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Abstract. The development of nuclear fusion as an alternative to fossil fuels and nu-
clear fission has motivated a growing interest in seeking solutions to the control prob-
lems existing in the nuclear fusion reactors such as Tokamaks. This paper considers
the design of robust control schemes based on a sliding mode control to deal with the
reference tracking problem for the loop voltage of a Tokamak by means of a control-
oriented ASTRA-Matlab integration. The proposed controller stabilizes the system in
spite of model uncertainties and the stability analysis of the closed-loop system dynam-
ics is guaranteed by the Lyapunov stability theorem. The simulation results show the
high-performance dynamic characteristics of the proposed method. The comparison of
the simulation results provided by the sliding mode technique with those obtained from
a traditionally used PID-based controller verifies that the proposed control scheme not
only provides better tracking performance, but also faster and smoother response for the
nonlinear system subject to model uncertainties and disturbances.
Keywords: Plasma physics, Tokamak control, Modelling and simulation, Nonlinear
control systems, Sliding mode control

1. Introduction. The current worldwide growth in energy demand together with the
CO2 emissions increment and the resulting climate change has promoted the research and
development of new clean energy sources alternatives to fossil fuels and the potentially
dangerous and controversial nuclear fission [1,2]. In this regard, substantial efforts and
resources have been devoted to the development of clean nuclear technology based on
fusion processes. In particular, as a result of this concern several researches are currently
being carried out in the field of Control Engineering applied to fusion processes and
reactors [3-6].

Thus, although the controlled fusion is still a technological challenge, fusion reactors
present significant advantages over other energy sources, such as the existence of fuel
supply for several thousand years or no contribution to air pollution, greenhouse effect
or acid rain [5,7,8]. Furthermore, contrary to fission, it does not produce long-lived
radioactive isotopes and it is intrinsically safe, so there is no risk of a large scale nuclear
accident [4,5].

Nuclear fusion processes are based on the interaction of two light nuclei, contained in
an ionized gas called plasma, which fuse into a heavier and more stable nucleus producing
a large amount of energy [4,7,9,10]. This plasma can be confined using electromagnetic
forces generated by external magnetic fields, which is known as magnetic confinement.
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Nowadays, the most promising fusion reactor based on magnetic confinement is the Toka-
mak, which is basically a toroidal device (see Figure 1) that confines the hot plasma using
a helical magnetic field [3-5,10,11].
Most of the controllers currently working on Tokamaks have been designed by decou-

pling the controls as much as possible. They are usually based on proportional integral
derivative (PID) schemes with a multiloop structure, which are partly designed on the
basis of simple models of the system to be controlled and they are usually fine-tuned dur-
ing Tokamak operation. This decoupling has often implied the drawback of ignoring the
effect on a particular plasma parameter from coils other than the coil being used to con-
trol that parameter. Besides, they do not take into account the sensitivity of the system
to parameter uncertainties and disturbances. Therefore, recent efforts try to design more
complex and robust controllers focusing the attention on these disadvantages [3-5,10].
Among various control schemes, variable structure control (VSC) has been considered

as an effective method to deal with the control problems of nonlinear systems [12-15].
Therefore, in order to overcome the weakness of PIDs that have been extensively studied
in literature [3-5,10,16] in this paper an integral sliding mode controller (ISMC) which
constitutes a particular kind of VSC controllers is presented. For its design a control-
oriented ASTRA-Matlab integration developed in previous works [16] has been used.
This ISMC, unlike traditional variable structure designs [13-15], has an integral sliding
surface [12,17-20]. The closed loop stability of the proposed scheme is demonstrated using
the Lyapunov stability theory [12,21].
Given that Tokamaks are nonlinear systems with unavoidable model uncertainties and

disturbances, which can lead to a performance degradation of the controlled system, it is
necessary to study robust control schemes. In this sense, the sliding-mode control (SMC)
presents many good characteristics over other control schemes, such as good performance
against unmodelled dynamics, insensitivity to parameter uncertainties and variations,
external disturbance rejection and fast dynamic response [12,13,15,22]. The simulation
results provided in this paper suggest that the benefits provided by the SMC have made
it possible to overcome the uncertainties arising from the difficulty of obtaining accurate

Figure 1. Scheme of a typical Tokamak
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models of Tokamak plasmas or disturbances. This improved behaviour can also be de-
duced from the comparison of simulation results of the SMC with those obtained with a
traditional PID that are given at the end of this manuscript.

