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ABSTRACT. Retinal vascular images are widely used to diagnose the retina-related visual
impairment and blindness caused by diabetic retinopathy. These images often have low
contrast and uneven illumination due to acquisition procedure, which can affect diagnosis
process. This paper presents a novel color contrast enhancement method that preserves
the features of the images using multiscale discrete-shearlet transform (DST), the percep-
tual uniform color space CIEL*a*b* and incorporating local-influence control function.
The developed method is compared with state-of-the-art methods by using PSNR image
quality measure. The applicability of this method has been tested on total 271 retinal im-
ages obtained from two publicly available datasets DRIVE, STARE and another private
one provided by medical experts from the Hospital Puerta del Mar (Cddiz, Spain). The
comparative results indicate that our enhancement method outperforms.

Keywords: Diabetic retinopathy, Retinal image enhancement, Vascular-network seg-
mentation, Discrete shearlet transform

1. Introduction. Glaucoma, Diabetic retinopathy and age-related macular degeneration
are diseases that cause retina-related visual impairment and blindness worldwide. For
instance, in the U.S.; 937,000 people were blind in 2002 and 2.4 million people had visual
problems [1]. For early and routine diagnoses, the ophthalmologists [2] widely use image
analysis tools trying to make use of non-invasive acquisition techniques to visualize the
human retina. Nowadays, there are some automatic screening tools developed [3-9] to
investigate diabetic retinopathy (DR) trying to identify some features among others as
the vascular blood vessels, fovea and optic disc (OD).

As retinal vascular images are captured with digital fundus cameras, the uneven light
illumination, surrounding conditions and acquisition process irremediably affect image
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quality. Therefore, an improvement is always required to enhance the light and contrast
across the image.

To enhance the visual quality of these images, there are a few methods [10-14] in
the literature. The HSI (hue, saturation and intensity) based color model was used in
[10] to enhance the retinal images by using the mean along with standard deviation
for local contrast adjustment. In [11], a color remapping technique is proposed. This
method tries to enhance luminosity and contrast on each color plane of RGB color space,
independently. The Contourlet transform (CT) method was also used to enhance the
retinal images in [12]. For that purpose, they used the luminance component (L*) of
CIEL*a*b* color space to enhance contrast by using a nonlinear enhancement function for
each of the coefficients of the CT analysis and then, reconstructing the image by combining
all these enhance coefficients. This study does not consider the uneven illumination and
the noise generated in the reconstruction process. In [13], the hue, saturation and value
(HSV) color space was used to provide better to decouple the chromaticity and luminance
information. Unfortunately it does not preserve the fidelity of the retinal images. In
[14], retinal enhancement algorithm was proposed based on image geometry. Histogram
equalization (HE) is being widely utilized for both color and grayscale image enhancement.
Particularly, in [15] the MMBEDHE method was developed to enhance contrast while
attaining the maximum brightness. However, HE performs fine in the case of grayscale
images generating unnecessary visual deterioration, including a saturation effect, when
dealing with color images.

In the light of this literature review, it seems that a great effort has been done in the
field enhancing the contrast of blood vessels while reducing the contrast of the bright OD
and tiny dark objects like the macular area. A number of automated algorithms are being
developed for the detection of red lesions (micro aneurisms and hemorrhages) as well as
white lesions (exudates and cotton-like spots), but few studies focus on enhancing the
quality of image, without generating extra noise.

In this paper, a retinal image enhancement solution is presented with features preserv-
ing capabilities, based on the discrete shearlet transform (DST) [16,17] in the CIEL*a*b*
uniform color space and by developing a local-influence control function without generat-
ing artifacts and avoiding an excessive saturation, something that occurs in many of the
state-of-the-art enhancement techniques. Nowadays, DST transform [18] is used for im-
age enhancement because it is effective applicability in the field of image denoising. The
proposed algorithm is evaluated based on three datasets, two of them publicly available,
i.e., STARE [19], DRIVE [20] and one private dataset from the Hospital Puerta del Mar
(Cédiz, Spain). In fact, we present (1) an enhancement method on a single color plane;
(2) a solution for color image enhancement which combines a linear color remapping tech-
nique; and (3) use the local information of OD and CUP area to avoid saturation effect
by local-influence correction.

