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Abstract. Many approaches have been proposed for mining fuzzy association rules.
The membership functions, which critically influence the final mining results, are dif-
ficult to define. In general, multiple criteria are considered when defining membership
functions. In this paper, a multi-objective genetic-fuzzy mining algorithm is proposed for
extracting membership functions and association rules from quantitative transactions.
Two objective functions are used to find the Pareto front. The first one is the suitability
of membership functions. It consists of the coverage factor and the overlap factor and is
used to avoid two unsuitable types of membership function. The second one is the total
number of large 1-itemsets from a given set of minimum support values. Experimental
results show the effectiveness of the proposed approach in finding the Pareto-front mem-
bership functions.
Keywords: Multi-objective optimization, Genetic algorithm, Fuzzy set, Fuzzy associa-
tion rules, Data mining

1. Introduction. Data mining is commonly used to derive association rules from trans-
action data. An association rule is an expression X → Y , where X is a set of items and
Y is a single item [2]. It means that in the set of transactions, if all the items in X exist
in a transaction, then Y is also in the transaction with a high probability. Most previous
studies focused on binary-valued transaction data. Transaction data in real-world appli-
cations, however, usually consist of quantitative values. Many sophisticated data mining
approaches have thus been proposed [1,26,30].

Fuzzy set theory is increasingly used in intelligent systems due to its simplicity and
similarity to human reasoning. The theory has been applied in fields such as manufactur-
ing, engineering, and economics [11]. Many approaches have been proposed for mining

**This is a modified and expanded version of the paper “A multi-objective genetic-fuzzy data mining
algorithm”, presented at The IEEE International Conference on Granular Computing, 2008, China.
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fuzzy association rules [3,14,21,22,29]. They can be divided into two types, namely those
that solve single-minimum-support fuzzy-mining (SSFM) and multiple-minimum-support
fuzzy-mining (MSFM) problems, respectively. Most approaches have been proposed for
the SSFM problem [3,14,21,29], in which a single minimum support threshold is set for
all the items or itemsets. In real applications, different criteria may be used to judge the
importance of different items and quantitative data may exist. Lee et al. thus proposed a
mining algorithm which uses multiple minimum support values of different items to mine
fuzzy association rules for the MSFM problem [22].
In fuzzy data mining, the membership functions critically influence the final mining

results. However, it is difficult to define an appropriate set of membership functions for
items. Most existing fuzzy data mining algorithms thus assume that the membership
functions are already known. Pre-defined membership functions are not, however, suit-
able in practice. Mining algorithms that can automatically derive both the appropriate
membership functions and the fuzzy rules are thus required. Many approaches have been
proposed for deriving membership functions for both SSFM [5,12,13,17,18] and MSFM
problems [4].
Several criteria may be considered in a real application. Multi-objective evolutionary

algorithms, which are used to find a set of solutions with trade-offs among the criteria,
are very suitable for solving such cases [7,8]. Kaya et al. proposed an approach that
integrates a multi-objective genetic algorithm (GA) into clustering for fuzzy mining [19].
The number of large itemsets and the execution time were considered as two objective
functions to derive appropriate membership functions for mining fuzzy association rules.
Kaya also proposed an approach based on multi-objective GAs for mining optimized fuzzy
association rules [20]. He defined three objectives, namely strongness, interestingness, and
comprehensibility, to derive appropriate membership functions for mining optimized fuzzy
association rules.
We previously proposed a genetic-fuzzy data mining algorithm for extracting association

rules and membership functions from quantitative transactions [13]. Its fitness function
was evaluated using the number of large 1-itemsets over the suitability of membership
functions. The suitability measure was used to reduce the occurrence of unsuitable types of
membership function. Using the number of large 1-itemsets instead of the number of rules
provides a trade-off between execution time and rule interestingness. The two criteria, the
number of large 1-itemsets and the suitability of membership functions, also have a trade-
off relationship. In real-world applications, decision makers need diverse information to
make good marketing strategies. Only a solution derived by using a genetic-fuzzy data
mining algorithm [13] may be insufficient. An approach which can yield a spectrum of
solutions under different criteria is thus needed.
The study proposes a multi-objective genetic-fuzzy mining approach for finding the

Pareto solutions based on the two objective functions for deriving membership functions
for the SSFM problem. Experimental results both on simulated data and on a real
application show the effectiveness of the proposed algorithm. Especially, the two main
contributions are listed as follows.
1. The proposed approach takes the number of large 1-itemsets and the suitability

of membership functions into consideration for mining appropriate sets of membership
functions.
2. The derived set of non-dominated solutions can provide multiple points of view

for analysis. For example, if an analyst needs more knowledge mined from the trans-
actions, then the solution with the largest total number of large 1-itemsets can be used
to mine fuzzy association rules; on the contrary, if the shapes of membership functions
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are emphasized, then the solution with the best suitability value can be used for further
analysis.