The rest of the paper is organized as follows. In Section 2, the ASTRA Code used
for modelling the Tokamak performance is presented. In Section 3, the control-oriented
ASTRA-Matlab integration used for the design and study of the sliding-mode controller
is described [16]. In Section 4, the mathematical model of the Tokamak used to design the
controller is presented. Next, in Section 5 the proposed sliding-mode controller developed
for the loop voltage is explained, where the simulation results are presented and compared
with those obtained from a traditionally used Proportional Integral Derivative (PID)
control scheme [4,5,16]. Finally, in Section 6, some concluding remarks end the article.

2. ASTRA Code.

2.1. General description of the ASTRA code. The ASTRA (Automatic System for
Transport Analysis) is a widely used tool for generating computer code to simulate the
transport in magnetically confined plasmas [9,23]. ASTRA solves coupled time-dependent
1-D transport equations for particles, heat and current and 2-D MHD (Magnetohydrody-
namic) equilibrium self consistently with realistic Tokamak geometry.

The flexibility provided by ASTRA allows the user to customize the code and achieves
higher efficiency. This flexibility relies on the wide choice of standard relationships, func-
tions and subroutines that represent different transport coefficients, equilibrium solvers,
auxiliary heating methods (e.g., NBI) and other physical processes and data processing
in the Tokamak plasma. Another interesting feature of ASTRA is that it generates in-
teractive codes which mean that the user, in addition to observing the time evolution of
plasma parameters, can also interrupt the program execution or change the data layout
in order to influence the course of modeling [23]. Therefore, the ASTRA code is consid-
ered a transport code with a flexible programming system able to create numerical codes
for predictive or interpretative transport modeling, for stability analysis, and processing
experimental data.

2.2. ASTRA background equations and formulae. In the ASTRA code, the mag-
netic system is considered to be toroidally symmetric and two coordinate systems are
used: a cylindrical coordinate system (r, ϕ, z) with the polar axis coinciding with the ma-
jor axis of the torus and another coordinate system (a, θ, ζ) associated with the magnetic
geometry of the Tokamak where a denotes the radial variable which is an arbitrary label
of a magnetic flux surface (see Figure 2), θ is the poloidal angle and the toroidal angle
is chosen ζ = −ϕ [23]. The definition of the local flux g given by (1) and the condition
for the function of magnetic surface F (a) is expressed by means of the diffusion Equation
(2), which requires the introduction of two functions of a single argument a defined by
(3) and (4).

g (a, θ) = F (a) ṽ (a, θ)− D̃ (a, θ)∇F (a) (1)

∂F

∂t
=

∂

∂V

(〈
(∇V )2 D̃

〉 ∂F
∂V

− F 〈∇V · ṽ〉
)
+ S (a) (2)

D (a) =
〈
(∇a)2 D̃

〉/〈
(∇a)2

〉
(3)

v (a) = 〈∇a · ṽ〉/〈|∇a|〉 (4)

Considering those definitions independent of the choice of the magnetic surface label a
it is possible to rewrite (2) in the form used in ASTRA (5). Using those definitions the
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Figure 2. Axisymmetric configuration of the plasma (dashed lines repre-
sent the magnetic surfaces)

total flux and the average flux density on a magnetic surface can be expressed by (6) and
(7) respectively.

