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ABSTRACT. 3-D liver segmentation is vital in computer-assisted surgery applications
such as minimal invasive surgery, targeted drug delivery,tumor resection, and donor
transplantation. This study describes development and evaluation of a novel liver seg-
mentation paradigm in support of Selective Internal Radiation Therapy (SIRT). Since
segmentation accuracy and computational simplicity are the two key features for evalua-
tion, the proposed method couples a modified k-means based segmentation and localized-
contouring algorithm to obtain segmentation with high accuracy, based on an optimal
number of slices. Furthermore, parallel computing is used to reduce the high compu-
tational load required of the process. Minimal manual interaction was required in the
form of initialization with no correction or adjustment done during or after the process
completion. Five rounds of experiments were performed to determine the accuracy and
computational performance of the segmentation algorithm. Results were assessed by com-
paring volumes obtained from the segmentation algorithm to those obtained by manual
segmentation done by experts. Statistical analysis is also carried out to determine if the
same accuracy is obtained during multiple runs of the dataset and to determine if the
manual initialization has any impact on the accuracy of the results. An average accuracy
of 98.27% was achieved in estimating the liver volumes with consistent results obtained
in various runs and independently of the user initializing the task. A reduction of 78%
in computational time was accomplished by the parallel computing techniques in support
of the lengthy segmentation process. Since SIRT requires accurate calculation of the liver
volume, this new method provides highly accurate and computationally efficient process
required of such challenging clinical requirements.

Keywords: Image segmentation, 3D reconstruction, High performance computing,
Modified k-means algorithm, Contouring, Performance metrics

1. Introduction. The American Cancer Society estimates that nearly 18,000 people are
diagnosed with liver cancer annually. This unfortunately makes 1 out of 183 individuals
born today susceptible to liver cancer at some point during their lifespan [1]. Liver cancer
treatment which delivers maximum radiation dose to the tumor and minimum toxicity to
the surrounding healthy tissue has been one of the major challenges in clinical practice.
Selective Internal Radiation Therapy (SIRT) with Yttrium-90 (Y-90) microspheres is
emerging as an effective liver-directed therapy [2]. The treatment involves the accurate
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calculation of functional tumor volumes and anatomical volumes of liver for the determi-
nation of the tumor to normal liver ratio and consequently for the calculation of the dose
of Y-90 microspheres [3].

Present techniques for the determination of the anatomic volume of the liver involve
tedious manual segmentation of the liver from the Computerized Tomography (CT) scans.
The number of slices in a CT dataset varies from 200-400, which makes the task of
computing the volume of the liver manually excessively tedious and time consuming.
Also, the task is greatly dependent on the skill and proficiency of the technician/doctor,
which could contribute to human error and skew the results.

This study proposes the development and implementation of a semi-automatic algo-
rithm for the segmentation of the liver and tumor from Computed Tomography (CT)
scans and the calculation of the volume of the liver for SIRT treatment.

Image segmentation is an important preprocessing step in many image processing ap-
plications including complex task such as brain segmentation from MR images [4,5], lung
segmentation from CT images [6,7], and other medical image analysis [8]. Current auto-
matic and semi-automatic procedures for liver segmentation are based on techniques that
rely on (1) shape constrained segmentation using heuristic approaches [9], local shape
models [10], atlas based techniques [11,12] or nonlinear models [13,14]; (2) rule based seg-
mentation [15]; (3) gradient vector flow [16-18]; and (4) two or three dimensional region
growing [19,20]. Although these techniques offer highly accurate results the algorithms
need to accommodate varying protocols, data from different sources, artifacts, and the
presence of pathological structures such as tumors [21,22]. Also, segmentation algorithms
used in cases of liver segmentation tend to be difficult to operate for a person with limited
amount of know-how of the conditions and requirements necessitated by these different
segmentation techniques.

We aim to develop an algorithm which accurately segments and determines the volume
of the liver but at the same time is easy to operate from a physicians point of view. The
algorithm requests for minimal intervention in the initialization process and provides the
complete analysis of the segmentation results automatically. The main objective of the
algorithm is to provide the means to perform the calculations of the volumes to a high
degree of accuracy with a much reduced computational time.

The main contributions of this study include: (1) establishing a new hybrid approach
which utilizes the k-means based segmentation algorithm coupled with a new application
of a localized contouring algorithm specifically for CT datasets, based on local regional
thresholds defined in a small region around the point of interest in terms of relative
radio density; (2) developing a process for liver volume calculations on the basis of an
automated process that selects an optimal number of slices that will yield the highest
accuracy possible minimizing as consequence human intervention on only 4 to 5% of any
given dataset in the initialization process, and (3) proposing a parallel approach that
reduces considerably the computational requirements for segmentation as well as volume
calculations.

In order to overcome inherently high computational requirements that tasks such as
segmentation and volume calculation demand a parallel computing process within a sin-
gle desktop computer is employed. Tasks such as liver segmentation process and volume
calculations are hence distributed across the cores/processors of the computer. Parallel
computing has been widely used for reduction of computational times for image segmen-
tation tasks particularly medical image segmentation [23].

