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Abstract. Cognitive radios are indispensable to shift paradigm from conventional ex-
clusive spectrum assignment to dynamic spectrum access. They can boost up spectrum
utilization significantly, by dynamically accessing unused primary spectrum while bring-
ing no harm to primary users. The envisioned radio calls for fast and accurate spectrum
sensing. Researchers are focusing on cooperative spectrum sensing to improve reliability
but still there is room for improvement in local spectrum sensing. In cooperative spectrum
sensing, it will be hard to cooperate with local network nodes in a short time as cogni-
tive radio has to operate in heterogeneous wireless networks. Most of the renowned local
spectrum sensing technique in the literature up to now is cyclostationary feature detec-
tion, although it is reliable but computationally complex. Other well-known local sensing
techniques are energy detection and matched filter detection. This paper proposes an
adaptive local spectrum sensing scheme, in which cognitive radio can adopt one-order
cyclostationary or energy detector for spectrum sensing on the basis of estimated SNR,
which is calculated in advance for available channels. Simulation results indicate that we
can achieve reliable results equal to one-order cyclostationary detection with less mean
detection time.
Keywords: Cognitive radio networks, Spectrum sensing, Energy detection, Cyclosta-
tionary detection

1. Introduction. With the increase of customers in wireless network services, the de-
mand for radio spectrum is also increasing significantly. The trend of new wireless devices
and applications is expected to continue in coming years which will increase the demand
for spectrum. The conventional fixed spectrum assignment policy is a big hurdle in the
innovation of new technologies. In 2008, the Federal Communication Commission (FCC)
allowed the unlicensed fixed and personal/portable devices in rural and urban area [1].

Cognitive Radio (CR) is a key technology that can help mitigate scarcity of spectrum.
The most essential task of CR is to detect licensed user/Primary User (PU); if PU is
absent, then spectrum is available for cognitive radio user/Secondary User (SU) and is
called spectrum hole/white space. The process of detection of PU is achieved by sensing
radio environment and is called spectrum sensing [2-4]. The prime concerns of spectrum
sensing are about two things: first, the primary system should not be disturbed by SU
communication and secondly, spectrum holes should be detected efficiently for required
throughput and quality of service (QoS) [5].

Major local sensing techniques considered for cognitive radios are energy detection [6-
8] and cyclostationary detection [9-12]. Energy detection is a simple technique that has
short sensing time, but its performance is poor under low Signal to Noise Ratio (SNR)
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conditions. On the other hand, cyclostationary detection provides reliable spectrum sens-
ing, but it is computationally complex and requires long sensing time. Cyclostationary
detection is based on the autocorrelation function; on the other hand, one-order cyclosta-
tionary detection [13,14] is performed in time domain. In the one-order cyclostationary
detection, the mean characteristic of the PU signal is exploited to improve efficiency of
the channel sensing. Hence, real time operation and low computational complexity can
be achieved by the one-order cyclostationary detection.
Metrics for detection performance are the probability of detection and false alarm. The

probability that SU declares that PU is present when the spectrum is idle is called the
probability of false alarm; on the other hand, the probability that SU declares that PU is
present when the spectrum is occupied by PU is called the probability of detection. The
probability of miss detection indicates the probability that SU declares that PU is absent
when the spectrum is occupied. In view of the fact that spectral efficiency is reduced
by false alarms and interference with PU is caused by miss detection, and generally it
is vital for optimal detection performance that the maximum probability of detection is
achieved subject to the minimum probability of false alarm [15]. In the draft of IEEE
802.22 standard [16], PUs should be detected within two seconds and the probability of
false alarm and miss detection should be less than or equal to 0.1 [17].
Simultaneous transmission and sensing of licensed band is not possible. Therefore, for

efficient utilization of spectrum holes, SU has to periodically sense the band every Tp

seconds known as a sensing period. PU transmission may be obstructed because SU is
unaware of its activity during the sensing period, i.e., until the next sensing moment.
Therefore, PU’s performance is highly dependent on the sensing period. Maximizing
sensing period may increase throughput of SU but may make PU obstructed because PU
is not often sensed. From a CR network perspective, SU desires to maximize the sensing
period and minimize sensing time [18]. The SU has to properly schedule the sensing
period to coexist with the licensed band. By reducing sensing time, the SU can achieve
higher throughput and less interference with PUs without sacrificing sensing reliability.
For effective spectrum sensing, increasing reliability of PU detection and minimizing