∂F

∂t
=

∂a

∂V

∂

∂a

[
∂V

∂a

〈
(∇a)2

〉(
D
∂F

∂a
− 〈|∇a|〉〈

(∇a)2
〉vF)]+ S (a) (5)

Γ (a) =
∂V

∂a

(
〈|∇a|〉 vF −

〈
(∇a)2

〉
D
∂F

∂a

)
(6)

γ (a) = vF −
〈
(∇a)2

〉
〈|∇a|〉

D
∂F

∂a
(7)

Thus, the magnetic field and the current density can be obtained by (8) and (9) re-
spectively, where Ψ and I are defined by (10) and (11), being R0 the distance from the
axis of the torus to a fixed point in the plasma and B0 the vacuum magnetic field at the
point where r = R0.

B = I∇ζ + 1

2π
[∇Ψ×∇ζ] (8)

j = − ∇ζ
2πµ0

r2div
∇Ψ

r2
+

1

µ0

[∇I ×∇ζ] (9)

ψ = −Ψ =
1

2π

∫
V

B · ∇θd3x =

∫
Sθ

B · dSθ (10)

I = R0B0 −
µ0

2π

∫
Sθ

j · dSθ (11)

The surface functions Ψ and I, depend on space coordinates through the variable a,
so that they can be used as radial coordinate instead of a but they can also describe an
evolving plasma through their dependence on time [23]. Once at this point, it is convenient
to define another two surface functions: toroidal magnetic flux, Φ, and the effective minor
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radius, ρ.

Φ =

∫
Sζ

B · dSζ =
1

2π

∫
V

I

r2
d3x (12)

ρ =
√
(Φ/(πB0)) (13)

The plasma equilibrium in a Tokamak is determined by the Grad-Shafranov Equation
(14) [4,9,10], where p = p (ρ, t) represents the plasma pressure with the contribution of
all plasma species and I is the diamagnetic current (11).

∆∗ψ = r2div
∇ψ
r2

= −4π2

(
µ0r

2 ∂p

∂ψ
+ I

∂I

∂ψ

)
(14)

The ASTRA code defines a special notation to simplify the equations which is explained
in detail in [23]. It also uses the transport equations shown in Table 1 that may be
expressed in terms of thermodynamic forces taken as derivatives with respect to ρ, which
makes it possible to write the equilibrium Equation (14) in terms of the functions provided
by transport equations as:

∆∗ψ = 2πµ0R0

[
J

〈B2/B2
0〉

(
j|| +

R0

B0ρµ

∂p

∂ρ

)
− r2

B0R0ρµ

∂p

∂ρ

]
(15)

Table 1. Transport equations in ASTRA code

1. Equation for the electron density ne, where Γe is the electron flux through a flux
surface ρ = const and Se represents the source of electrons.

1

V ′

(
∂

∂t
− Ḃ0

2B0

∂

∂ρ
ρ

)
(V ′ne) +

1

V ′
∂

∂ρ
Γe = Se

2. Equation for electron temperature Te, where qe is the electron heat flux through a
flux surface ρ = const and Pe represents the energy of the source of electrons.

3

2
(V ′)

−5/3

(
∂

∂t
− Ḃ0

2B0

∂

∂ρ
ρ

)[
(V ′)

5/3
neTe

]
+

1

V ′
∂

∂ρ

(
qe +

5

2
TeΓe

)
= Pe

3. Equation for ion temperature Ti, where ni = ne/Zi and Γi = Γe/Zi and with qi as
the ion heat flux through a flux surface ρ = const and Pi representing the energy of
the source of ions.

3

2
(V ′)

−5/3

(
∂

∂t
− Ḃ0

2B0

∂

∂ρ
ρ

)[
(V ′)

5/3
niTi

]
+

1

V ′
∂

∂ρ

(
qi +

5

2
TiΓi

)
= Pi

4. Equation for the poloidal flux ψ, where σ|| represents the conductivity and by

considering ~jBS and ~jCD as the bootstrap current density and the density of the
current driven by external sources.