MatLab provides effective different alternatives to address computationally-intensive
tasks based on issues of parallelism and high performance computing (HPC). Krishna-
murthy et al. presented an exhaustive description of all the HPC techniques offered by
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MatLab [24]. The most popular techniques are MatLab-MPI [25,26], MatLab [27], Star-P
[28,29], the MatLab Distributed Computing Toolbox (DCT) [30] and the Parallel Com-
puting Toolbox (PCT) [31,32]. In this study, PCT and DCT are selected to set up the
parallel computing network. This computational process is structured in a way that its
deployment can extend to clusters and grids [33], if the need arises.

The infrastructure used for our experiments required the configuration of a job manager
and a client host machine. The job manager schedules and coordinates the execution of
jobs and tasks evaluation. The client host machine can request to the job manager
a specific job and its related tasks, in which case a MatLab session (client session) is
initiated. Moreover, a MatLab host machine through the MatLab DCT toolbox can be
requested to execute a given task, in which case each MatLab session is called a worker,
which behaves as a computing server. Since a given host machine can initiate several
MatLab sessions, then it can hold several workers. The actual number of workers held by
a given host machine depends on the resources available to it.

2. Research Aim. The research aim is to design a new algorithm for accurate and fast
liver volume calculation using minimal user intervention while maintaining high accuracy
in volume rendering. This algorithm semi-automatically segments the liver region from
3D CT scans. The algorithm extracts the liver region and renders the segmented liver
for 3D viewing. The algorithm is also structured as a parallel-aware process so that a
computationally-taxing task can be distributed over various computing nodes.

3. Methodology. Liver segmentation based on CT images is a challenging task due
to the presence of similar intensity objects in the abdomen with no clear delineation
between these objects and the liver. These objects include the spleen, stomach, wall of
the abdomen, and kidneys. A new method for liver segmentation has thus been developed
based on a combination of a modified k-means clustering process and the active contours
algorithm. The implementation strategy is illustrated in Figure 1.

The novelty in this algorithm is in the manner the modified k-means based segmentation
is used in combination with a localized contouring algorithm. This k-means segmentation
approach requires the identification of five separate regions of the input CT images, which
is one initial subsidiary contribution of this paper. A key contribution is the development
of a new application of a localized contouring algorithm, based on local regional thresholds
defined in a small region around the point of interest, which has not been developed for
actual CT datasets. Pixels in an image obtained by CT scanning are displayed in terms of
relative radio density rather than the traditional gray level intensity. The CT images are
segmented keeping the pixel values in the Hounsfield units (HU). The HU value will be
used to identify the liver tissues in the CT images. Typically the liver window is defined
between —40 HU and 180 HU.

Although reduced manual interaction is desired, the variations in the liver datasets seen
in patients having tumor along with the need to obtain accurate volume determination
for the SIRT treatment justify the use of the proposed semi-automatic method. The
proposed method used to select the slices requiring human interaction is based on tracking
the changes observed in the liver region across the slices.

Moreover, the integration of parallel computing to solve liver segmentation has been
reported in the literature; however, the incorporation of MatLab based parallel computing
for liver segmentation purposes has not been explored as a more user-friendly and common
platform. The ease and advantages MatLab based parallel computing offers over complex
parallel computing systems is noteworthy.
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FIGURE 1. General algorithm for 3D liver segmentation and rendering

The CT scans of the patients are de-identified on-site. This process of de-identification
is performed to conform to the Internal Review Board on human subjects (IRB approval
051810-01) and to the standards and guidelines established by the Department of Health
and Human Services-HIPAA.

3.1. Design structure of the algorithm. At this juncture, the algorithm as designed
requires the user to manually pick 5 points of varied intensity in the scan for the k-
means segmentation as well as a rough outline of the liver in up to 5 widely spaced
slices throughout the given CT dataset. From this initialization process, the following
automated steps are then considered.

3.1.1. The modified k-means algorithm and its suitability to liver segmentation. This is
a traditional clustering technique which tries to partition the given dataset points into
various clusters whose means are similar [34,35]. The k-means algorithm as used here
aims to minimize the squared Euclidean distance for clustering the data points to their
respective groups. In the case of the images to be segmented, the data points are pixels
which are to be clustered around the mean intensity or the pixels apriori chosen by the
user.

The points are clustered based on the intensity of the selected points by minimizing
the objective function U as defined in Equation (1).

U=3 3 (- n) 1)

1=1 x;€S;
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where k represents the number of clusters S;, with ¢ = 1,2,..., k; and »; is the intensity
of the selected point, while x; represents each point that belongs to cluster S; (z; € ;).
In the case of liver segmentation, the CT slices are portioned into five regions whose
mean intensity levels can be given either by the user or preset. The five regions manually
identified on each CT slice are:

1. Liver

2. Surrounding organs

3. Peripheral Muscles

4. Ribs/Spinal cord

5. Outside of the body

The segmentation algorithm using the k-means yields 5 masks namely M1 through M5

corresponding to the aforementioned 5 regions as depicted in Figure 2.

ety

5 MASKS RESULTING FFEDM\
K-MEANS SEGMENTATION

FiNAL Mask OBTAINED BY
COMBINING MASKS M1 AND M2

FIGURE 2. The 5 reference regions, M1 through M5, needed to apply the
k-means based segmentation method on a liver CT dataset

Selection of the seed points for the k-means algorithm is an important feature for the
algorithm. A random selection of seeds for the clusters as shown in Figure 3 results in
the generation of incorrect masks. This is due to the clusters being formed around those
random seeds which range from —1024 HU to 3000 HU for a typical CT slice. Since the
liver was typically seen in the ~40 HU to 180HU range random selection of seeds provides
very less probability to achieve the required feat.