The rest of this paper is organized as follows. Multi-objective optimization problems are
introduced in Section 2. The details of the adjustment process for membership functions
are explained in Section 3. The proposed algorithm for mining membership functions
and association rules is described in Section 4. An example to illustrate the proposed
algorithm is given in Section 5. Experiments that demonstrate the performance of the
proposed algorithm are described in Section 6. Conclusions and future work are given in
Section 7.

2. GA-Based Multi-objective Optimization Problems. In traditional optimization
problems, the goals to be achieved are usually transformed into fitness functions for max-
imization or minimization. Unfortunately, it is difficult to find the best fitness func-
tion for a problem. Several criteria may be considered in a real application, such that
multi-objective optimization problems become more and more important. Formally, a
multi-objective optimization problem can be defined as follows:

Min/Max y = g(x) = (g1(x), g2(x), . . ., gm(x))

subject to x = (x1, x2, . . ., xn) ∈ X and y = (y1, y2, . . ., ym) ∈ Y

where x is the decision vector, y is the objective vector, X represents the decision space,
and Y represents the objective space. Several GA-based approaches have been proposed to
solve this problem. Schaffer proposed the Vector Evaluated Genetic Algorithm (VEGA)
for solving multi-objective optimization problems [25]. The difference between VEGA
and a simple genetic algorithm is the selection strategy. For a problem with m objec-
tive functions, VEGA first divides the population into m sub-populations, one for each
objective. Assume that the population size is P . P/m chromosomes are then selected
from each sub-population and all the selected chromosomes were gathered to form the
next population. Fonseca et al. pointed out that VEGA has two problems [10]. The first
one is that two non-dominated individuals are sampled at different rates. The second
one is that the population tends to split into different species. They thus proposed a
modified approach called the Multi-Objective Genetic Algorithm (MOGA) that uses the
extended rank-based fitness assignment [10] for solving the above two problems. They
also defined three relationships among chromosomes, namely inferiority, superiority and
non-inferiority, which are shown in Figure 1 [10].

As shown in Figure 1, the first relationship is inferiority. Since the two objective values
of node N1 are larger than the corresponding values of node N2, the latter is said to
be inferior to the former (Figure 1(a)), or that N1 is superior to N2 (Figure 1(b)). The
third relationship is non-inferiority. In Figure 1(c), one objective value (x-axis) of node

Figure 1. Three relationships among chromosomes in MOGA
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Figure 2. Example of Pareto-optimal solutions

N1 is larger than the corresponding value of node N3, and the other is smaller than the
corresponding value. In this case, N1 is said to be non-inferior to N3.The MOGA strategy
is used to find the set of non-inferior solutions, also called the Pareto-optimal solutions
or the Pareto front. Figure 2 explains the three relationships and the Pareto-optimal
solutions.
In Figure 2, there are ten chromosomes and two objectives. The two objective values of

a chromosome are represented by a data point in the figure. Take chromosomes C1 and C2

as an example. Chromosome C2 is said to be inferior to C1 since the two objective values
of C2 are worse than the corresponding values of C1. In this case, C2 is dominated by
C1. Chromosome C1 is said to be superior to C2 and that it dominates C2. Chromosome
C1 is said to be non-inferior to C7 or vice versa. In this case, C1 and C7 are non-
dominated points. The goal of MOGA is thus to find the non-dominated points, also
called the Pareto-optimal solutions. In this example, chromosomes C1, C7, C8, C9 and
C10 are non-dominated points. Some variants of MOGA have been proposed. Two well-
known approaches are NSGA-II [9] and SPEA2 [31], whose goal is to obtain better Pareto
fronts. NSGA-II uses a fast non-dominated sorting procedure, an elitist strategy, and
an approach without parameters [9]. SPEA2 adopts a fine-grained fitness assignment
strategy, a density estimation technique, and an enhanced archive truncation method
[31].

3. Multi-objective Genetic-Fuzzy Mining Approach. This study proposes a MOG
A-based approach to derive a set of non-dominated solutions for mining problems. The
details of the proposed approach are described below.

3.1. Chromosome representation. It is important to encode membership functions
as a string representation for the application of GAs. Several encoding approaches are
described in [6,24,27,28]. In this study, the set of membership functions for an item is
encoded as shown in Figure 3.
In Figure 3, each membership function is assumed to be an isosceles triangle represented

by (c, w), where c is the center abscissa and w is half the span. Rjk denotes the membership
function of the k-th linguistic term of item Ij. All (c, w) pairs for a certain item are
concatenated to represent its membership functions. Since both c and w are numeric
values, a chromosome is thus encoded as a fixed-length real-number string rather than a
bit string.
Note that other types of membership function (e.g., non-isosceles triangles and trapezes)

can also be adopted. For coding non-isosceles triangles and trapezes, three and four points
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Figure 3. Set of membership functions for item Ij

are needed, respectively. The numbers of membership functions for the given items can
vary.

