in Table 2 (where ŷ∗ = ŷ∗(xi), ŷ
∗∗ = ŷ∗∗(xi), e

∗
i = yi− ŷi

∗,
e∗∗i = yi − ŷ∗∗i ). And one can find the fitting curves, regression residual diagrams, regres-
sion residual histograms and normal probability plots in Figures 3-6, (a) for quadratic
regression and (b) for QRM.

50 60 70 80 90 100 110
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160

180
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(a) (b)

Figure 3. Fitting curves
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Table 2. Regression residual estimates

xi 55 55 56 56 57 57 58 59 60 62 65 66
yi 120 118.3 118.9 117.6 113.9 117.4 115.8 111.8 110.5 109.5 99.5 100.2
ŷ∗i 116.4 116.4 114.5 114.5 112.6 112.6 111 109.4 108 105.5 102.7 102
ŷ∗∗i 119.7 119.7 117.9 117.9 116.2 116.2 114.4 112.6 110.9 107.4 102.0 100.3
e∗i 3.6 1.9 4.4 3.1 1.3 4.8 4.8 2.4 2.5 4 –3.2 –1.8
e∗∗i 0.3 –1.4 1 –0.3 –2.3 1.2 1.4 –0.8 –0.4 2.1 –2.5 –0.2
xi 61 63 63 64 64 67 67 68 69 70 70 71
yi 109.5 105 106 105.2 102.8 96.5 101.6 96.3 95.6 92.5 94.5 90
ŷ∗i 106.6 104.4 104.4 103.5 103.5 101.4 101.4 101 100.7 100.5 100.5 100.4
ŷ∗∗i 109.1 105.6 105.6 103.8 103.8 98.5 98.5 96.7 94.9 93.2 93.2 91.4
e∗i 2.9 0.6 1.6 1.7 –0.7 –4.9 0.2 –4.7 –5.1 –8 –6 –10.4
e∗∗i 0.4 –0.6 0.4 1.4 –1 –2 3.1 –0.4 0.7 –0.7 1.3 –1.4
xi 71 72 74 74 76 79 84 85 86 87 77 78
yi 93.6 88 90.4 92.4 96.1 103.1 114.9 114.8 116.8 120 97.0 102.1
ŷ∗i 100.4 100.6 101.0 101.0 102 104.5 111.1 112.8 114.6 116.6 102.8 103.6
ŷ∗∗i 91.4 89.6 91.0 91.0 95.7 102.7 114.4 116.7 119.1 121.4 98 100.3
e∗i –6.8 –12.6 –10.6 –8.6 –5.9 –1.4 3.8 2 2.2 3.4 –5.8 –1.5
e∗∗i 2.2 –1.6 –1.4 1.4 0.4 0.4 0.5 –1.9 –2.3 –1.4 –1 1.8
xi 80 81 82 83 81 82 88 89 89 90 92 94
yi 104.5 108.1 111.3 112.1 106.7 108.1 124.1 125 127.8 127.8 134.1 138
ŷ∗i 105.6 106.8 108.1 109.5 106.8 108.1 118.6 120.8 120.8 123.2 128.2 133.7
ŷ∗∗i 105.0 107.4 109.7 112.1 107.4 109.7 123.8 126.1 126.1 128.5 133.1 137.8
e∗i –1.1 1.3 3.2 2.6 –0.1 0 5.5 4.2 7 4.6 5.9 4.3
e∗∗i –0.5 0.7 1.6 0 –0.7 –1.6 0.3 –1.1 1.7 –0.7 1 0.2
xi 95 96 97 98 100 100 108 106 96 94 95 86
yi 140.7 142.0 145.2 147.4 150.1 153.9 170.8 166.1 143.0 138 139 121.4
ŷ∗i 136.6 139.7 142.9 146.2 153.2 153.2 186.2 177.2 139.7 133.7 136.6 114.6
ŷ∗∗i 140.2 142.5 144.9 147.3 151.9 151.9 170.7 166.0 142.5 137.8 140.2 119.1
e∗i 4.1 2.3 2.3 1.2 –3.1 0.7 –15.4 –11.1 3.3 4.3 2.4 6.8
e∗∗i 0.5 –0.5 0.3 0.1 –1.8 2 0.1 0.1 0.5 0.2 –1.2 2.3
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Figure 4. Residual diagrams

It can be deduced from the above figures and results in Table 2 that the two regression
results have the following points:

1) The fitting effect of QRM is better than that of quadratic regression. i) In reflecting
the feature of sample data, please see Figure 3; ii) In comparing the sizes of sum of squared
residuals:

∑
(e∗i )

2 = 1600.58,
∑

(e∗∗i )2 = 99.38.
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Figure 5. Residual histograms
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Figure 6. Normal probability plots

2) Random error of QRM is normally distributed with mean 0 but quadratic regression
is not. Please see Figures 4-6. i) All the residuals of QRM are uniformly distributed
around e = 0 but quadratic regression is not, please see Figure 4; ii) Residual histograms
of QRM has normal distribution but quadratic regression does not, please see Figure 5;
iii) From normal probability plots, the corresponding residual of QRM almost lies in a
straight line but quadratic regression does not, please see Figure 6.
3) Random errors of QRM are approximately independent, but quadratic regression

is not. In fact, by Table 2 and (12) we can obtain the value of DW is 2.513, 0.6043
respectively for QRM and quadratic regression. Under λ = 0.01, by dL = 1.38, dU = 1.45,
we know 2.513 for QRM is in the correlation rejection region [1.45, 2.55], and 0.6043 for
quadratic regression is in the positive correlation acceptance region is [0, 1.38].
4) Random errors of QRM are approximately independent and the expectation value

is always zero, but quadratic regression is not. i) All the residuals of QRM are uniformly
distributed around e = 0 but quadratic regression is not, please see Figure 4; ii) According
to the variation range of controllable variables [55, 64], [64, 81], [81, 100], the total sample
can be divided into three subsamples, the corresponding residual histograms of QRM is
similar in Symmetry on e = 0, while the corresponding residual histograms of quadratic
regression is obviously different, please see Figure 4.
All the above analysis indicates that the QRM possesses good interpretability and

structure. It is a general regression model. The satisfactory fitting effect and error
estimate can be obtained through adjusting the freedom degree of the model.
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The above analysis results can provide practical value for power department to forecast
load and to formulate electric power dispatch program, so that realize shift peak load,
gradually relieve the tight situation of electricity supply.

7. Conclusion. In this paper, by analyzing the characteristic and weakness of the ex-
isting regression methods, using the concept of quasi-linear function and approximation
properties, we establish quasi-linear regression model (denoted by QRM for short). Fur-
ther we consider the parameter estimation and give the operating strategy based on
genetic algorithm and the least squares method. For the feature testing of random errors,
we give the basic criteria based on residual analysis and statistical principle, propose the
variance estimation based on subsample. Finally, we discuss the performance of QRM by
an illustrative example. All these indicate that QRM not only possesses generality and
operability, but also results in satisfactory results through adjusting the freedom degree
of quasi-linear regression function, for example, making random errors of QRM ε(x) be
approximately independent and obey normal distribution N(0, σ2). Accordingly, the re-
sults in this paper enrich the current regression theories and methods, and can be widely
used in many fields such as artificial intelligence and economic management.
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