σ||

(
∂ψ

∂t
− ρḂ0

2B0

∂ψ

∂ρ

)
=
J2R0

µ0ρ

∂

∂ρ

(
G2

J

∂ψ

∂ρ

)
− V ′

2πρ
(jBS + jCD)
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3. ASTRA-Matlab Integration. With the purpose of designing the SMC the control-
oriented ASTRA-Matlab integration tool [16] described in this section has been used. In
this tool, the standard ASTRA transport code for the simulation of Tokamaks is embed-
ded in the Matlab-Simulink software (see Figure 3). On the one hand, this integration
composes a very valuable tool for control design, since it offers to the researchers a useful
tool for the development of different control schemes for various Tokamak models using
the capabilities and benefits of the Simulink environment in an easy and intuitive way.
On the other hand, there already exist different control codes that have been developed
in Matlab, with accurate Tokamak description but lacking the capabilities of a trans-
port code provided by ASTRA, which could benefit from this tool by developing coupled
model control systems. Moreover, the incorporation of ASTRA transport code in Matlab
allows inexpensive upgrades such as the implementation of high performance compilation
if needed [16].

Figure 3. Simulink closed loop system diagram with embedded ASTRA code

The first step towards embedding ASTRA code into Matlab was the need to automate
not only ASTRA execution through the process of saving-loading parameters but also
to make the necessary modifications to maintain all the ASTRA capabilities. Therefore,
two interface modules had to be programmed: the ASTRA-Matlab conversion and its
corresponding inverse transformation. Besides, it was also necessary to create a C-module
linked to the ASTRA code to automate the communication between both environments
without the intervention of the user; the scheme of this software development can be
observed in Figure 4.
Therefore, it is possible to consider that the integration can be divided into three main

modules. The first one takes care of ASTRA Init and Interrupt routines by incorporat-
ing source code that implements specific functions to automate ASTRA execution. The
second module modifies the initial and final values of each iteration. The third interme-
diate module transfers the output variables from the scope of ASTRA to the Simulink
environment making the appropriate data conversion between both environments [16].
Using the features of Simulink tool interface the ASTRA can be embedded as a block

in which all functions related to the ASTRA operation and its interconnection and com-
munication with Matlab are collected. This block may be easily combined with other
subroutines and control schemes without the need of further modifications.
The relevance of this integration relies in that there already exist several Matlab codes

in the market lacking current profiles but integrating diverse Tokamak models. Therefore,
the benefits of this integration are twofold: on the one hand, the control for the currents
can be tested in Matlab via Simulink, and on the other hand, an inner second control loop
may be implemented coupling ASTRA with another Tokamak model in order to extend
the study and to control other variables as, for example, the vertical displacement of the
plasma [24].
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Figure 4. Software flow diagram of ASTRA automation

4. Mathematical Model of the System.

4.1. Loop voltage. In general, the loop voltage is defined as the voltage created in a
circular loop concentric with the plasma column as a result of the variation of the poloidal
magnetic flux linked through it (Figure 5, [24]). By extension of this concept, it can be
defined in an arbitrary flux surface as minus the time derivative of the poloidal magnetic
flux relative to that surface [24]. By inspection of Figure 5, it can be concluded that
any change in the magnetic flux, φ, through the loop will generate a voltage, V , accord-
ing to Lenz’s law, V = −dφ/dt. Flux changes can be produced by a variation in the
plasma current or primary transformer flux. Since plasma and transformer circuits are
inductively coupled, the loop voltage measurement contains mixed information regard-
ing non-inductive current drive, plasma resistance and plasma inductance changes. The
equivalent circuit of the Tokamak shows the relationship between the Tokamak equivalent
parameters and loop voltage [11,23,25].

4.2. Tokamak equivalent circuit and loop voltage state space model. In order
to adjust the controller parameters used in the simulations performed with the aforemen-
tioned ASTRA-Matlab integration, the state space model for the loop voltage described
below has been used. In this model, the Tokamak is described as a distributed-parameter
electric network [11,25,26]. Thus, the energy storage in the poloidal magnetic field is ac-
counted for by a series inductance, L. The ohmic power loss in the plasma is represented
by a series resistance, R. The total plasma current is denoted by I, and the non-inductive
current drive can be described by a parallel current source, Î, or a series voltage supply,
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Figure 5. Simplified scheme of a Tokamak and the loop voltage measurements