3.2. Initial population. A GA requires a population of feasible solutions to be initial-
ized and updated during the evolution process. As mentioned above, each individual
within the population is a set of isosceles triangular membership functions. Each mem-
bership function corresponds to a linguistic term in a certain item. The initial set of
chromosomes is randomly generated with some constraints for forming feasible member-
ship functions.

3.3. Two objective functions. Kaya et al. proposed an approach to derive membership
functions for mining problems [17]. It finds the maximum profit (maximum number of
large itemsets) within an interval of user specified minimum support values. The derived
membership functions were then used to mine fuzzy association rules. In our previous
work, we proposed a genetic-fuzzy approach to learn an appropriate set of membership
functions for mining problems [13]. In that paper, the fitness values were evaluated using
the numbers of large 1-itemsets over the suitability of membership functions. The two
factors (numbers of large 1-itemsets and suitability of membership functions) usually
show a trade-off relationship. In the present study, the mining of membership functions
and fuzzy association rules is considered as a multi-objective optimization problem, in
which the above two factors are used as two objective functions. A MOGA-based mining
algorithm is proposed to find the Pareto-optimal solutions. The first objective function
(Obj1) for chromosome Cq is defined as follows:

Obj1(Cq) = suitability(Cq),

where suitability(Cq) represents the shape suitability of the membership functions with
Cq. suitability(Cq) is defined as:

m∑
j=1

[overlap factor(Cqj) + coverage factor(Cqj)],

where m is the number of items. overlap factor(Cqj) represents the overlap factor of the
membership functions for item Ij in chromosome Cq and is defined as:

overlap factor(Cqj) =
∑
k 6=i

[
max

((
overlap(Rjk, Rji)

min(wjk, wji)

)
, 1

)
− 1

]
,

where overlap(Rjk, Rji) denotes the overlap lengths of Rjk and Rji. coverage factor(Cqj)
represents the coverage ratio of a set of membership functions for item Ij in chromosome
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Cq and is defined as:

coverage factor(Cqj) =
1

range(Rj1,...,Rjl)

max(Ij)

,

where range(Rj1, Rj2, . . ., Rjl) is the coverage range of the membership functions, l is the
number of membership functions for Ij, and max(Ij) is the maximum quantity of Ij in the
transactions. The suitability factor is used to reduce the occurrence of the two unsuitable
kinds of membership function, as shown in Figure 4, where the first one is too redundant
and the second one is too separated.

Figure 4. Two unsuitable membership functions

The second objective function is the total number of large 1-itemsets in a given set of
minimum support values {ms1,ms2, . . .,msh}. It is formally defined as:

Obj2(Cq) = totalNumL1(Cq) =
h∑

g=1

|Lmsg
1q |,

where |Lmsg
1q | is the number of large 1-itemsets obtained when the minimum support value

is msg. Using the number of large 1-itemsets provides a trade-off between execution time
and rule interestingness. Usually, a larger number of 1-itemsets results in a larger number
of all itemsets with a higher probability, which usually yields more interesting association
rules. The proposed approach uses the two objective functions to find the appropriate
Pareto solutions for the SSFM problem.

3.4. Fitness assignment. The fitness assignment is similar to that used in MOGA [10].
There are three steps: ranking chromosomes, assigning fitness, and averaging fitness values
of the individuals with the same rank. The ten chromosomes in Figure 1 are ranked in
Figure 5 according to their two objective values.

Figure 5. Ranking results of the ten chromosomes in Figure 1
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In Figure 5, a chromosome with a lower ranking value has better quality. chromosomes
with ranking values of 1 are non-dominated solutions. The fitness value of a chromosome
is then assigned according to its rank value. For chromosome Cq with a ranking value of
1, its fitness value is assigned as:

f(Cq) = DomonatedBy(Cq)/(P + 1),

where DominatedBy(Cq) is the number of chromosomes dominated by chromosome Cq

and P is the population size. For a chromosome with a ranking value larger than 1, its
fitness value is assigned as:

f(Cq) = 1 +
∑

Cp∈P and Cp dominates Cq

f(Cp),

where f(Cp) is the fitness value of chromosome Cp, which dominates chromosome Cq. The
constant value 1 is used here to ensure that the fitness value of a dominated chromosome
is larger than that of a non-dominated chromosome. Therefore, a chromosome with
a smaller fitness value is considered better. For instance, chromosome C1 in Figure 5
dominates three chromosomes. Its fitness value is thus 3/11 (0.27). The fitness values of
chromosomes C7, C8, C9 and C10 are 0.36, 0.36, 0.27 and 0.18, respectively. Chromosome
C2 is dominated by C1 and C7. Its fitness value is thus calculated as 1+0.27+0.36 = 1.63.
The results of the other chromosomes are shown in Figure 6.

