
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 10(A), October 2012 pp. 6787–6798

A CONTINUOUS-TIME IDENTIFICATION METHOD
FOR PARAMETER ESTIMATION OF NONLINEAR
DYNAMIC LOAD MODELS OF POWER SYSTEMS

Jing Yang1,2, Min Wu1,2,∗, Yong He1,2 and Yonghua Xiong1,2

1School of Information Science and Engineering
Central South University

No. 932, Lushan Nanlu, Yuelu District, Changsha 410083, P. R. China
711yangjing@163.com; heyong08@yahoo.com.cn; yhxiong@csu.edu.cn

∗Corresponding author: min@csu.edu.cn

2Hunan Engineering Laboratory for Advanced Control and Intelligent Automation
Changsha 410083, P. R. China

Received June 2011; revised October 2011

Abstract. More accurate dynamic load models get better description of the dynamic
load characteristic and its relation to voltage stability. In this paper, a second order
Taylor series expansion model is presented as the simplification of the popular used ex-
ponential recovery dynamic load model. Then, a frequency weighted least-squares based
Hartley modulating functions (HMF) method is developed to estimate parameters of the
load model, which effectively attenuates the effect of noises in the process of parameter
identification. Case studies are conducted using simulation data and laboratory measure-
ments to demonstrate the effectiveness of the proposed methods for the identification of
the dynamic load model in the presence of noticeable additive measurement noises.
Keywords: Power systems, Dynamic load models, Parameter identification, Hartley
modulating function methods, Continuous-time model, Frequency weighted least-squares

1. Introduction. Load models are known to have a significant impact on dynamic sim-
ulation and stability analysis of power systems [1,2]. Many research works are focusing
on the load modeling of power systems [3,4], including static load models and dynamic
load models as two main types in the literature. Generally, the dynamic load models are
more accurate than the static load models to capture the load dynamics [5,6]. Since a
load bus is usually composed of many different types of load components with diverse
characteristics, different load components are taken into account aggregately in the load
models to capture the significant part of the overall load behavior.

Parameter identification is a key problem of load modeling of power systems. With
a certain load structure, the parameters often appear nonlinearly in the load model and
are identified by the data based methods. In the existing literature, many system pa-
rameter identification algorithms are proposed to estimate parameters of the dynamic
load models. Traditional gradient-based optimization methods [7,8] are first proposed to
identify the load parameters, such as Gauss-Newton iteration method and its variants
like Levenberg Marquardt (LM) method [9], but these algorithms often bring in local
convergence problem in the computation. To overcome such problem, various intelligent
techniques are developed to identify the load models, including separable identification
algorithm [10], genetic algorithm [11,12], simulated annealing [13] and multistage identi-
fication algorithms [14]. These techniques provide a better convergence and are widely
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used in power systems. However, the effects of measurement noises are ignored in these
works.
As all we know, the dynamic load models are expressed as continuous-time (CT) mod-

els, while few reported works use continuous-time identification methods directly. To
estimate parameters of CT models, the indirect approach is always viewed as a simple
method, which converts the CT load equations to discrete-time (DT) counterparts and
estimates the parameters of DT model by some usual methods. However, we note that,
when obtaining CT model from the estimated DT model, sampling frequency is hard to be
determined [15,16], which often brings in model error inevitably. So, the direct identifica-
tion approaches for CT models are worth taking into account, especially in some important
disciplines such as economic, signal processing, and power systems [17-19]. Among the
existing CT identification techniques, the Hartley modulating functions (HMF) method
is one of the encouraging and widely used approaches [20].
This paper proposes a second order Taylor series expansion model as the simplified load

model, which simplifies parameter identification drastically. Then, a frequency weighted
least-squares (FWLS) based HMF method is developed to identify the load model. This
method can identify the CT load model directly and effectively attenuate the effect of
measurement noises. Illustrative simulation studies show the effectiveness of the proposed
approaches for the identification of the nonlinear dynamic load model.

2. Problem Formulation. Since a load bus is usually composed of many different types
of load components with diverse characteristics, different load components are taken into
account aggregately in load models to capture the significant part of the overall load
behaviors. This paper is primarily concerned with the exponential recovery load model,
which is a widely used aggregate load model and developed from analyzing dynamic load
characteristics. However, some parameters appear nonlinearly in the load model, and
are hard to be identified by continuous-time identification techniques. In this section, we
study how to simplify the model for simplifying the procedure of parameter identification.