2. System Architecture. The systematic flow diagram of the proposed scheme is il-
lustrated in Figure 1. First, the retinal color images captured with the retinography are
transformed from RGB to CIEL*a*b* uniform color space. The luminance (L*) plane
is decomposed by DST into different levels with the corresponding coefficients. Next, a
non-linear mapping function and gamma correction methods are applied to each of the
obtained coefficients for contrast enhancement. Subsequently, the inverse transform is
performed with these enhanced coefficients to reconstruct the final enhanced image by
combing the three planes.
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FIGURE 1. Systematic flow diagram of the proposed retinal vascular image
enhancement method

2.1. Retinal image datasets. The features preserving image enhancement technique
has been tested on three data sets. Two of them are available online: DRIVE [19] and
STARE [20]. The third one was provided by medical experts of the Hospital Puerta del
Mar (Céadiz, Spain). The DRIVE dataset was built by Netherlands to automate diabetic
retinopathy system. To our purpose, 40 images have been selected from it. In this
dataset, the size of each image is 768 by 584 pixels. The images in this dataset clearly
contain uneven illumination and low contrast. The STARE images and their clinical data
have been provided by the Shiley Eye Center at the University of California and the
Veterans Administration Medical center in San Diego. We have selected among all the
available images those with the poorer contrast: 81 images from this dataset to test the
performance of the proposed enhancement algorithm in total. In the STARE dataset, the
images are of 700 x 605 pixels, with 24-bis per pixel. The private dataset is compounded
by images selected from the early detection of diabetic retinopathy program of the Junta
de Andalucia. It includes 150 images of 50 patients and each patient eye has 3 images of
450. The resolution level is 20468 x 1536 and they have been stored in jpeg format.

3. Color Space Transform. The images can be represented in many color spaces (RGB,
HSV, etc.) and the selection of one of them highly depends on the application. In this
case, the enhancement algorithm has been designed to help physicians in their task of
early diagnose of retinopathy and therefore the selected space must be as close as possible
to human perception. In the past studies, the CIEL*a*b* and CIEL*u*v* are two color
spaces, which are used for human perception. Although, both of them have been widely
used, the white adaptation in CIEL*u*v* (with a subtractive change that involves a
vectorial displacement instead of the multiplicative normalization that will produce the
desired proportional movement) can occasionally lead to poorer results. Therefore, the
proposed algorithm initially transforms the fundus images from sRGB color space to
CIEL*a*b* color space [21].

The CIEL*a*b* color space, introduced by CIE in 1976, was designed specifically to be
uniform, that is Euclidean distances between two colors represented in this space needed
to be related to de perceived distance between them, achieving high correlation with
human perception. This color space also takes into account chromatic adaptation and the
non-linearity of human visual response [22]. The equations that relate the coordinates in

this space with the triestimuli XY Z are:
116 (3 Yi) —16 ifsi > 0.01

Y
L* = "
903.3 (Yl) if si (L) < 0.01
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where, X,,, Y,, and Z, are the corresponding values of the reference white.

L* plane represents lightness with values ranging from 0 (black) and 100 (white) if X,
Y, and Z are between 0 and 1. a* and b* represent opponent color scales red-green and
blue-yellow respectively. Original images are firstly transformed from sRGB to CIE XYZ
color space by Equation (2), and subsequently expressed in CIEL*a*b* color space by
means of Equation (2).