There are five non-dominated chromosomes in Figure 6; their fitness values are not al
the same. Since they are all non-dominated, they are assumed to have equal importance

Figure 6. Fitness values of the ten chromosomes in Figure 1

Figure 7. Average fitness values of the ten chromosomes in Figure 1
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to be reproduced in the selection procedure. Therefore, instead of the original fitness
values, the average fitness value of the non-dominated chromosomes is calculated and
assigned to each of them. In this example, the average fitness value of the non-dominated
chromosomes is 0.288(= (0.27 + 0.36 + 0.36 + 0.27 + 0.18)/5). The fitness values for the
chromosomes with the same ranks are also calculated in this way. The results for all
chromosomes are shown in Figure 7.

3.5. Genetic operators. Genetic operators are very important to the success of specific
GA applications. Two genetic operators, the max-min-arithmetical (MMA) crossover
proposed in [16] and the one-point mutation, are used in the proposed approach. Assume
that there are two parent chromosomes:

Ct
u =(c1, . . . , ch, . . . , cZ),

Ct
w =(c

′

1, . . . , c
′

h, . . . , c
′

Z).

The MMA crossover operator generates the following four candidate chromosomes from
the two parents:

1. Ct+1
1 = (ct+1

11 , . . . , ct+1
1h , . . . , ct+1

1Z ), where ct+1
1h = dch + (1− d)c

′

h

2. Ct+1
2 = (ct+1

21 , . . . , ct+1
2h , . . . , ct+1

2Z ), where ct+1
2h = dc

′

h + (1− d)ch
3. Ct+1

3 = (ct+1
31 , . . . , ct+1

3h , . . . , ct+1
3Z ), where ct+1

3h = min{ch, c
′

h}
4. Ct+1

4 = (ct+1
41 , . . . , ct+1

4h , . . . , ct+1
4Z ), where ct+1

4h = max{ch, c
′

h}
The parameter d is either a constant or a variable whose value depends on the age of

the population. The best two chromosomes among the four candidates are then chosen
as the offspring.
The one-point mutation operator creates a new fuzzy membership function by adding

a random value ε (between −wjk to +wjk) to the center or to the spread of an existing
linguistic term, say Rjk. Assume that c and w represent the center and the spread of
Rjk, respetively. The center or the spread of the newly derived membership function
changes to c + ε or w + ε by the mutation operation. Mutation at the center of a fuzzy
membership function may however disrupt the order of the resulting fuzzy membership
functions. These fuzzy membership functions need to be rearranged according to their
center values. The proposed approach can use either the elitist or the roulette-wheel
selection strategy.

4. Proposed Mining Algorithm. The proposed multi-objective genetic-fuzzy algo-
rithm for mining membership functions and fuzzy association rules is described below.

Multi-Objective Genetic-Fuzzy Mining Algorithm:

INPUT: A body of n quantitative transactions, a set of m items, each with a number of
linguistic terms, a population size P , a crossover rate Pc, a mutation rate Pm, a
set of h minimum support values, and a confidence threshold λ.

OUTPUT: A set of non-dominated solutions (sets of membership functions) with their
fuzzy association rules.

STEP 1: Randomly generate a population of P individuals, with each one being a set of
membership functions for all m items, encode each set of membership functions
into a string representation according to the schema stated in Section 3, and
initialize the non-dominated set NDS as empty.

STEP 2: For each chromosome Cq, calculate its two objective values, the suitability
(sutiability(Cq)) and the total number of large 1-itemsets in the given set of
minimum support values (totalNumL1(Cq)), as follows:
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SUBSTEP 2.1: For each transaction datum Di, i = 1 to n, and for each item Ij, j= 1 to

m, transfer the quantitative value v
(i)
j into a fuzzy set f

(i)
j represented as:f

(i)
j1

Rj1

+
f
(i)
j2

Rj2

+ . . .+
f
(i)
jl

Rjl

 ,

using the corresponding membership functions represented by the chro-

mosome, where Rjk is the k-th fuzzy region (term) of item Ij, f
(i)
jk is v

(i)
j ’s

fuzzy membership value in region Rjk, and l (= |Ij|) is the number of
linguistic terms for Ij.

SUBSTEP 2.2: For each item region Rjk, calculate its scalar cardinality on the transac-
tions as follows:

countjk =
n∑

i=1

f
(i)
jk .

SUBSTEP 2.3: Calculate the suitability value suitability(Cq) using the formula defined
in Section 3; set it as the first objective value of Cq.

SUBSTEP 2.4: For each Rjk, 1 ≤ j ≤ m, 1 ≤ k ≤ |Ij|, and for each minimum support
value msg, 1 ≤ g ≤ h, check whether countjk is larger than or equal to
the minimum support value msg. If Rjk satisfies the above condition,
set |Lmsg

1q | = |Lmsg
1q | + 1, where |Lmsg

1q | is the number of large 1-itemsets
obtained using the set of membership functions in chromosome Cq and

the minimum support value msg; let totalNumL1(Cq) =
h∑

g=1

|Lmsg
1q | as the

second objective value of Cq.