In case of uniformly selected points in the range of the C'T acting as seeds, the centroids
are centered around —1024 HU, —205HU, 614HU, 1433HU and 2252HU. These seeds fail
to segment the regions containing the liver from the image as seen in Figure 3. An
alternative would be to use uniformly selected seed points in the -40 HU to 180 HU liver
range. Empirically, however, such a selection of seeds yields centroids too close to one
another for suitable segmentation. Also a large number of points below ~40HU and above
180 HU were misclassified and marred the resultant masks.
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(a) 5 Masks M1- M5 obtained using Randomly Selected Seed Points
(c) 5 Masks M1- M5 obtained using User Selected Seed Points

{b) 5 Masks M1- M5 obtained using Uniformly Selected Seed Points

FIGURE 3. Selection of seed-points for k-means based image segmentation step

Hence, the modified k-means approach as deployed in this study segments effectively
the different regions of the CT slice around the user selected points. The user selected
points act as the seeds for each of the aforementioned five masks. The selection of the
seeds, rather than a random selection or uniform selection of points in the entire intensity
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range of the image, yielded much better segmentation results as shown in Figure 3 for
any given slice. These seed points clearly differentiate the various organs of interest as
compared to the other two methods of seed selection where the liver region is not at all
visible.

Also segmentation of each image is replicated 3 times to achieve better results. The
intersection of the results of the 3 segmentation runs for each image slice is taken to
obtain the final segmentation. Selection of the intersection of the 3 runs provided results
which were free from misclassification experienced using a single run. Lastly, the modified
k-means is operated on a so called online update mode where the sum of distances is
calculated with the movement of every pixel to a different cluster. Although this step
is slightly more time consuming than when using a batch update, higher accuracies are
however guaranteed since the local minima of the distance function can be calculated
more accurately.

Another important finding of this study is in determining that the first two masks
namely liver (M;) and surrounding organs (M) can be utilized to effectively segmented
the image. The masks M, and Ms are in this case ORed together to obtain the final mask
(M fina) as calculated in Equation (2).

Mfinal — Ml + M2 (2)

This final mask is what is applied on the CT slice for segmenting the liver region.
Based on empirical results, it was determined that the optimal mask would require a
combination of the first two identified regions since in some cases the entire liver is not
seen in mask M; due to the inhomogeneous intensity distribution across the entire liver
region in the CT scans. The selection of masks M; and M, in combination ensures that
no part of the liver is missed out.

In order to demonstrate the merits of the modified k-means approach, Figure 4 shows
the results of applying the modified k-means as compared to the traditional k-means
approach for segmenting the liver. Part (A) of Figure 4 demonstrates the differences
obtained in the masks M; and M, and the mask My, for the input CT slice shown.
Figure 4 (a2-a4) show the result obtained using the modified k-means and Figure 4 (a5-
a7) show the results obtained using the traditional k-means approach. It is observed that
M fina obtained using the traditional k-means over estimates the liver region.

An observation from Figure 4(A) would indicate that only using mask M; from the
traditional k-means approach would yield the required liver region. In order to show that
this is not actually the case for every slice, results for another slice of the dataset is shown
in Part (B) of Figure 4. Figure 4(B) demonstrates the need of using the mask M;,q as
obtained in Equation (2). Note that by using only mask M; for either the modified or
the traditional k-means would results in the underestimation of the liver region.

The segmented image (S1) after the modified k-means clustering is obtained by applying
Equation (3) as follows:

Sl - Mfinal-I (3)

where S is the image after the k-means clustering and I represents the CT image slice
being analyzed.

3.1.2. Initialization of the contouring-based segmentation. The next step of the algorithm
is the contouring based segmentation process. One of the major issues that concern
contour based segmentation processes is the initialization of the contour. This contour
based segmentation algorithm takes a user defined mask as input for the initialization
algorithm. The user marks the approximate boundaries of the liver using a mouse pointer
in slices which are widely apart from one another. Moreover, the selection of the slices in
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which the user picks the initial contour depends on the change in information (presence of
liver) from slice to slice. This is obtained by first dividing the entire image S; into blocks
of 16 x 16 pixels. The selection of blocks of 16 x 16 pixels was determined to be the best
solution.