sensing time are two primary concerns in CR networks. In this paper, we propose the
two-stage adaptive spectrum sensing scheme. In the first stage, SNR is estimated for the
channel under observation in advance. The energy detection is simple but not robust in
low SNRs while the one-order cyclostationary detection is reliable in low SNRs. Therefore,
in the second stage, the SU performs either energy detection or one order cyclostationary
detection based on the SNR estimated in the first stage. The proposed scheme can achieve
the same reliability as one-order cyclostationary detection with low mean sensing time.
The rest of this paper is organized as follows. In Section 2, various two-stage spectrum

sensing schemes are discussed briefly. Section 3 presents the proposed two-stage adaptive
spectrum sensing scheme. Section 4 analyzes the scheme from the viewpoint of detection
performance and mean detection time. In Section 5, we present simulation results and
their detailed analysis and finally conclusions are drawn in Section 6.

2. Related Work. Spectrum sensing is the most crucial part in the successful imple-
mentation of cognitive radios. The main focus of current research in cognitive radio is
divided in two main streams: the first one is to improve local sensing and the second one
focuses on cooperative spectrum sensing for better data fusion results.
In cognitive radios during cooperative spectrum sensing, many SUs cooperate to achieve

better data fusion results. In infrastructure-based networks, all the observations made by
SUs are reported to a fusion center and a final decision about PU presence or absence is
conducted at the fusion center [15].



SNR-BASED ADAPTIVE SPECTRUM SENSING FOR CR NETWORKS 6097

In local spectrum sensing all the SUs made observations individually and final decision
is made individually. In literature many improvements for local spectrum sensing are
proposed but still there is a room for improvement.

Sensing a wide-band spectrum is significant in cognitive radio. Only a few researchers
have worked on the wide-band spectrum sensing in cognitive radios. Two-stage spectrum
sensing is considered as one of the techniques to deal with this issue.

As a two-stage wideband spectrum sensing technique, a scheme combining a coarse
sensing and fine sensing was proposed by Y. Hur et al. [19]. In the first stage, the coarse
sensing is performed over the entire frequency range with a wide bandwidth. A wavelet
transform based Multi-Resolution Spectrum Sensing (MRSS) technique is presented as
a coarse sensing. In the first stage, the occupied and candidate spectrum segments are
identified. In the second stage, fine sensing is applied on candidate spectrum segments to
detect unique features of modulated signals. Confirmation of an unoccupied segment is
done by careful fine sensing.

In [20], authors proposed a two-stage Dynamic Spectrum Access (DSA) approach that
consists of preliminary coarse resolution sensing (CRS) followed by fine resolution sensing
(FRS). In CRS, the whole spectrum is divided into equal sized coarse sensing blocks
(CSB) of equal bandwidth. One of CSBs is selected randomly and checked for at least
one idle channel by applying energy detector of bandwidth equal to that of CSB. FRS is
then applied on that CSB, using energy detector equal to the bandwidth of channel to
determine idle channel.

Another two-stage sensing scheme was proposed in [21] by S. Maleki et al. Energy
detector is used in coarse sensing and if required, cyclostationary detection is used in fine
sensing. Only if a channel is declared as unoccupied in the coarse stage, the fine stage is
used for the final decision. Otherwise, coarse sensing will give the final decision.

W. Yue et al. in [14] proposed a two-stage spectrum sensing scheme in which coarse
detection is based on energy detection. Based on the power in each channel, it sorts the
channels in ascending order. In the fine stage, a one-order cyclostationary technique is
applied on the channel with the lowest power to detect weak signals.

In all the above-mentioned techniques, both stages perform spectrum sensing, hence,
increase mean detection time. Only in [21], a final decision can be made at the first stage
if all the channels are declared as occupied, otherwise, both stages run in a sequential
manner, i.e., energy detection and then cyclostationary detection. Therefore, mean de-
tection time is increased rather than that of cyclostationary detection. In our proposed
scheme, only one of the detection techniques will run during the two stages, based on the
estimated SNR. Under the worst case, mean detection time is equal to one-order cyclo-
stationary detection. Although two stages are running in our scheme, SNR of the channel
can be estimated in advance and the history of channel SNR can be maintained to further
reduce the mean sensing time.