STEP 3: Rank the chromosomes according to the two objectives, suitability(Cq) and
totalNumL1(Cq), as follows:

SUBSTEP 3.1: Set the variable r for representing the current rank, which is initially at
0.

SUBSTEP 3.2: Find the non-dominated chromosomes among the unranked ones in the
population, set r = r+1, and set the ranking values of the non-dominated
chromosomes as r.

SUBSTEP 3.3: If there are still unranked chromosomes in the population, go to SUB-
STEP 3.2; otherwise, go to the next step.

STEP 4: Calculate the fitness value of each chromosome based on the ranking value as
follows:

SUBSTEP 4.1: Calculate the fitness values of the chromosomes with their ranking values
equal to one as follows:

f(Cq) = DomonatedBy(Cq)/(P + 1),

where DominatedBy(Cq) is the number of chromosomes dominated by
chromosome Cq and P is the population size.

SUBSTEP 4.2: Calculate the fitness values of the chromosomes with their ranking values
larger than one as follows:

f(Cq) = 1 +
∑

Cp∈P and Cp dominates Cq

f(Cp),

where f(Cp) is the fitness value of chromosome Cp which dominates chro-
mosome Cq and the constant value 1 is used to ensure that the fitness
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values of dominated chromosomes are larger than those of non-dominated
ones.

STEP 5: Calculate the average fitness values of the chromosomes with the same ranking
values such that each of them can be selected equally by the selection strategy.

STEP 6: Copy the chromosomes with ranking values equal to one into the non-dominated
set NDS and remove the chromosomes which are dominated by other chromo-
somes in NDS.

STEP 7: Execute the crossover operation on the population.

STEP 8: Execute the mutation operation on the population.

STEP 9: Calculate the fitness values of the new chromosomes using STEPS 2 to 8.

STEP 10: Use the selection operation to choose appropriate individuals from the set of
NDS to form the next generation. Here, the selection strategy can be elitist or
roulette wheel. If the size of NDS, called NDSSize, is less than the population
size, PSize, all the chromosomes in NDS are copied into the next population and
the number (PSize – NDSSize) of chromosomes are selected from the difference
set of the offspring chromosomes and the current NDS.

STEP 11: If the termination criterion is not satisfied, go to STEP 6; otherwise, go to the
next step.

STEP 12: Execute the truncation operator proposed in [31] on the non-dominated set
NDS to find the best k solutions. Since there may be more than one chromo-
some kept in NDS, the goal of this step is to keep the k representative solutions
at the Pareto front. Note that this step is optional.

STEP 13: Mine fuzzy association rules from the given database and based on the derived
chromosomes in NDS (or the k representative chromosomes if STEP 12 is
applied), where each chromosome represents a set of membership functions.
The fuzzy mining algorithm proposed in [15] is adopted for this purpose for
each set of membership functions.

STEP 14: Output the non-dominated set NDS and the corresponding fuzzy association
rules.

5. Example. In this section, a simple example is given to illustrate the proposed multi-
objective genetic-fuzzy mining algorithm. Assume that there are four items in a transac-
tion database: milk, bread, cookies and beverage. The dataset includes the six transac-
tions shown in Table 1.
Assume that each item has three fuzzy regions, namely Low, Middle and High, for

simplicity. Thus, three fuzzy membership functions must be derived for each item. Note

Table 1. Six transactions in the example

TID Items
T1 (milk, 5), (bread, 10), (cookies, 7), (beverage, 7).
T2 (milk, 7), (bread, 6), (cookies, 12).
T3 (bread, 8), (cookies, 12); (beverage, 3).
T4 (milk, 2); (bread, 5); (cookies, 5).
T5 (bread, 9).
T6 (milk, 10), (beverage, 6).



MULTI-OBJECTIVE GENETIC-FUZZY DATA MINING 6561

Table 2. Fuzzy sets transformed from the data in Table 1

TID Fuzzy Set

T1
(

1.0
milk.Low

+ 0.75
milk.Middle

)(
1.0

bread.High

)(
1.0

cookies.High

)(
0.8

beverage.Low
+ 1.0

beverage.Middle
+ 0.33

beverage.Low

)
T2

(
0.75

milk.Middle
+ 0.25

milk.High

)(
1.0

bread.High

)(
1.0

cookies.High

)
T3

(
1.0

bread.High

)(
1.0

cookies.High

)(
0.4

beverage.Low

)
T4

(
0.0

milk.Low

) (
1.0

bread.High

) (
0.0

cookies.Middle

)
T5

(
1.0

bread.High

)
T6

(
1.0

milk.High

)(
1

beverage.Low
+ 0.66

beverage.Middle

)

that the numbers of fuzzy regions for the items are not necessarily the same for the pro-
posed approach. For the data shown in Table 1, the proposed mining algorithm proceeds
as follows.