Inside each block, the pixels that fall in the abdominal CT window of ~40HU to 180HU
were counted. A block was marked as being part of the liver region if at least more than
half of the pixels were found in the abdominal CT window as described in Equation (4).
Thus,

1ifn/N > 0.5
0 otherwise

block marked = { (4)
where n and N are the number of pixels in the abdominal window and the total number
of pixel elements in the block, respectively. Recall that N = 16 x 16 was the window size

selected for segmentation of the liver datasets presented in the results section.

v er Window

7

f

MNurnber of Blocks Belonging to

Slice Number

FiGURE 5. Generation of dataset profile curve depicting the slices corre-
sponding to the marked points on the dataset profile curve

Figure 5 shows a typical profile curve for dataset 1 which displays the number of blocks
belonging to the liver window as a function of the slice number in a particular dataset
and the slices used to calculate the value of the curve at some particular instant of time.
Such a curve gives the estimate of the changes in the size as well as the potential extent
of the liver region seen across slices, providing as a consequence the information needed
to select those slices which most probably contain a large portion of the liver region.
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The first slice of the CT dataset was always selected for manual contour initialization.
In this algorithm, in order to minimize the number of slices considered for contour ini-
tialization, a subsequent slice would need to show a 5% change in the number of blocks
marked as in Equation (4) with respect to its predecessor. The intermediate slices which
are not selected for manual initialization used the same initial contour as the slice clos-
est to it in the dataset. This approach yielded around 4-5% of the entire dataset to be
initialized by the user, rather than the time consuming slice by slice contouring of the
entire dataset that is seen in clinical practice. The process yielded segmentation results
that were not affected and the volume measurements that were highly accurate.

As an example, the slices chosen for manual initialization are marked by the black bars
in Figure 5 for a particular dataset.

3.1.3. Localized-region-based active contouring algorithm. Once the initialization for all
the slices of the dataset is obtained interactively, a localized-region-based active contour-
ing algorithm is employed. Localized region growing algorithms are more robust than
contouring algorithms not based on global energies for segmenting heterogeneous objects
like the liver [36].

Let C denote the closed contour, such that C' = z|(x) =0 is a set of zero level for
the signed distance function. The interior and the exterior of the contour are defined
using the smoothened approximation of the Heaviside function. The interior of the closed
contour C' is defined in Equation (5) as

1, od(x) > €
Ho(z) = 10, ¢(r) < —€ (5)
H1+ 2+ Lsin %(‘T)}, otherwise

In reference to Equation (5), the exterior of closed contour C' can then be expressed as
{1-Ho(x)}.

In order to calculate only the local energies, a masking parameter « is introduced in the
algorithm. The parameter defines the radius of the circle around the contour which has
to be masked in order to calculate the local energies. This localization radius is defined
in terms of the size of the image and its value is calculated as shown in Equation (6).

1
a= Z(PT + P,) (6)
where P, is the number of rows in the image and P, is the number of columns in the
image. The mask generated by using the above value of is given by Equation (7).

1 _
0  otherwise

The algorithm incorporates the well-known Chan-Vese energy paradigm to model the
interior and the exterior of the contour for segmentation [37]. The localized version of the
Chan-Vese energy function is given by Equation (8),

Ecy = /H¢>(y)(51 (y) = ttine)* + (1 — Ho(y)) (S1(y) — pear)*dy (8)

where pi;,; and pep; are the mean intensities of the interior and exterior regions of the
contour, respectively. The localized versions of the mean intensities are obtained by
restricting the field of view only to the masked region given by masking the image with
M,,.
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3.2. Need for parallel processing. This approach has resulted in successful and highly
accurate segmentation of the liver as will be detailed in the results section; however, as
in most 3D applications that include large datasets, this required inordinately lengthy
processing time. This drawback is due to the fact that the algorithm operates on a slice
by slice basis on the complete CT dataset. Each dataset is comprised of 200 to 300 slices.
Our intention is thus to lower the processing time of the liver segmentation process so we
can offer a reasonable and affordable solution for doctors and hospitals in tasks that rely
on 3D rendering.

TABLE 1. Liver dataset specifics

Data Set Identifier Number of Slices Resolution of Images
1 155 512 x 515
2 320 512 x 512
3 320 512 x 512
4 217 512 x 512
5) 442 512 x 512

Parallel computing is employed to reduce the computational times by distributing the
task between more than one core/processor available on a single workstation, where a
number of slices of the dataset will be processed simultaneously.

Taking into consideration the performance of the parallel computing algorithm, the
liver segmentation is performed on images of size 512 x 512 pixels on unenhanced CT
images [38]. The number of slices for the 5 datasets ranged anywhere from 150 to 450 as
shown in Table 1. All datasets were de-identified and provided by North Jackson Hospital,
which has a renowned liver cancer program.

Each dataset is processed using the in-house developed algorithm for segmenting the
liver from abdominal CT images. The steps of the segmentation process for both sequen-
tial and parallel approaches are provided in Figure 6 and Figure 7, respectively.

The algorithm/process developed here segments the liver up to eight slices at a time.
Once a given worker has completed the segmentation in a particular slice it picks up
another slice from another set in the pool and starts the process in the new slice.

Load Complete Abdominal CT
| Dateset
1
Convert 3D NIFT dataset to individual
image slices
.
K-means Segmentation on 1 slice at a
time
I
Active Contour Segmentation on 1
slice at a time

Reconstruct 3D h:lFTI dataset from
individual segmented image slices
: |
Render the Liver in 3D

FiGURE 6. Flow diagram of serial approach of segmentation algorithm
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Load Complete Abdominal

CT Dataset

!