2.1. Exponential recovery load model. The exponential recovery load model can
capture the dominant nonlinear steady-state behavior of aggregate loads as well as load
recovery, and hence is widely discussed and used in literature. It is a mathematical
representation of the relationship between load power and voltage:

Tp
dPr

dt
= −Pr + P0

(
V

V0

)αs

− P0

(
V

V0

)αt

(1)

Pd = Pr + P0

(
V
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where V is the per-unit magnitude of voltage, Tp is the load recovery time constants,
Pr represents the load recovery responses for real power, Pd stands for the real power
demands, V0 and P0 denote the nominal voltage and real power, respectively, and αt and
αs represent the transient and steady-state load-voltage dependencies, respectively.
In this model, the total number of parameters to be estimated is three, including αs,

αt and Tp; the input and output data are the voltage V and the real power demands
Pd. Since the dynamic behavior of reactive power is similar to that of real power for an
aggregate load, the analysis is limited to real power only.

2.2. Simplification. The described exponential recovery load model is presented as a
set of nonlinear equations, and the power demands Pd has a nonlinear dependency on the
voltage V . The nonlinear parameters presented in the model complicate the identification
procedure. For simplifying the estimation process, the model has to be simplified firstly.
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The exponential recovery load model described in (1) and (2) is simplified around an
operating point at steady state. Define the voltage and power of the operating point are
V ∗ and P ∗, where P ∗ = P0(V

∗/V0)
αs . Small deviations around the operating point are

denoted by ∆. Using Taylor series expansion and removing all the constant terms, the
third order Taylor series expansion of the model is given by:

∆Pd = ∆Pr + P0αt
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Based on the Laplace-transformation, the load variation ∆Pd can be rewritten as:

y =
c1 + d1s

−a1 + s
u+

c2 + d2s

−a1 + s
u2 +

c3 + d3s

−a1 + s
u3 (5)

where y = ∆Pd, u = ∆V/V0, c1 = 1
Tp
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Then, the differential equation of the third order simplified model is obtained:

ẏ = a1y + c1u+ d1u̇+ c2u
2 + d2u̇

2 + c3u
3 + d3u̇

3. (6)

This model represents the load response when a voltage change is occurred in the system,
and is characterized by seven parameters: a1, c1, c2, c3, d1, d2 and d3.

Similarly, the second order and first order simplified models are obtained:

ẏ = a1y + c1u+ d1u̇+ c2u
2 + d2u̇

2. (7)

and

ẏ = a1y + c1u+ d1u̇ (8)

In Section 4, case studies will be conducted to compare the accuracy of the three
simplified models (6), (7) and (8). Simulation results show that the second order model
(7) is more accurate than the first order model (8). The models (7) and (6) get similar
accuracy, while the former one is much simplier than the later one. So in this paper, the
second order model (7) is used as the simplified model of the exponential recovery load
model.

3. Parameters Identification. In this section, a frequency weighted least-squares based
Hartley modulating functions method is firstly proposed to identify the dynamic load
model. And then, the parameters of the FWLS-based HMF method are analyzed in
Section 3.2.
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3.1. FWLS-based HMF method. The idea of FWLS-based HMF method is to modu-
late the simplified load model in time domain to HMF model in frequency domain, which
can be solved by a frequency weighted least-squares algorithm. It was motivated by the
Laplace and Fourier transformation. The main advantages of this method for estimating
CT systems include allowing for arbitrary initial conditions and avoiding approximation
of time derivatives from noisy signals.
First, introducing the modulating function φm(t), which is a member of the family of

an nth-order HMF,

φm(t) =
n∑

i=0

(−1)iC i
ncas ((n+m− i)ω0t) , 0 < t ≤ T, m = 0,±1, . . .

where cas(α) = cos(α) + sin(α), m is the modulating frequency index, ω0 = 2π/T plays
the role of a resolving frequency, and T is the observation time interval for the given input
and output signals.
Define the Hartley transform of u(t)

Hu(mω0) =

∫ ∞

−∞
u(t)cas(ωt)dt

Then Hu(mω0) and H
(v)

u (mω0), which are the mth HMF spectral component of the
continuous-time signal u(t) and the vth derivative of u(t), respectively, are obtained as
follows.
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where cas′(α) = cos(α)− sin(α). It can be seen that the approximation of the continuous-
time signals’ Hartley transform Hu(mω0) is required in the identification process of the
HMF method. The extended Simpson’s rule is used for better approximation,