V̂ = RÎ. In this equivalent circuit the coupling between the plasma and the loop voltage
is represented by a mutual inductance, M . It is assumed that the loop voltage, V , is mea-
sured along a poloidal flux surface, and its relationship with the distributed parameters
can be given by:

V = RI − V̂ +
d

dt
((L−M) I) (16)

Moreover, applying the Poynting’s theorem analysis to the poloidal magnetic field Bθ

the energy balance equation can be expressed as

1

2µ0

d

dt

∫
Ω

B2
θdV +

∫
Ω

ηj2φdV −
∫
Ω

ηjφĵφdV = V I (17)

where µ0 is the vacuum magnetic permeability, jφ and ĵφ are the total and non-inductive
plasma current profiles in the toroidal direction and η is the plasma resistivity profile.
The combination of (16) and (17) leads to (18) where the integration volume Ω is limited

by the flux surface that intersects with the voltage loop. The volume Ω can be split into
two regions Ωi and Ωe, which are internal and external to the plasma respectively. The
internal region Ωi is limited by the last closed flux surface (LCFS), while the external
region Ωe is limited externally by the flux surface that intersects the measuring loop and
internally by the LCFS [11,25,26].

I
d

dt
((L−M) I) =

1

2µ0

d

dt

∫
Ω

B2
θdV (18)

If Equation (18) is integrated in the interval (0, t) the inductive elements L −M can
be written explicitly using (19) as a function of the internal and external inductances so
that (16) may now be expressed as (20) [26]

L−M = µ0
r0
2
(li + le) (19)

V = RI − V̂ + µ0
r0
2
I
d

dt
(li + le) + µ0r0 (li + le)

dI

dt
(20)

When the loop voltage is calculated at the LCFS, le = 0, it is possible to rewrite (20) as
it is shown in (21). Alternatively, if the effect of the non-inductive current is introduced

as an ideal current source, Î, instead of the voltage, it is not subject to resistive losses
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and the circuit equation can be expressed as (22) [26].

Vb = RI − V̂ + µ0
r0
2
I
dli
dt

+ µ0r0li
dI

dt
(21)

Vb = R
(
I − Î

)
+ µ0

r0
2
I
dli
dt

+ µ0r0li
dI

dt
(22)

y = c1x1x3 + c2ẋ2 (23)

Therefore, the loop voltage measurement given by (22) for constant plasma current
can be written as the non-linear output Equation (23) for the state space model where

c1x1x3 = R(I − Î) and c2ẋ2 = µ0
r0
2
I dli

dt
.

Using this equivalent circuit representation it is possible to obtain a loop voltage state
space model as a system of first-order differential equations where state space variables
X = (x1, x2, x3)

T are chosen to correspond with physical meaningful quantities such as
plasma resistance (whose dynamics can be approximated by the electronical temperature
of the plasma Te), internal inductance and ohmic current as it is shown in (24). The
detailed description of the steps necessary to achieve the state space model can be found
in [25,26].

X =

 x1
x2
x3

 =


〈
T

−3/2
e

〉
li

I − Î

 (24)

Based on this state vector, the state space model can be approximated by a first order
system as given in (25), whose parameters ki and τi represent respectively the input gain,
which can be estimated from the change in the states xi once the stationary conditions
are reached, and the time constant of the system, which for i = 1 is related to transport
and current diffusion mechanisms in the plasma, for i = 2 is considered basically the skin
time of the discharge and for i = 3 describes the dynamics of the ohmic part of the plasma
current when a non inductive current is created in the plasma [26,27].

ẋi = − 1

τi
(xi − xi|t=0) +

ki
τi
u (25)

5. Sliding-Mode Controller for the Loop Voltage.

5.1. Introduction to sliding-mode controller (SMC). Sliding-Mode Control is a
technique derived from Variable Structure Control (VSC) which was originally studied by
Utkin [15,27-29]. VSC consists of a set of continuous subsystems with a proper switching
logic and, as a result, control actions are discontinuous functions of system states, distur-
bances (if they are accessible for measurement), and reference inputs [20,22,28]. Thus, the
SMC is a nonlinear control strategy which is well-known for its robustness that has been
developed and applied to closed-loop control systems for the past fifty years [18]. Also,
the SMC makes it possible to replace generic nth order problems for equivalent simplified
first order problems [30].