3. Framework. A binary hypothesis model for transmitter detection, i.e., the model of
signals received by the SU, is defined as

r(t) =

{
n(t) in case of H0,
hs(t) + n(t) in case of H1

(1)

where r(t) is the signal received by CR, s(t) is the transmitted signal of the primary user,
n(t) is additive white Gaussian noise (AWGN) and h is the amplitude gain of the channel.
H0 indicates only noise and H1 indicates the presence of PU.

The proposed approach of spectrum sensing is shown in Figure 1. We assume that N
is the number of channels to be sensed. The SU estimates the SNR of the channel in
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Figure 1. Adaptive spectrum sensing scheme

advance [22-24] and on the basis of that SNR the SU will select one of the spectrum sens-
ing techniques between the energy detection and the one-order cyclostationary detection
having thresholds λ1 and λ2, respectively. As it is already discussed in the introduction
section, the energy detector performs very poor under low SNRs. We defined SNR thresh-
old λ, below which the energy detector is unable to detect channels accurately, and we
will perform the one-order cyclostationary detection to sense the channels.
Therefore,

Detection Technique =

{
Energy detection, if SNR ≥ λ,
One-order cyclostationary detection, if SNR < λ.

3.1. Energy detection. Figure 2 depicts the block diagram of the energy detector. The
elementary approach behind the energy detector is the estimation of the power of the
received signal r(t). To evaluate the power of the received signal, the output of the band
pass filter of bandwidth W is squared and integrated over an interval T . Finally, the
integrated value is compared with a threshold λ1 to decide whether the PU is present or
not [25].

Figure 2. Block diagram of energy detection

The probability of detection PE
d and probability of false alarm PE

f of energy detector
over AWGN channel are approximated in [25] as

PE
d = Qm

(√
2γ,
√

λ1

)
, (2)

PE
f =

Γ

(
ME,

λ1

2

)
Γ(ME)

(3)

where Γ(.) and Γ(., .) are complete and incomplete gamma functions, respectively. Qm(., .)
is the generalized Marcum Q-function, γ is instantaneous SNR, ME is time bandwidth
product and λ1 is decision threshold of energy detector.
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3.2. One-order cyclostationary detection. Commonly, the primary modulated wave-
forms are coupled with patterns characterized as cyclostationary features like sine wave
carriers, pulse trains, repeating spreading, hoping sequences or cyclic prefixes inducing
periodicity [11]. CR can detect a random signal with a specific modulation type in the
presence of random stochastic noise by exploiting the periodic statistics like mean and
autocorrelation of the primary waveform. The cyclostationary detection is based on auto-
correlation function, but in [13] the authors exploited the mean characteristics of the
primary signals to improve the channel sensing in time domain and called it one-order
cyclostationary detection.

Although the performance of cyclostationary detection is a bit better than that of
one-order cyclostationary detection, this gain is due to hardware complexity and power
consumed by additional multiplying algorithm [14]. For commercial implementation of
CRs, it is necessary to minimize hardware complexity and power consumption. There-
fore, we are using the one-order cyclostationary detection instead of the higher-order
cyclostationary detection.

Figure 3 shows the block diagram of one-order cyclostationary detection. The basic
approach behind the one-order cyclostationary detection is to determine statistical average
of the signal r(t). It is found that the mean of r(t) is time varying and is the periodic
function of time. Moreover, at each one-half of the periods, a peak value appears. The
peak value is searched in the time domain and compared with the predetermined threshold
λ2. If periodicity is found (peak value ≥ λ2), it means that the band is used by PU and
vice versa. If the period is known, periodicity can be extracted by synchronized averaging.

Figure 3. Block diagram of one-order cyclostationary detection [14]

The probability of detection PC
d and probability of false alarm PC

f of one-order cyclo-
stationary detection over AWGN channel are approximated in [14] as

PC
d = 1−

(
1− e

− λ22
2δ2

A

)L

, (4)

PC
f = 1−

[
1−Q1

(√
2γ

δ
,
λ2

δA

)]L
(5)

where δ2 is the variance, δ2A = δ2/(2MC + 1) in which MC is the number of samples for
detection, L is the number of diversity branches, γ is instantaneous SNR, Q1(., .) is the
generalized Marcum Q-function and λ2 is predetermined threshold.