(1)

X 0.4124 0.3576 0.1805 R
Y | = 02126 0.7152 0.0722 G (2)
Z 0.0193 0.1192 0.9505 B

An example of an image from DRIVE dataset, which is transformed to each plane of
CIEL*a*b* color space is visually represented in Figure 2(a), Figure 2(b) and Figure 2(c),
respectively. In this figure, the x-axis represents distance along the line and the y-axis is
the pixel intensity. It should be noticed from this figure that the plots are having different
intensities values with different distance and therefore a linear contrast enhancement solu-
tion may not be an appropriate choice for retinal image contrast enhancement. Moreover,
the luminance image (L*) of CIEL*a*b* color space is having highest smooth distances

Transform RGB image to CIEL*a*b* Color Space
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FIGURE 2. The transformation of sSRGB image to CIEL*a*b* perceptually
uniform color space, where (a) shows the luminance image, (b) and (c)
represent Chroma components with the corresponding graylevel plots.
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as compared with other planes for vessels and background as the plot is shown in Fig-
ure 2(a). Contrast may be enhanced using the L* image but with a nonlinear transform
mapping function in a multiresolution analysis (MRA) approach.

4. Discrete Shearlet Transform. The L* plane of CIEL*a*b* color space is used to
correct uneven illumination and to enhance the details while preserving the main charac-
teristics of the images by using the discrete Shearlet transform [16,17] in a multiresolution
analysis (MRA) decomposition step.

The OD object in a retinal image has brighter edges than the other background areas
and usually it possesses weaker edges than the surrounding area. Similarly, when the blood
vessels in the retinal image are wide with strong edges they are easily detected. Meanwhile,
the lesions and nerves are hard to identify due to the gray level similarity respect to the
background. In the proposed strategy, the algorithm tries to amplify the weak edges
so that the thin vessels become more visible and the weak object edges become sharper.
Therefore, the proper transform is the one that possesses the edge enhancement capability
while introducing no noise in the reconstruction phase. In practice, the shearlets form a
tight frame at various scales and directions, and optimally representing the edges of image.
With respect to the curvelets and Contourlet as used in [12], it has many fundamental
properties of edge enhancement without introducing noise in the reconstruction step. The
shearlets are defined on the action of shearing transformations so no generation of noise
[16].

In this enhancement study, we have used 4 scales subbands in the frequency domain by
using the Laplacian Pyramid transform, which is analyzed by a directional filtering. The
empirical results suggested that 4 scales decomposition is sufficient for the color image
enhancement. Interested readers may refer to [16,17] for a more detailed information
about DST technique. In particular, the algorithm obtains the Shearlet coefficients from
the 4 scales of the Laplacian pyramid in frequency division with several shearing filters.
In order to enhance the L* image in the DST domain, the shearing filters with different
directions are chosen by using a Meyer wavelet window [16]. Moreover, a non-linear
mapping function for post-filtering is perfomred to further enhance the resulting image.

5. Uneven Illumination Correction and Contrast Enhancement. As it has been
already explained, the Shearlet coefficients in the MRA are extracted from the Laplacian
Pyramidal representation of the image and used to correct the uneven illumination and
enhance the contrast for both gray scale and color retinal images. In order to obtain an
image enhancement without generating artifacts an adaptive non-linear mapping function
is applied to the generated subbands emphasizing certain features within a certain range.
In practice, the OD and CUP areas of retinal-vascular image are brighter than other areas.
Therefore, to avoid saturation effect on these areas, the local-influence control function
is developed. The aim to introduce this function is to restrict the enhancement step to
improve the neighborhood pixels by ignoring these pixels. Subsequently, these transformed
components are combined with the other subbands and used in the reconstruction step by
means of the inverse discrete Shearlet transform (IDST) to obtain an enhanced luminance
component.

Previous to this enhancement step, we have first performed a gamma correction to
the high-pass band image on windows of 16 x 16 pixels size to enhance contrast. Next,
for brightness and contrast normalization, the lower pass-band image is enhanced using
the nonlinear mapping function. Let lower pass-band image of Laplacian Pyramidal
representation be denoted by C( 4,nn) in the frequency domain, which is indexed by scale
s and direction d of size n x n pixels. Then, the nonlinear mapping function map of each
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FIGURE 3. Retinal vascular DRIVE image enhancement results for (a)
RGB image from datasets, (b) gamma corrected image, and (c) light in-
tensity adjustment of luminance component.