Convert 3D NIFT dataset to

individual image slices

v

K-means Segmentation on K-means Segmentation on K-means Segmentation on
"n
slice 1 slice 2 slice 8
Active Contour Active Contour Active Contour
i
Segmentation on slice 1 Segmentation on slice 2 Segmentation on slice 8

!

Reconstruct 3D NIFTI

dataset from individual

!

Render the Liver in 3D

Ficure 7. Flow diagram of parallel approach of segmentation algorithm

The steps followed for the setup of the parallel processing of the liver segmentation
experiments were
— Define a job manager.
— Create a job and respective tasks as a request of the client host via MatLab script.
— Submit job to job queue for execution.
— Assess job results.
— Record timing.

The numbers of slices processed at a given time are dependent on the number of workers
selected for the parallel processing task. In this experiment all the datasets are processed
using 1, 2, 4 or 8 workers to estimate each time the computational gains achieved using
parallel computing.

The expected improvement in the computational time 7, is referred here as the speed
up of the process, and is computed using the following ratio:

Cy
T.=— 9
- )
where C] and C,, denote the computational time required to complete the task using a

single worker and nworkers, respectively.
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3.3. Three-dimensional image rendering. The 3D datasets are rendered using cost-
effective third party software called ScanIP developed by Simpleware Ltd. based in the
United Kingdom. The software renders the segmented dataset in 3D space and offers
the possibility for the physician to view/edit/correct the rendered liver if necessary. The
software also calculates the volume of the liver by determining the number of voxels that
are marked as being within the liver region by the segmentation algorithm. The only
inputs fed to the software are the segmented dataset and the original resolution of the
CT datasets. The calculated volumes are in milliliters (ml).

4. Results. The first part of this section provides the results for the automatic slice
selection algorithm. The second part provides a comparison of the volumes obtained by
the proposed algorithm in contrast to the traditional manual segmentation as performed
by the medical staff. The third section provides the results for the speed improvement for
the liver segmentation process achieved using parallel computing.

4.1. Automatic slice selection. The automatic slice selection algorithm aims at deter-
mining the slices that are to be manually initialized for the contouring algorithm. This
algorithm calculates the change in the extent and structure of the liver shown across the
slices by counting the number of blocks belonging to the liver as expressed by the range
of —40 HU to 180 HU. This generates a profile curve for a particular dataset like the one
shown earlier in Figure 5.

Since the block size is a parameter which can define the accuracy of the algorithm, we
carried out the experiment using different block sizes. To evaluate the performance of the
algorithm we introduce a new parameter ¢ as defined in Equation (10),

¢ =p—p| (10)
where p represents the number of the slice manually selected, and p is the number of the
slice picked by algorithm. Figure 8 shows the parameter 1 plotted as a function of the
block size.

Since 1 represents the distance between the true largest slice obtained manually and

the largest slice obtained by the algorithm, a smaller value of ¢ would indicate a better
performance. Results in Figure 8 show that the lowest values of ) are consistently seen

Selection of Block Size

120
100 /
80
/ —+Dataset 1
3 60 -#-Dataset 2
/ Dataset 3
40

——Dataset 4

) ——Dataset 5
o )\_
0 10 20 30 40 50 60 70

Block Size N

FIGURE 8. Selection of block size based on 1) performance



6528 M. GORYAWALA, M. R. GUILLEN, S. GULEC ET AL.

for block size 16 x 16. Also dataset 5 shows a very high value for block size of 64 x 64.
This can be attributed to the presence of several smaller sized objects in the CT images
such as duodenum whose intensity distribution is similar to that of the liver.

The computational time to obtain the profile curve was also monitored to obtain a
relationship between the block size and the time required to generate the curve. Such
a study is important to know if the profile curve generation is burdening the algorithms
performance and if larger block sizes at the cost of accuracy is a likely option. Figure
9 shows the relative gains in computational time plotted as a function of the block size
where the relative gain R is given by Equation (11).

o Computational Time required for Blocksize 8 x 8 (11)
~ Computational Time required for Blocksize N x N

Computational Time Gain vs Block Size
25

c
PR
g £
g = T e Dataset 1
2 @15
o5 | e e Dataset 2
‘6_ =
£ ® - Dataset 3
- 510 T
g g— ...... Dataset 4
"3 Q ------ Dataset 5
o Y
o / — Average of 5 Datasets

0

0 10 20 30 40 50 60 70
Block Size N

FicUure 9. Computational time gain vs. block size results for the process-
ing of 5 datasets

It can be seen from Figure 9 that the relative improvement in the computational time
is linearly related to the block size. We see that the relative improvement in the speed
by using a 16 x 16 block instead of 8 x 8 is around 3.6. It can be observed that as the
block size is increased, the time to execute the automatic slice selection process reduces
drastically with block sizes of 32 x 32 and 64 x 64, speeding up the process approximately
9 times and 19 times over an 8 x 8 block, respectively.

4.2. Segmentation results. The image data has been acquired using a combined PET/
CT system (GE Discovery LS) with scanning parameters of 140 kVp, 80 mA, 0.5 s rotation
time, and 512 x 512-pixel matrix. The images were provided in the DICOM format. Pixel
sizes ranged from 0.54 to 0.97 mm. For each scan, a stack of 155442 slices covering the
livers were acquired.