4. Problem Analysis and Formulation. In this section, we will analyze the sensing
performance of our proposed scheme with respect to detection performance. The overall
probability of false alarm and probability of detection of two-stage spectrum sensing
scheme are given in (6) and (7)

Pf = PrP
E
f + (1− Pr)P

C
f = Pr

(
PE
f − PC

f

)
+ PC

f (6)
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Table 1. Description of modeling variables

Symbols Description
N Number of channels to be sensed
r(t) Received signal
λ Threshold on SNR
λ1 Threshold of energy detection
λ2 Threshold of one-order cyclostationary detection
PE
d Probability of detection for energy detection

PE
f Probability of false alarm for energy detection

PC
d Probability of detection for one-order cyclostationary detection

PC
f Probability of false alarm for one-order cyclostationary detection

Pd Overall probability of detection
Pf Overall probability of false alarm
Pr Probability of channels having SNR higher or equal to λ
1− Pr Probability of channels having SNR lesser than λ
ME Number of samples in observation interval in energy detection
MC Number of samples in observation interval in one-order

cyclostationary detection
TE Mean detection time of energy detection
TC Mean detection time of one-order cyclostationary detection
T Total mean detection time

Pd = PrP
E
d + (1− Pr)P

C
d = Pr

(
PE
d − PC

d

)
+ PC

d (7)

where Pr is the probability that a channel would be reported to energy detector as the
second stage and therefore, the probability that a channel would be reported to one-order
cyclostationary detector will be 1 − Pr. Pr is dependent on SNR of the channels to be
sensed and overall Pf and Pd directly depend on Pr.
In order to evaluate agility of the proposed adaptive two-stage spectrum sensing scheme,

its mean detection time is compared with the energy detection and the one-order cyclosta-
tionary detection, respectively. The mean detection time of proposed two-stage sensing
is:

T = TE + TC (8)

where TE and TC are the sensing times of energy detection and one-order cyclostationary
detection, respectively. TE and TC can be derived as follows:

TE = E[K1]T1 (9)

where E[K1] represents the mean number of channels reported to energy detector and

T1 =
ME

2W
is the mean sensing time for each channel, in which ME is the number of

samples during the observation interval and W is the channel bandwidth. K1 is a random
variable which follows a binomial distribution, with parameters N and Pr, where N is
the number of channels to be sensed and Pr is the probability that a channel would be
reported to the energy detector. Hence, the mean detection time of the energy detection
is

TE = NPrT1. (10)

TC can be derived as follows:

TC = E[K2]T2 (11)
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where E[K2] represents the mean number of channels reported to one-order cyclostation-

ary detector and T2 =
MC

2W
is the mean sensing time for each channel, in which MC is

the number of samples for detection and W is the channel bandwidth. K2 is a random
variable which follows a binomial distribution, with parameters N and 1−Pr, where N is
the number of sensed channels and 1− Pr is the probability that a channel would be re-
ported to the cyclostationary detector. Hence, the mean detection time of cyclostationary
detection is

TC = N(1− Pr)T2. (12)

The total mean detection time is found by substituting (10) and (12) for TE and TC in
(8):

T = N [PrT1 + (1− Pr)T2]. (13)

We can make the following two cases on the basis of Pr.
Case 1: When 0 ≤ Pr < 0.5, most of the channels are very noisy. SU will perform

one-order cyclostationary detection for sensing the majority of the channels. The detec-
tion time will increase when more channels are being sensed by that detector because
it consumes a longer detection time than the energy detector. In the worst case when
Pr ≈ 0, the probability of false alarm, the probability of detection and the total mean
detection time can be evaluated by putting Pr ≈ 0 in (6), (7) and (13):

Pf ≈ PC
f , (14)

Pd ≈ PC
d , (15)

T ≈ NT2. (16)

Case 2: When 0.5 ≤ Pr ≤ 1, the majority of the channels have a very good SNR.
Therefore, SU will perform energy detection for sensing most of the channels because the
performance of the energy detector is excellent under good SNR. The mean detection time
of energy detection is the least, and therefore it will be the best case for the detection
time when majority of the channels are sensed by the energy detector. The best scenario
is when Pr ≈ 1 and the probability of false alarm, the probability of detection and the
total mean detection time can be found by putting Pr ≈ 1 in (6), (7) and (13):

Pf ≈ PE
f , (17)

Pd ≈ PE
d , (18)

T ≈ NT1. (19)

5. Simulation Results. In this section, we compare our proposed approach of spectrum
sensing with the energy detection and the one-order cyclostationary detection. The sens-
ing performance of each approach is quantified by the complementary receiver operating
characteristic (ROC), i.e., Pf versus Pm, detection performance versus SNR and mean
sensing time. Monte Carlo simulation is used for experimentation under the following
system settings: there are 10 randomly distributed Gaussian channels with zero mean
and variance 1 and one SU looking for spectrum holes in these channels.