STEP 1: P individuals are randomly generated to form the initial population. The non-
dominated set NDS is initialized as empty. In this example, P is set to 10. Each
individual is thus a set of membership functions for the four items. Assume that
the following ten individuals are generated:

C1: 5, 2, 6, 4, 10, 4, 1, 1, 3, 1, 4, 2, 2, 1, 4, 1, 7, 2, 6, 5, 7, 3, 9, 3
C2: 5, 1, 7, 3, 9, 3, 1, 1, 9, 1, 10, 1, 5, 2, 6, 5, 7, 5, 1, 1, 3, 1, 4, 1
C3: 5, 3, 7, 2, 8, 5, 4, 3, 6, 3, 8, 3, 2, 1, 3, 2, 8, 5, 1, 1, 6, 3, 10, 4
C4: 4, 1, 7, 5, 9, 1, 3, 1, 4, 3, 10, 3, 1, 1, 3, 2, 10, 1, 1, 1, 5, 1, 7, 4
C5: 3, 1, 6, 2, 9, 4, 7, 3, 8, 2, 10, 1, 4, 1, 5, 2, 7, 3, 3, 2, 5, 2, 7, 3
C6: 4, 3, 6, 4, 8, 3, 2, 1, 4, 1, 5, 1, 5, 1, 8, 3, 9, 2, 2, 1, 8, 1, 10, 4
C7: 4, 2, 5, 1, 10, 4, 3, 1, 4, 3, 10, 3, 1, 1, 3, 2, 6, 1, 6, 1, 7, 3, 10, 1
C8: 4, 1, 6, 1, 9, 4, 3, 1, 4, 3, 10, 2, 5, 1, 7, 4, 9, 4, 1, 1, 2, 1, 4, 1
C9: 2, 1, 8, 3, 9, 5, 4, 1, 6, 5, 9, 5, 2, 1, 3, 2, 5, 4, 2, 1, 7, 3, 10, 1
C10: 3, 1, 5, 1, 9, 4, 5, 1, 6, 5, 7, 1, 5, 1, 8, 1, 9, 2, 1, 1, 2, 1, 7, 3

STEP 2: The suitability value and the total number of large 1-itemsets in the given set
of minimum support values of each chromosome are calculated as follows:

SUBSTEP 2.1: The quantitative value of each transaction datum is transformed into a
fuzzy set according the membership functions in each chromosome. Take
the first item in transaction T1 using the membership functions in chro-
mosome C1 as an example. The membership functions for milk in C1 are
represented as (5, 2, 6, 4, 10, 4). The amount “5” of item milk is then
converted into the fuzzy set (1.0/Low + 0.75/Middle). The results for all
the items are shown in Table 2, where the notation item.term is called a
fuzzy region.

SUBSTEP 2.2: The scalar cardinality of each fuzzy region in the transactions is calculated
as the count value. Take the fuzzy region milk.Midd- le as an example.
Its scalar cardinality = (0.75 + 0.75 + 0.0 + 0.0 + 0.0 + 0.0) = 1.5. The
counts for all the fuzzy regions are shown in Table 3.

SUBSTEP 2.3: The suitability value of chromosome C1 can be calculated as 8.38 accord-
ing to the formulas in Section 3.

SUBSTEP 2.4: The count of any fuzzy region is checked against the set of minimum sup-
port values. Assume that the set of minimum support values is {0.08,
0.09, 0.1, . . . , 0.17}. Take the minimum support value set to 0.08 as an
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Table 3. Counts for all the fuzzy regions

Item Count Item Count
milk.Low 1.00 cookies.Low 0.0

milk.Middle 1.50 cookies.Middle 0.0
milk.High 1.25 cookies.High 3.0
bread.Low 0.0 beverage.Low 2.2

bread.Middle 0.0 beverage.Middle 1.66
bread.High 5.0 beverage.High 0.33

Table 4. Suitability value and total |L1| of each chromosome

Cq (Suitability, total |L1|) Cq (Suitability, total |L1|)
C1 (8.38, 69) C6 (8.51, 62)
C2 (9.72, 95) C7 (7.79, 68)
C3 (8.30, 78) C8 (8.36, 68)
C4 (8.88, 58) C9 (9.98, 68)
C5 (8.62, 87) C10 (8.09, 77)

example. Since the count values of milk.Low, milk.Middle, milk.High,
bread.High, cookies.Hi-gh, beverage.Low and beverage.Middle are larger
than 0.48(= 0.08 ∗ 6), the number of large 1-itemsets is 7. The number of
large 1-itemsets for the other minimum support values can be similarly
found. The total number of large 1-itemsets totalNumL1 (C1) is thus
69(= 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 6). The two objective values of
chromosome C1 are thus 8.38 and 69. The results of all ten chromosomes
are shown in Table 4.