Figure 10 shows the segmentation results (shown in red) obtained for a particular
dataset (Dataset 5). The figure shows 5 slices across the database. The slices are displayed
in the [-40 180] window for the CT dataset.

Figure 11 displays the results for other datasets used in the validation of the algorithm.
The point to be noted is that there is a great variation in the intensity, structure, position
of the liver from dataset to dataset. Moreover, some of the datasets show the presence of
tumors.
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FIGURE 10. Five slices showing detailed segmentation results for dataset

number 5

TABLE 2. Comparison of volumes calculated on 5 datasets

dataset Volume Calculated Average Volume  Standarad Volume Obtained Absolute %
by Algorithm (ml) of 3 Trials Deviation by Manual Difference Error
(ml) of 3 Trials  Segmentation (ml) between
(ml) Calculated and
Manual (ml)
Trial 1  Trial 2  Trial 3

1 1430 1429 1447 1435.33 10.12 1365.223 70.11 5.14
2 2370 5293 5353 5338.67 40.45 5336.282 2.38 0.04
3 3990 4056 4036 4027.33 33.84 4031.826 4.49 0.11
4 2580 2627 2596 2601.00 23.90 2656 55.00 2.07
5) 2690 2640 2727 2685.67 43.66 2651 34.67 1.31
Average  1.73

In order to validate the segmentation results obtained by the algorithm, the volumes
of the extracted livers were compared to manually calculated volumes. The manual cal-
culation was done by an expert and is treated as the gold standard for the comparison.

Comparative results are shown in Table 2.

Table 3 shows a comparison between some of the current techniques and the proposed
technique in terms of the accuracy and the computational times required to segment
the liver. For the comparison of accuracy, the average volume difference between the
calculated and the manual volumes is presented along with the standard deviation for
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(a) (b) (c)

Ficure 11. Example of segmentation results for other evaluated datasets.
Each column shows two slices. (a) Dataset 1, (b) Dataset 2, and (c¢) Dataset
4.

the particular study. For comparing the computational times, Table 3 provides the time
taken per slice to segment the entire dataset. Such a comparison is essential since different
algorithms use datasets with different number of slices for the analysis which determines
the time needed for processing the entire dataset.

Results of the 3D rendering process obtained from the ScanlP software are shown in
Figure 12 for the different datasets (a) through (e). The 3D rendering displayed in Figure
12(a) is for the same dataset for which the slices were shown in Figure 10. The renderings
shown here have solid surfaces and a mesh finish. However, translucent surfaces can be
generated with varying opacities and colors if needed. The need to generate translucent
surfaces would be useful to demonstrate the presence of a tumor inside the liver as an
example.

4.3. Statistical analysis on the segmentation results. A statistical analysis is also
carried out to determine if the changes seen in the calculation of the volumes between
different trials is significant. Consequently, an Analysis of Variance (ANOVA) is carried
out on the absolute error obtained during the various runs. Table 4 shows the errors in
the various runs and Table 5 shows the results of the ANOVA.

The results of the ANOVA show that the trials are not a significant factor (p > 0.05),
which establishes that the results of the proposed algorithm are indeed consistent.

In order to determine if the user initialization had impact on the results obtained
by the algorithm, 3 users with different levels of knowledge in the field of medicine and
engineering were asked to initialize the algorithm. The users were asked to rate themselves
on their knowledge of liver anatomy and algorithms/programs on a scale of 1 to 5. Also,
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TABLE 3. Comparison of volumes calculated on 5 datasets

Method Volume Difference (% Error) Processing Time per slice (sec)
Beck and Aurich [39] 1.82.5 3.00
Beichel et al. [40] 1.01.7 15.43
Chi et al. [16] 2.66.3 14.57
Dawant et al. [41] 2.52.3 8.57
Furukawa et al. [11] ~7.34.7 15.43
Heimann et al. [13] 1.73.2 3.00
Kainmuller et al. [9] -2.92.9 6.43
Lee et al. [42] 1.32.9 3.00
Maasoptier et al. [18] 5.8% 11.40
Rusko et al. [20] -3.86.4 0.21
Saddi et al. [14] 1.24.4 2.36
Schmidt et al. [15] -4.93.0 8.57
Seghers et al. [10] -6.82.3 12.86
Susomboon et al. [43] -11.530 10.71
van Rikxoort et al. [12] 1.84.2 19.29
Proposed Algorithm 1.72.1 7.50

(d) (e)

FIGURE 12. (a)-(e) Display 3D renderings of livers in dataset 1-5 using
ScanlIP software respectively

all users were given a basic understanding of the liver anatomy to help them identify the
liver in the CT scans for the initialization purpose. Table 6 shows the profiles of the
different users selected for the main purpose of testing the algorithm.