Because of the ability of this type of controllers to deal with non-linearities, time-
dependency, as well as uncertainties and disturbances in a direct manner, these controllers
can be applied to many different systems [12,18,20,28,31]. The control law defined in
SMC is composed of two parts: on the one hand, the sliding-mode control law, which
is responsible for maintaining the controlled system dynamics on a sliding surface and
represents the desired closed loop behavior; on the other hand, the reaching mode control
law which is designed in order to reach the desired surface [16].
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The proposed sliding control scheme (see Figure 6) has been designed with the purpose
of compensating the uncertainties of the system. In the sliding control theory, the switch-
ing gain must be chosen so that the sliding condition is verified [30]. In order to verify
this condition, an appropriate choice of the sliding gain should be made to compensate
these uncertainties. Although an upper bound of the parameter variations, unmodelled
dynamics, noise magnitudes, etc. should be known to select the sliding gain, in practical
applications those bounds are frequently unknown or very difficult to calculate. A solu-
tion to this problem is to choose a sufficiently high value for the sliding gain, assuring a
control signal capable to overcome these drawbacks and achieve the control objective.

Figure 6. Scheme for sliding-mode controller (SMC)

5.2. Design of the SMC for the loop voltage. As it has been stated in the previous
section the system dynamics can be expressed by (24) which may be rewritten as follows:

ẋi = −axi + b+ cu (26)

where a = 1
τi
, b = 1

τi
xi|t=0 and c = Ki

τi
.

Now, let us consider the previous dynamical Equation (26) with uncertainties as follows:

ẋi = − (a+∆a)xi + (b+∆b) + (c+∆c)u (27)

where the terms ∆a, ∆b and ∆c represent the uncertainties of a, b and c respectively. It
is assumed that these uncertainties are unknown but bounded.
And let us define the error as follows:

e(t) = x̂ (t)− x∗ (t) = x (t)− x∗ (t)− x̃ (t) (28)

where x̃ (t) = x (t) − x̂ (t) is the estimation error and x∗ (t) refers to the loop voltage
command. Taking the derivative of (28) with respect to time yields

ė(t) = ẋ (t)− ẋ∗ (t)− ˙̃x (t) = −ae (t) + g (t) + d (t) (29)

where the following terms have been collected in the signal g (t)

g (t) = b+ cu (t)− ax (t)− ẋ∗ (t) (30)

and the uncertainty terms have been collected in the signal d (t)

d (t) = −∆ax (t) + ∆b+∆cu (t)− ˙̃x (t) (31)

At this point, it should be noted that the term d (t) is bounded because the terms ∆a,

∆b and ∆c are bounded and the term ˙̃x (t) = ẋ (t)− ˙̂x (t) is also bounded, since both ẋ (t)

and ˙̂x (t) are bounded.
The first step in the design of the SMC is to define a sliding surface along which

the process output can slide to find its desired final value. In general, the sliding surface
should be designed to match the desired system dynamics because it represents the system
behavior during the transient period [15]. This surface divides the phase plane into regions
where the switching function S (t) takes different sign. There are many options to select
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this sliding variable S (t); in this case a sliding variable with an integral component defined
by (32) has been chosen [12,17,19] where k is a constant gain.

S (t) = e (t)−
t∫

0

(k − a) e (τ) dτ (32)

In order to achieve the reference tracking some assumptions have to be considered.
(As. 1) The gain k must be chosen so that the term (k − a) is strictly negative, what

is satisfied if k < 0 [19].
Now, it is possible to design the SMC as shown in (33), where k is the gain previously

defined, β is the switching gain, S is the sliding surface defined by (32) and sgn () is the
sign function applied for achieving better tracking performance [12]:

g (t) = ke (t)− βsgn (S) (33)

(As. 2) The gain β must be chosen so that β > |d (t)| at any time. It should be noted
that this assumption implies that an upper bound for the uncertainties is known.