STEP 3: The ranking procedure is executed to rank the ten chromosomes according to
the two objectives, suitability(Cq) and totalNumL1, as follows:

SUBSTEP 3.1: Set the variable r for the current rank initially at 0.
SUBSTEP 3.2: The non-dominated chromosomes are found according to the two objec-

tives. In this example, the non-dominated chromosomes are C2, C3, C5,
C7 and C10. r is thus set to 0 + 1(= 1). The ranking values of the
chromosomes are set to 1.

SUBSTEP 3.3: Since there are unranked chromosomes in the population, SUBSTEP 3.2
is repeated to rank the other chromosomes. The next non-dominated
chromosomes are then found from the remaining (unranked) chromosomes
in the initial population. They are C1 and C8. Their ranking values are
then 2. The ranking results of all ten chromosomes are shown in Table 5.

Table 5. Ranking results of all ten chromosomes

Ranking Chromosomes
1 C2, C3, C5,C7, C10

2 C1, C8

3 C6, C9

4 C4
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STEP 4: The fitness value of each chromosome is calculated based on its ranking value
as follows:

SUBSTEP 4.1: The chromosomes with ranking values of 1 are first evaluated. In this
example, there are five chromosomes that satisfy the condition, as shown
in Table 5. Take chromosome C3 as an example. Chromosomes C1, C4, C6,
C8 and C9 are dominated by C3. The number of chromosomes dominated
by C3 is thus 5. The population size is 10. The fitness value of C3 is
thus 5/(10 + 1) = 0.45. The fitness values of C2, C5, C7 and C10 can be
similarly calculated as 0.09, 0.18, 0.36 and 0.45, respectively.

SUBSTEP 4.2: The fitness values of the chromosomes with ranking values larger than one
are then calculated. Two chromosomes, C1 and C8, have a ranking value
of 2. Take C1 as an example. It is dominated by C3 and C10, whose fitness
values are both 0.45. The fitness value of C1 is thus 1+0.45+0.45 = 1.90.
The fitness values of all ten chromosomes are shown in Table 6.

Table 6. Fitness values of all ten chromosomes

Cq Fitness Cq Fitness
C1 1.90 C6 6.45
C2 0.09 C7 0.36
C3 0.45 C8 2.27
C4 13.09 C9 6.72
C5 0.18 C10 0.45

STEP 5: The average fitness values of the chromosomes with the same ranking values
are calculated. Take chromosomes C1, C4, C6, C8 and C9, which have the same
ranking value of 1, as an example. The average value of these chromosomes is
(0.09 + 0.45 + 0.18 + 0.36 + 0.45)/5 = 0.309. The resulting fitness values of all
ten chromosomes are shown in Table 7.

Table 7. Resulting fitness values of ten chromosomes

Cq Fitness Cq Fitness
C1 2.090 C6 6.59
C2 0.309 C7 0.309
C3 0.309 C8 2.09
C4 13.09 C9 6.59
C5 0.309 C10 0.309

STEP 6: The chromosomes with ranking values equal to 1 are copied into the non-
dominated set NDS. That is, NDS = {C2, C3, C5, C7, C10}.

STEPS 7 to 10: The crossover and the mutation operations are executed on the popula-
tion. Here, the MMA crossover operator and one-point mutation opera-
tor are used for generating new offspring. The fitness values of the new
chromosomes are calculated using STEPS 3 to 7. The selection operation
is then used on the non-dominated set NDS to choose appropriate indi-
viduals for the next generation. In this example, chromosomes C2, C3,
C5, C7 and C10 in NDS are first kept in the next generation. The other
five chromosomes are selected from the current population according to
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their fitness values. These ten selected chromosomes are then used as
the next population.

STEPS 11 to 14: If the termination criterion is not satisfied, go to STEP 6; otherwise,
the chromosomes in the non-dominated set NDS are output as the sets
of membership functions for deriving fuzzy association rules. The fuzzy
mining method proposed in [15] is then used to mine fuzzy association
rules for each set of membership functions.

6. Experimental Results. In this section, experiments conducted to show the perfor-
mance of the proposed approach are described. They were implemented in Java on a
personal computer with an Intel Pentium IV 3.20-GHz CPU and 512MB of RAM. Two
simulated datasets and a real foormart database are used in the experiments. In the simu-
lated datasets, 64 items and 10000 transactions were used in the experiments. The initial
population size P was set to 50, the crossover rate pc was set to 0.8, and the mutation rate
pm was set to 0.001. The parameter d of the crossover operator was set to 0.35, following
to Herrera et al. [16] and the set of minimum support values was {3%, 4%, . . ., 13%}. In
the following subsections, the experimental datasets are described. The evolution of the
Pareto fronts obtained using the proposed approach is then analyzed. The effects of the
minimum support and minimum confidence values are then analyzed.