An ANOVA test was again carried out on the errors obtained after the segmentation
process was initialized by the 3 users. The errors calculated as the absolute difference
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TABLE 4. Absolute error obtained during the various runs

Absolute Error
dataset (Absolute of the difference between
the calculated volumes by the algorithm
and the manual volumes) (ml)

Trial 1 Trial 2 Trial 3
1 64.77 63.77 81.77
2 33.71 43.28 16.71
3 41.82 24.17 4.17
4 76 29 60
5 39 11 76

TABLE 5. ANOVA analysis of various runs

Source Sum of df Mean Square F Value p-value

Squares (Prob > F)
Model 793.04 2 396.52 0.59 0.56 not significant
A-Trials 793.04 2 396.52 0.59 0.56

Pure Error 7932.49 12 661.04
Corrected Total 8725.54 14

TABLE 6. Profile of users selected for the experiments

User Knowledge of Knowledge of Occupation
liver anatomy  Algorithms/Programs
1 5 1 Medical Doctor/Oncologist
2 3 2 Biomedical Engineer
3 1 4 Electrical Engineer

TABLE 7. Absolute error obtained using different users for initialization

Absolute Error
dataset (Absolute of the difference between
the calculated volumes by the algorithm
and the manual volumes) (ml)

User 1 User 2 User 3
1 41.28 8.33 34.02
2 262.16 12.67 133.51
3 78.25 187.40 118.21
4 5.44 72.89 17.85
5 132.06 97.59 120.53

between the algorithm calculated volumes and the manual gold standard volumes are
shown in Table 7 with the ANOVA results shown in Table 8.

In retrospect, these ANOVA results show that the error in the volume calculation is
again not dependent on the user who initializes the dataset since the factor Users is not
significant with a p-value of 0.84 (p > 0.05).
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TABLE 8. ANOVA analysis of various users

Source Sum of df Mean Square F Value p-value

Squares (Prob > F)
Model 205145 2 1025.73 0.17 0.8476 not significant
A-Users 2051.45 2 1025.73 0.17 0.8476

Pure Error 73413.67 12 6117.81
Corrected Total 75465.12 14

4.4. Parallel computing results. This section presents the results of the liver segmen-
tation process implemented on the Windows Vista platform. All experiments performed
in this study were conducted on a system running Windows Vista based on an HP DC6700
computer equipped with two Intel Core 2 Quad Processor operating at 2.67 GHz with
8 GB RAM. The use of the software/hardware configuration was determined by bench-
marking experiments using various hardware and operating system configuration®.
Taking into account the performance of the parallel computing algorithm with different
variables, the segmentation was performed on images of size 512 x 512. The number of
slices for the 5 datasets ranged anywhere from 150 to 450 as indicated earlier in Table 1.
Figure 13 displays the computational time for the different datasets as a function of
the number of workers employed for the task. We see that parallel processing reduces the
time for the segmentation for dataset 5 from around 270 minutes to as low as 56 minutes.
This is the highest processing time experienced among all the datasets since dataset 5
is the largest. The capability to complete the whole segmentation process in less than 1
hour as compared with 4.5 hours is a great improvement in context of hospitals efficiency.

The results show a speed up of around 5 when 8 workers were employed, as seen in Figure
14.

5. Discussion. The results presented in Figure 8 show that a block size of 16 x 16 yields
the best performance. For block sizes of 32 x 32 and 64 x 64, the number of pixels in
a block is too large to make a correct estimate for the size of the liver. For block size

Computational Time vs. Number of Workers Employed
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Ficure 13. Computational times for liver segmentation
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Speed Up Gains
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FIGURE 14. Speed up for liver segmentation

8 x 8 the amount of noise pixels in a block may be the reason for deviation from the best
performance. Moreover, in the case of using 8 x 8 blocks, small regions of intensity similar
to liver, but belonging either to the peripheral muscles or the duodenum, maybe selected
as the liver region, as a consequence yielding incorrect results. Similarly small regions
belonging to the liver might be missed in large block sizes.

Also, Figure 9 displayed that the computational time reduces as the size of the block is
increased. This is intuitive since a larger block size results in fewer blocks to be analyzed.
Moreover, the absolute time for calculation of the profile curve for any dataset using any
block size is less than 2 minutes. Hence, the gains in computational time achieved are
not substantial since the time for the contouring algorithm is too large. The use of the
16 x 16 block size is justified by the fact that the best accuracy is obtained for 16 x 16
blocks with an optimal processing time. Figure 4 displays a typical profile curve for a liver
dataset with the black bars marking the position of the slices in which human interaction
is needed. It can be observed from the figure that the number of slices picked for human
initialization is directly related to how fast the liver volume is changing across the dataset.
Hence, regions on the profile curve that have a higher slope or greater changes in the liver
structure have more slices selected for human initialization. Regions which show little
or no changes in the structure use the same initialization and hence a reduction in the
human interaction can be achieved without compensating on the accuracy.

Figure 10 displays visually that the segmentation process is capable in extracting the
liver region faithfully. The liver region is faithfully separated from the heart, spleen and
other organs. Very little leakage to the adjoining organs is seen due to the use of local
properties for the contouring algorithm. Also, Figure 11 displays that the segmentation is
independent of the structure, size, position and intensity distribution of the liver region.
It can be observed that the intensity distribution is not similar across the 3 liver datasets
displayed in Figures 11(a)-11(c) and the algorithm faithfully identifies and segments the
liver region. Also, the size of the liver is vastly different in Figure 11(a), where the
patient has undergone an earlier resection. This makes the algorithm capable of use in
post-treatment follow-up also.