After the sliding surface has been selected, the control law must be designed to satisfy
the condition S (t) = 0 [17,19,27]. In addition, the problem of tracking a reference value
can be reduced to that of keeping S (t) at zero and, once S (t) = 0 is reached, to satisfy
the sliding condition defined by (34) in order to guarantee the value of S (t) at zero.

dS (t)

dt
= 0 (Sliding condition) (34)

This condition can be derived from the Lyapunov stability theory as it may be observed
in the following proof where (32), (33), (36) and the assumption (As. 2) are used.

Let the Lyapunov function be defined as [12,19,21,27]

V (t) =
1

2
S (t)S (t) (35)

The derivative of this candidate is calculated as follows

V̇ (t) = S (t) Ṡ (t)

= S · [ė− (k − a) e]

= S · [(−ae+ g + d)− (ke− ae)]

= S · [g + d− ke]

= S · [ke− βsgn (S) + d− ke]

= S · [d− βsgn (S)]

≤ − (β − |d|) |S|
≤ 0

(36)

Using the Lyapunov’s direct method, since V (t) is clearly positive definite, V̇ (t) is
negative semidefinite and V (t) tends to infinity as S (t) tends to infinity, it implies that
the equilibrium at the origin S (t) = 0 is globally asymptotically stable. Therefore, S (t)
tends to zero as time tends to infinity. Moreover, all trajectories starting off the sliding
surface S (t) = 0 must reach it in finite time and then they will remain on this surface.
This behavior of the system on the sliding surface is usually called sliding-mode [19].

When the sliding-mode occurs on the sliding surface (32), S (t) = Ṡ (t) = 0, the dy-
namical behavior of the tracking problem defined by (29) is equivalently governed by:

ė (t) = (k − a) e (t) (37)
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It should be noted that a typical motion under SMC consists of a reaching phase during
which trajectories starting off the sliding surface S = 0 move towards it and reach it in
a finite time, followed by sliding phase during which the motion will be confined to this
surface and the system error will be represented by the reduced order model (37), where
the error tends to zero. Then according to assumption (As. 1), the error e (t) converges
to zero exponentially.
The second term of the right hand side of (33) represents the discontinuous part of

the control law, which is nonlinear and represents the switching element of the control
law across the sliding surface. Although, hypothetically, this control law should allow
changes between structures infinitely fast, in practice, due to finite time delays in control
computations or limitations of the physical actuators, it is not possible to reach such a high
speed switching control; therefore chattering around the sliding surface appears [15,22].
The sliding surface reaching time depends on the control gain, but it must be taken into
account that if the controller is too aggressive it can contribute to the chattering [32].

5.3. Simulation results. In this section some simulation results are shown in order to
illustrate the effectiveness of the proposed sliding-mode controller for the loop voltage
in a reference tracking problem through simulation examples using the ASTRA-Matlab
integration tool for which no other conditions or restrictions but those imposed by the
model assumed in the ASTRA code [16].
The block diagram of the proposed control scheme has been presented in Figure 3, where

the block “Controller” corresponds to the sliding-mode controller detailed in the previous
section and described by (33), while the block “Embedded ASTRA Code” represents the
control-oriented ASTRA-Matlab integration presented in the third section of this paper.
In the examples, the loop voltage is controlled by manipulating the plasma current,

where the values for the sliding control law parameters have been chosen according to the
assumptions and considerations exposed in Section 5.2 for two different switching gains.
Simulation results given in Figure 7 represent the time evolution for the desired loop
voltage that are obtained from the simulation of the system using the SMC1 (see Table
2). It can be appreciated that after a transitory time the loop voltage tracks the desired
reference in spite of a 20% of system uncertainties considered in the ohmic current and
coil parameters.