Figure 4 shows the complementary ROCs of the proposed adaptive spectrum sensing
scheme, energy detection and one-order cyclostationary detection. In this scenario, it is
assumed that the average SNR is −10dB. The result shows that the proposed scheme
performs better than the energy detector but equally to the one-order cyclostationary
detector.

In this simulation, it is assumed that all the channels experience the same SNR and
have the probability of false alarm 0.1. This assumption implies that they have the same
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Figure 4. ROC curves of proposed adaptive spectrum sensing, one-order
cyclostationary detection and energy detection

(a) (b)

(c)

Figure 5. Detection performance versus SNR comparison of proposed
adaptive spectrum sensing, one-order cyclostationary detector and energy
detector for thresholds (a) λ = 0, (b) λ = 5, and (c) λ = −5
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probability of detection in all individual sensing schemes. Figure 5 shows the detection
performance versus SNR comparison of our proposed scheme, energy detection and one-
order cyclostationary detection with T1 = 2ms and T2 = 12ms, respectively for three
different values of λ = 0, 5,−5dB. Figure 5(a) shows that the probability of detection
of the proposed scheme is approximately equal to that of the one-order cyclostationary
when λ = 0dB except at some SNRs near 0dB. Figure 5(b) when λ = 5dB indicates that
our proposed scheme’s probability of detection is as high as the one-order cyclostationary
detection. For SNR of 5dB or above, the energy detector performs equally well as the
one-order cyclostationary detector. The performance of the proposed scheme is degraded
when we set λ = −5dB because the energy detector is not robust at SNR values near the
threshold. By using this fact, the proposed scheme performs the one-order cyclostationary
detection for low SNRs and otherwise energy detection is used.

Figure 6 clearly shows the mean detection time of all the channels sensed at the same
SNR having the same probability of false alarm. It is illustrated that if all the channels
are in good SNR conditions then the mean sensing time is equal to the time taken by the
energy detector and vice versa. The key advantage of the proposed adaptive spectrum
sensing is that its reliable results equal to those of the one-order cyclostationary detection
can be achieved in less mean sensing time.

Figure 6. Mean detection time comparison of proposed adaptive spectrum
sensing, one-order cyclostationary detector and energy detector

In order to evaluate more about the mean detection time, we present the mean detection
time of one-order cyclostationary detection and proposed adaptive spectrum sensing with
varying Pr in Figure 7. The mean detection time of one-order cyclostationary detection
remains the same regardless of Pr. Whereas in the proposed scheme, in case 1, when
Pr ≈ 0, most of the channels are being sensed by the one-order cyclostationary detector,
and thus the proposed scheme has its highest mean detection time which is equal to the
sensing time of one-order cyclostationary detection. The probability of false alarm, the
probability of detection and the total mean detection time for Pr = 0 are given in (14)-
(16), respectively. In case 2, the majority of the channels are being sensed by the energy
detector, thus mean detection time of proposed scheme decreases and becomes equal to
the sensing time of energy detector when Pr ≈ 1. The detection performance and the
total mean detection time for Pr ≈ 1 is given in (17)-(19).
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Figure 7. Mean detection time comparison for varying Pr

6. Conclusions. The adaptive spectrum sensing scheme was proposed in this paper
to meet the accuracy and the minimum sensing time required in CR networks. The
proposed scheme chooses either the energy detection or the one-order cyclostationary
detection based on the estimated SNR. We observed that at low SNRs where energy
detector is not reliable, the proposed scheme provides improved detection at the cost of
mean detection time. At high SNRs, the proposed scheme provides fast detection using
the energy detector. This paper showed from simulation result that the mean detection
time of the proposed scheme is lower than that of the one-order cyclostationary detection.
Even in the worst case, it may be equal to the one-order cyclostationary detection. In
the best case, the total mean detection time is reduced dramatically to achieve the same
accuracy. The results showed that the reliability of detection is also as high as that of the
one-order cyclostationary detection with reduced total mean detection time. As future
work, to further consider uncertainties, how to predict the channel state on the basis of
the history will be studied.
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