coefficient G'(x,y) is defined on C(; 4,5 as:

cto) = { = (i) ) Gt st <

|C(s,d,n,n)
Cls,ann)(T,Y) otherwise

(3)
where 7 is the gamma correction value, o is the average intensity variance in C(z,y)
subband image of 16 x 16 window size and t is the threshold value that describes the
maximum intensity range condition. The value of ¢ is determined by maximum value of
histogram bin in the image. Consequently, the maximum intensity level is maintained by
using G(z,y) nonlinear mapping function. However, the OD edges and the area within it
(cup) are brighter than the other objects in the retinal vascular image. Therefore, we have
imposed a local-influence control condition that if the maximum intensity level reaches
a value of 1.8, the area remains unaffected by G(x,y) function. Hence, the features are
more emphasized and brighter as compared with the surrounding background of each
orientation subband components. Next, we performed the inverse IDST reconstruction
process to get the enhanced luminance L' plane and subsequently the enhanced L'a*b*
image that is converted back to sRGB color space for visualization. Figure 3 is visually
represented the enhancement results. In this enhancement method, 1.5 value of gamma
is used, which is determined by experiments.

6. Results. To test the proposed retinal vascular image enhancement method, we have
used three different datasets consisting of total 271 images obtained from DRIVE: 40,
STARE: 81 and Private: 150. The accuracy of the proposed method is compared with
some state-of-the-art image enhancement methods such as (histogram equalization (HE),
HSI (hue, saturation and intensity) color model [10] and Contourlet transform [12]) by
using peak signal to noise ratio (PSNR) quality metric. A high PSNR value indicates
that the reconstruction is of high quality. The value of PSNR is calculated on each plane
of the RGB image that cumulatively describes the image quality as compared with input
image.

For performance comparisons to the retinal image enhancement by Contourlet trans-
form [12], first, we have divided into subbands to complete the Laplacian Pyramid (LP)
method and then the bandpass/detail image is analyzed by a directional filter banks. For
the Contourlet transform, we have used five LP levels and 32 directions at the finest level.
Some of the proposed perceptually-oriented contrast enhancement algorithms results are
shown in Figure 4 on the private dataset. The figures show that the contrast and illumi-
nation problems are solved without generating artifacts such as saturation and, moreover,
the details are preserved.
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FIGURE 4. The result of color image enhancement with feature-preserving
characteristics from the private dataset obtained the Hospital Puerta del
Mar (Cadiz, Spain), where (a) is the original image and (b) is the enhanced
image by proposed method.

Proposed method HE model HST model Contourlet transform

FIGURE 5. Performance comparison for the four different image enhance-
ment methods

TABLE 1. Competitive results obtained from proposed method with other
three state-of-the-art methods using PSNR ratio

Proposed method HFE model HSIT model Contourlet transform
PSNR (R): 9.9223 | PSNR (R): 6.0123 | PSNR (R): 8.2638 PSNR (R): 8.0498
PSNR (G): 8.3364 | PSNR (G): 4.0498 | PSNR (G): 1.8353 PSNR (G): 2.2035
SNR (B): 5.2385 PSNR (B): 8.0498 | PSNR (B): —3.2552 PSNR (B): 5.6780
Total: 23.4973 Total: 18.1119 Total: 6.8438 Total: 15.9313

The accuracy of our proposed algorithm with the state-of-the-art enhanced methods
such as (i) HE model, (ii) HSI model and (iii) Contourlet transform in terms of PSNR
is displayed in Figure 5. The quantitative comparisons results are also shown in Table
1. As it can be observed from this table that our proposed algorithm achieves a value of
PSNR of 23.5 in total from each red (R: 9.92), green (G: 8.34) and blue (B: 5.24) channels.
Figure 5(b), Figure 5(c) and Figure 5(d) are the enhancement results of HE model (total:
18.1, R: 6.01, G: 4.05, B: 8.05), HSI model (total: 6.84, R: 8.26, G: 1.83, B: -3.25) and
Contourlet transform (total: 15.90, R: 8.04, G: 2.20, B: 5.68), respectively. The higher
PSNR value is obtained by the proposed method followed by the HE, HSI and Contourlet
transform algorithms.