6.1. Description of experimental datasets. Two simulated datasets with 64 items
and 10,000 transactions were used in the experiments. One dataset followed a uniform
distribution and the other followed an exponential distribution. The parameters of the
two datasets included the transaction length, the purchased items, and their quantities.
In the experiments, the number (transaction length) of purchased items in a transaction
was randomly generated in a uniform distribution in the range [1,19] for both the datasets.
The purchased items in each transaction were then selected from the 64 items in a uniform
distribution in the range [1,64] and in an exponential distribution with the rate parameter
set to 16, respectively. Their quantities were then assigned from a uniform distribution
in the range [1,11] and from an exponential distribution with the rate parameter set to
5, respectively. The simulation process was terminated when the desired dataset size was
reached. An item could not be generated twice in a transaction.
In addition, the foodmart database [23] was also used to evaluate the performance of

the algorithms under various thresholds. The Microsoft SQL Server 2000 was used for
keeping the foodmart database. The database has 21, 556 transactions and 1,600 different
items.

6.2. Evolution of Pareto fronts obtained using proposed approach. The first ex-
periment was conducted to demonstrate the evolution of the Pareto fronts obtained using
the proposed approach. The evolution of the Pareto fronts for the uniform-distribution
and exponential-distribution datasets are shown in Figures 8 and 9, respectively.
Figure 8 shows that the solutions were distributed widely on the Pareto fronts in dif-

ferent generations. The final solutions (after 500 generations) were the best. Figure 9
shows that the solutions were distributed on the Pareto fronts, but a little narrow. The
final solutions (after 500 generations) were the best. The evolution of the Pareto fronts
obtained using the proposed approach for the foodmart dataset is shown in Figure 10.
Figure 10 shows that the non-dominated solutions were distributed widely on the Pareto

fronts in different generations. The final non-dominated solutions (after 500 generations)
were the best. From the derived set of non-dominated solutions, if an analyst needs
more knowledge amount from the transactions, then the non-dominated solution with the
largest total number of large 1-itemsets can be used to mine the fuzzy association rules.
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If an analyst emphasizes on the shapes of membership functions, then the non-dominated
solution with the the best suitability value can be used to derive the fuzzy association
rules. Usually, an analyst can get a solution between the above two. The experimental

Figure 8. Evolution of Pareto fronts for uniform-distribution dataset

Figure 9. Evolution of Pareto fronts for exponential-distribution dataset

Figure 10. Evolution of Pareto fronts for the foodmart dataset
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results confirmed that the proposed approach is effective in finding an appropriate set of
solutions for further analysis.

6.3. Effects of minimum support and minimum confidence values. Experiments
were conducted to analyze the effects of minimum support and minimum confidence values
on the results obtained using the proposed approach. The truncation operator proposed
in [31] was first applied to the final non-dominated set NDS for finding k solutions.
Here, the parameter k was set to 10. To demonstrate the distribution of the solutions,
the two extreme solutions were picked from the ten chromosomes for comparison. The
first one had the highest total number of large 1-itemsets and the second one had the
best suitability value. The relationship between the number of rules and the minimum
confidence with the minimum support set to 0.01, 0.03 and 0.05, respectively, for the two
extreme solutions for the uniform-distribution dataset is shown in Figure 11, and that
with the minimum support set to 0.01, 0.02 and 0.03, respectively, for the two extreme
solutions for the exponential-distribution dataset is shown in Figure 12.

Figure 11. Relationship between the number of rules and the minimum
confidence value for the two extreme solutions for the uniform-distribution
dataset

Figure 12. Relationship between the number of rules and the mini-
mum confidence value for the two extreme solutions for the exponential-
distribution dataset
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Figure 11 shows that the number of rules derived using the proposed approach decrease
with increasing minimum confidence value. The results obtained using various minimum
support values show similar behavior. The number of rules derived from the first extreme
solution (with the highest total number of large 1-itemsets) was larger than that derived
from the second one (with the best suitability value). This was due to the two objective
functions focusing on different goals. The solutions on a Pareto front are a trade-off
between the two objectives. The user can decide which solutions are desired. In Figure
12, similar results were obtained although the difference between the two extreme solutions
is small. The proposed approach can thus provide different options to users for further
analysis.

7. Conclusion and Future Works. A multi-objective genetic-fuzzy mining algorithm
for extracting membership functions from quantitative transactions for the SSFM prob-
lem was proposed. Two objective functions, namely suitability(Cq) and totalNumL1,
are used to find the Pareto front solutions. suitability(Cq) is used to reduce the occur-
rence of two unsuitable kinds of membership function and totalNumL1 is used to derive
more information. The proposed approach has a trade-off between the quality of mem-
bership functions and the number of interesting rules. Experimental results show that
the proposed approach is effective in finding the Pareto front solutions. In the future,
we will enhance the multi-objective genetic-fuzzy approach for more complex problems,
such as solving the MSFM problem. The deficiency of the proposed approach is when
the item number is large, the convergence may need much execution time. Thus, another
future research is to efficiently and effectively handle the high-dimensional mining prob-
lem. We may consider designing appropriate pre-processing techniques or using clustering
approaches for reducing evaluation time.
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