Table 2. Sliding-mode controllers parameters

SMC1 k = −30 β = 20
SMC2 k = −30 β = 40

However, in Figure 7 it may also be appreciated the presence of the so-called chattering
phenomenon in the controlled variable with high frequency changes inherent to the use
of a sliding-mode controller. As it has been indicated, the presence of this chattering
phenomenon is due to the discontinuities of the sliding control law across the sliding
surface which forces the switching function S (t) given by (32) to take different sign.
Finally, the optimization of the controller parameters makes it possible to improve the

simulation results, as it may be inferred comparing the simulation results obtained for
SMC1 with those obtained for SMC2. In this sense, Figure 8 shows the loop voltage
obtained from the simulation using SMC2 and its corresponding reference. Comparing
the loop voltage response for SMC1 depicted in Figure 7 and the one for the SMC2 shown
in Figure 8, it is shown that the system response is faster with a lower settling time but
that the chattering observed in this last simulation is bigger than that in the first one.
This may also be observed from the tracking error of the loop voltage shown in Figure 9
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Figure 7. Controlled variable (loop voltage) for SMC1

Figure 8. Controlled variable (loop voltage) for SMC2

where the amplitude of the chattering present in the error signal is higher for SMC2 than
that for SMC1, as it could be expected since SMC2 uses a higher value of the switching
gain β.
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Figure 9. Tracking error for SMC

Figure 10. Performance functions for SMC1, SMC2, and for the tradi-
tional PID controller
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5.4. Comparative of simulation results. In this section, a comparison of the simu-
lation results obtained using the proposed SMC with those obtained using a traditional
PID-based controller is given so as to exemplify the better performance of this robust
scheme [4,5,16]. For this purpose, a performance evolution function J is used. This per-
formance function is defined by (38) in terms of the tracking error, where e (τ) represents
the error between the desired reference value for the loop voltage and the value obtained
from the system output.

J (t) =

∫
e2 (τ) dτ (38)

It can be observed in Figure 10 that the performance function for the SMC2 presents a
value lower than the one for SMC1 as it may be expected due to the mentioned reduction
of the chattering in the output of the system and the improvement in system response
speed. It can also be observed that the value of the performance evolution function for the
case of the PID-based controller is higher than the one for the sliding mode controllers. It
must be taken into account that, although the PID-based controlled has been adequately
tuned with a robust quarter decay ratio step response for the Tokamak system plant,
it is not able to deal with the 20% of system uncertainties considered. For this reason,
although in all cases the accumulated error measured with the cost function J defined
above presents an increasing behavior, it can be noticed that the growth rate is much
higher for the PID-based controller than that for SMC controllers since the error added
in SMC controllers is stabilized in the steady-state. At this point, it may be noted
that although the SMC controllers adequately match the desired reference input, the
performance evolution functions exhibit this increasing behavior due to the presence of
undesired chattering phenomenon in the error signals.

6. Conclusions. The aim of this paper has been the design of a sliding-mode controller
to deal with a reference tracking problem for the loop voltage of a Tokamak using the
control-oriented ASTRA-Matlab integration. The steps followed to implement the desired
controller show the feasibility of the integration used, as a valuable tool for the develop-
ment of controllers for Tokamak reactors in an easy and unified way. In this sense, the
ASTRA-Matlab integration allows the use of the Simulink toolbox for the control design,
providing users with the ability to try and test different controllers in a more convenient
way with the final aim of facilitating the development and application of advanced control
schemes to the widely extended and standardized ASTRA code for Tokamak reactors.

The simulation results obtained for the sliding-mode controller with an integral com-
ponent presented in this paper have shown a better performance than a traditional PID-
based scheme despite system uncertainties. Considering the difficulty to achieve accurate
models for Tokamak plasmas the feasibility and effectiveness of robust controllers with im-
portant features such as disturbance rejection, uncertainty insensitivity and fast response
it is very desirable for practical implementation.
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[30] M. Pérez de la Parte, O. Camacho and E. F. Camacho, Development of a GPC-based sliding mode

controller, ISA Transactions, vol.41, no.1, pp.19-30, 2002.
[31] J. Y. Hung, Variable structure control: A survey, IEEE Transactions on Industrial Electronics,

vol.40, no.1, pp.2-22, 1993.
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