It is clear that the uneven illumination is adjusted on image, contrast is improved and
features are preserved after using the proposed method. By using this method, a few
unrecognizable capillary vessels are easily identified and the edges of the OD area become
more apparent as compared with surrounding region. As shown in Figure 5(b), the HE
enhancement algorithm disturbs the OD and other areas parts due to the introduction
of the standard deviation equation. Moreover, other basic disadvantages also exist in the



3738 Q. ABBAS, A. FAROOQ, M. T. A. KHAN ET AL.

HE method when applied to retinal images: i) the absence of some grey levels and non-
uniform background/luminosity distribution. This drawback can be easily observed: some
parts of the vessels become invisible due to the excessively bright background. Another
disadvantage is well-known: histogram equalization strongly amplifies noise. This feature
will make the subsequent step (vessel segmentation, microaneurism detection, etc.) hard
to complete and even destroy some part of the desired lesion.

The results of retinal image enhancement by HSI model are shown in Figure 5(c). It
should be noticed that the local enhancement which aims at normalizing each pixel of the
image to zero mean and unit variance also amplifies the noise and make the image strongly
brighter. As this figure represents, the edges of blood vessels and nerves of the retinal
image are enhanced by this method. Figure 5(a) and Figure 5(d) show the comparison
of the discrete shearlet transform (DST) and Contourlet transform enhancement. Our
enhancement using DST approach clearly provides better quality results than Contourlet
transform technique because of the introduction of the noise factor, which is very hard to
amplify during the reconstruction process.

7. Conclusions. A novel color contrast enhancement method is developed with features-
preserving characteristics by using a multiscale discrete-shearlet transform (DST), the
perceptual uniform color space (CIEL*a*b*) and local-influence control function. The
DST coefficients of the luminance image (L*) has been updated by gamma correction and
adaptive non-linear mapping function without affecting other parts of the retinal fundus
image using control function. After that the inverse DST is computed to reconstruct
the image with the updated coefficients of L* and this plane is recombined with the
corresponding a* and b* planes to obtain the enhanced image. This proposed method
has been compared with other three methods such as histogram equalization (HE), HSI
model and Contourlet-based enhancement by using PSNR image quality measure. The
application of this method is tested on retinal images obtained from two publicly available
datasets DRIVE: 40 and STARE: 81 and a private one: 150. The experimental results on
these datasets indicate that our enhancement method outperforms than other methods,
while preserving the main characteristics of the image. This conclusion suggests the idea
of introducing this preprocessing step in any CAD tool for early diagnosis of some diseases
such as Diabetic Retinopathy. In the future work, the microaneurisms and OD area will
be detected and the effect of this algorithm will be noticed.

Acknowledgment. This research work is partially supported by Higher Education Com-
mission (HEC) and COMSATS, Pakistan. The authors also gratefully acknowledge the
helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] N. G. Congdon, D. S. Friedman and T. Lietman, Important causes of visual impairment in the world
today, JAMA, vol.290, no.15, pp.2057-2060, 2003.

[2] Q. Abbas, I. Fonddn, S. Jiménez and P. Alemany, Automatic detection of optic disc from retinal fun-
dus images using dynamic programming, Image Analysis and Recognition Lecture Notes in Computer
Science, vol.7325, pp.416-423, 2012.

[3] M. Niemeijer, B. V. Ginneken, M. J. Cree, A. Mizutani, G. Quellec et al., Retinopathy online
challenge: Automatic detection of microaneurysms in digital color fundus photographs, IEEE Trans.
on Med. Imaging, vol.29, no.1, pp.185-95, 2010.

[4] M. U. Akram, S. Khalid and S. A. Khan, Identification and classification of microaneurysms for
early detection of diabetic retinopathy, Pattern Recognition, vol.46, no.1, pp.107-116, 2013.