Results displayed in Table 2 show that the volumes of the liver calculated by the
algorithm are in agreement with that of the medical experts. Across the five evaluated
datasets we see a mean accuracy of as high as 98.27%. Such a high accuracy is very
advantageous for treatment planning in SIRT. SIRT relies on the calculation of the tumor
to liver volume ratio for the calculation of the radioactive dose to the patient. Accurate
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volume calculation specific to each patients anatomy would help in the calculation of the
absolute precise dose to deliver to that patient. This would reduce the risk for excess
dosing which may damage healthy surrounding liver tissue or on the other end of the
estimation reduce the risk for under dosing and the potential relapsing of the tumor.

As seen in Table 3, the proposed technique is highly accurate in estimating the liver
volume. An important feature to note is the low standard deviation in the volume calcu-
lation which suggests high consistency in the results. The algorithm fairs well in respect
with the computational times required to segment the liver. It should be noted that
since the algorithm is parallel aware and capable of being deployed on larger clusters, the
computational times can be brought down considerably.

The results in Figure 13 show that the computational time for the segmentation process
is reduced when parallel processing is incorporated in the process. The parallel processing
is employed using either 2, 4 or 8 workers and the choice of the number of usable workers
is dependent on the available hardware resources. The maximum number of workers that
can be employed are dependent on the hardware resources. An increase in the number of
workers in the absence of needed resources leads to system saturation with insignificant
improvement offered by parallel processing. However, in a situation where hardware
resources are plentiful great gains can be achieved. The results displayed in Figure 13
show the reduction in computational time for liver segmentation from approximately 250
minutes to as low as 50 minutes.

Figure 14 displays the gains obtained using parallel computing in terms of the speed
up factor as defined in Equation (9). It is observed that an average speed up of 5 is
obtained by incorporating up to 8 workers. The graph shows a fairly linear rise in the
speed up with the number of workers and saturation for higher number of workers is not
experienced for up to 8 workers. This is an important feature to be noted since it gives
us the opportunity to further increase the number of workers in the future.

The distribution of the slices of the dataset are set such that one slice is processed
by a worker at a time provides the opportunity of speeding the entire process up to 8x
theoretically for the system under use, but as a general rule, the maximum theoretical
limit is given by the number of processors/cores that are present on the computer, and
not by the number of workers. However, empirically, the hardware systems resource limits
the speed up to approximately fivefold. Better computers with more resources such as
processing power and memory, or distribution of the task over a cluster of computers
which raises the number of configurable workers can provide higher speed up but with an
added cost.

However, we have to be cautious in this reasoning since the parallelization of tasks is
not possible on all algorithms, so there is an individual level of parallelism that applies to
each algorithm. This reasoning suggests that the same gains may or may not be observed
when parallelization is applied to any other liver segmentation algorithm. Also, as a note
of caution, the reader should be aware that when installing the PCT/DCT in MatLab
version R2008, a maximum of 4 local workers can be defined. However, the MatLab
version R2009 allows defining a maximum of 8 local workers. This feature is independent
of the hardware used, although the number of usable workers depends on the available
system resources.

This study also highlights the advantage of developing algorithms aware of parallel
computing in medical imaging, before investing in a large scale distributed system or an
expensive parallel machine, providing opportunity for accelerating the image processing
tasks and maintaining the accuracy of the procedure in a cost-effective fashion and by
using a single desktop computer, especially in the advent of future processors with six
or more cores on a single chip. This feature allows the algorithm to be easily portable
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and adaptable in hospital settings with minimal space requirements. More importantly,
beyond the computational gains that are made under the proposed approach, the hybrid
algorithm introduced in this study displays a high accuracy in calculating the volumes of
different livers with a minimal number of slices to be initialized by the user. Continuing
future work aims at reducing the number of slices initialized by the user.

6. Conclusions. The paper demonstrated the development of a robust and accurate
method for the segmentation of the liver from CT images for the purpose of volume
calculations. The algorithm is independent of the dataset-properties namely structure,
size, position and intensity distribution of the liver region due mainly to the novel hybrid
segmentation method that coupled the k-means algorithm with a newly established con-
touring method that relied on radio density of the CT images. The experiment results
reported in this study display very high accuracies of 98.27% in agreement with manual
expert analysis.

Also, the development of the novel initialization method, which aims at reducing hu-
man/user interaction, achieved highly accurate results with only 4 to 5% of the dataset
initialized by the user, minimizing greatly human intervention as a consequence.

The proposed algorithm is also structured to lend itself to parallel computing, which is
viewed as an important characteristic in applications that require heavy computational
loads such as in medical imaging. Parallel computing provided henceforth a scalable
approach applicable for single workstations poised to serve as a portable method that is
cost-effective and highly desirable in clinical settings.

The results obtained on the execution of the parallelization of the liver image segmen-
tation indicates a significant speed up in the performance, achieving more than 500%
increase by using 8 MatLab workers on a dual quad-core machine.

Also, SIRT relies on the calculation of the tumor to liver volume ratio for the calcula-
tion of the radioactive dose to the patient. Accurate volume calculation specific to each
patients anatomy would help in the calculation of the absolute precise dose to deliver to
that patient. This would reduce the risk for excess dosing which may damage healthy
surrounding liver tissue or reduce the risk of under dosing and the potential relapsing of
the tumor.
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