[5] L. Giancardo, F. Meriaudeau, T. P. Karnowski, Y. Li, S. Garg, K. W. Tobin Jr. and E. Chaum,
Exudate-based diabetic macular edema detection in fundus images using publicly available datasets,
Medical Image Analysis, vol.16, no.1, pp.216-226, 2012.



[6]

[7]

[11]
[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

FEATURES PRESERVING CONTRAST IMPROVEMENT 3739

U. T. V. Nguyen, A. Bhuiyan, L. A. F. Park and K. Ramamohanarao, An effective retinal blood vessel
segmentation method using multi-scale line detection, Pattern Recognition, vol.46, no.3, pp.703-715,
2013.

J. Jan, J. Odstrcilik, J. Gazarek and R. Kolar, Retinal image analysis aimed at blood vessel tree
segmentation and early detection of neural-layer deterioration, Computerized Medical Imaging and
Graphics, vol.36, no.6, pp.431-441, 2012.

M. E. Martinez-Perez, A. D. Hughes, S. A. Thom, A. A. Bharath et al., Segmentation of blood
vessels from red-free and fluorescein retinal images, Medical Image Analysis, vol.11, no.1, pp.47-61,
2007.

X. You, Q. Peng, Y. Yuan, Y. Cheung et al., Segmentation of retinal blood vessels using the radial
project and semi-supervised approach, Pattern Recognition, vol.44, no.10-11, pp.2314-2324, 2011.
M. D. Saleh and C. Eswaran, An automated decision-support system for non-proliferative dia-
betic retinopathy disease based on MAs and HAs detection, Computer Methods and Programs in
Biomedicine, vol.108, no.1, pp.186-196, 2012.

M. Foracchia, E. Grisana and A. Ruggeri, Luminosity and contrast normalization in retinal images,
Medical Image Analysis, vol.9, no.3, pp-179-190, 2005.

P. Feng, Y. Pan, B. Wei et al., Enhancing retinal image by the Contourlet transform, Pattern
Recognition Letters, vol.28, pp.516-522, 2007.

E. Grisan, A. Giani, E. Ceseracciu and A. Ruggeri, Model-based illumination correction in retinal
images, Proc. of the 3rd IEEE International Symposium in Biomedical Imaging: Nano to Macro,
pp-984-987, 2006.

G. D. Joshi and J. Sivaswamy, Colour retinal image enhancement based on domain knowledge, Proc.
of Indian Conf. on Computer Vision, Graphics and Image Processing, pp-591-598, 2008.

M. F. Hossain and M. R. Alsharif, Minimum mean brightness error dynamic histogram equalization
for brightness preserving image contrast enhancement, International Journal of Innovative Comput-
ing, Information and Control, vol.5, n0.10(A), pp.3249-3260, 2009.

G. Easley, D. Labate and W. Q. Lim, Sparse directional image representations using the discrete
shearlet transform, Applied and Computational Harmonic Analysis, vol.25, no.1, pp.25-46, 2008.
W. Q. Lim, The discrete shearlet transform: A new directional transform and compactly supported
shearlet frames, IEEE Trans. on Image Process, vol.19, no.5, pp.1166-80, 2010.

J. Pan, C. Zhang and Q. Guo, Image enhancement based on the Shearlet transform, ICIC' Express
Letters, vol.3, n0.3(B), pp.621-626, 20009.

J. J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever and B. van Ginneken, Ridge based
vessel segmentation in color images of the retina, IEEE Transactions on Medical Imaging, vol.23,
pp.501-509, 2004.

B. McCormick and M. Goldbaum, STARE = Structured analysis of the retina: Image processing of
TV fundus image, USA-Japan Workshop on Image Processing, Jet Propulsion Laboratory, Pasadena,
CA, 1975.

P. Green and L. MacDonald, Colour Engineering, Achieving Device Independent Colour, John Wiley
and Sons, Braishfield, 2002.

W. D. Niven, The Scientific Papers of James Clerk Mazwell, Dover Phoenix Edition, Nueva York,
2003.