Hu(mω0) =
∫∞
−∞ u(t)cas(ωt)dt

≈ T

3N

[
ũ0 + 4

k∑
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ũ2l−1 + 2
k−1∑
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ũ2l + ũN

]
where ũl = u(lT/N)cas(mω0lT/N), k = N/2, and N , an even number, is the number of
samples within the fixed time interval.
Modulating the second order simplified model (7) to HMF model

H
(1)

y (mω0) = a1Hy(mω0) + c1Hu(mω0) + d1H
(1)

u (mω0) + c2Hu2(mω0) + d2H
(1)

u2 (mω0) (9)

Let
z(mω0) = H

(1)

y (mω0)

ε(mω0) be an equation error. After some arrangement, (9) can be rewritten as a regression
equation in the frequency domain

z(mω0) = ϕT (mω0)θ + ε(mω0) (10)

where
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(1)

u (mω0) Hu2(mω0) H
(1)

u2 (mω0) ]
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and
θT =

[
a1 c1 d1 c2 d2

]
Based on a sequence of observations for m = 0,±1, . . .,±M , (2M + 1) regression

equations can be represented as a vector equation

Z(Mω0) = ΨT (Mω0)θ(Mω0) + ε(Mω0) (11)

where

ZT (Mω0) =
[
z(−Mω0) · · · z(−ω0)z(0) z(ω0) · · · z(Mω0)

]
ΨT (Mω0) =

[
ϕ(−Mω0) · · · ϕ(−ω0) ϕ(0) ϕ(ω0) · · · ϕ(Mω0)

]
εT (Mω0) =

[
ε(−Mω0) · · · ε(−ω0) ε(0) ε(ω0) · · · ε(Mω0)

]
Define a positive definite diagonal frequency weighting matrix

W = diag( w−M w−M+1 . . . w0 . . . wM−1 wM )

where wm = 1/(|mω0|+ 0.1), m = 0,±1, . . .,±M . Introducing W in the cost function

J =
1

2
εT (Mω0)Wε(Mω0) (12)

a frequency weighted least-squares based HMF method is obtained for estimating the
unknown parameters vector θ(Mω0):

θ̂(Mω0) = [ΨT (Mω0)WΨ(Mω0)]Ψ
T (Mω0)WZ(Mω0) (13)

In the expression of the frequency weighting matrix W , m is the modulating frequency
index. It can be seen that W is inversely proportional to the modulating frequency. At
the same time, the mth diagonal elements of W multiplies the mth spectral component of
the regression matrix (13), which leads to the effectiveness of the mth regression matrix
elements decreasing with frequency. Hence, the frequency weighting matrix W can be
interpreted as a kind of low-pass filter for the parameters estimation.

3.2. Analysis of parameters of the FWLS-based HMF method. Some parameters
of the FWLS-based HMF method should be examined, such as the optimal choice of the
sampling time ts or the number of input and output data points N within a certain record
length, and the mode number M of numerically significant spectral elements in the pa-
rameters estimation. These variables are important for the computational considerations
associated with the proposed method. In this section, the performance of the proposed
method for different values of N and M is analyzed, and good suggestions for optimal
choices of these variables are proposed.

For simulation purpose, the dynamic load model should be considered with known
parameters. In general, the parameters αs, αt and Tp are not known exactly for a given
load of power systems. However, average values for many load types have been pre-
determined in literature [13]. Here practical values of these parameters are given as
Tp = 1.2 s, αs = 0.5, αt = 1.5; the nominal voltage and real power are given as V0 = 1
p.u. and P0 = 12 MW. Based on the relationship between the exponential recovery load
model and the third order simplified model (6), the parameters of the simplified model are
obtained as a1 = −1, c1 = 6.3246, d1 = 17.0763, c2 = −1.7568, d2 = 4.7343, c3 = 0.9760
and d3 = −0.8784.

In the simulation, measurements are generated by setting the voltage of operating point
as V ∗ = 0.9 p.u., and the voltage variation range as 0.9 p.u. to 0.95 p.u., which means the
system operating in a normal voltage level. The corresponding voltage deviations around
the operating point used as the input signal is shown in Figure 1. The output signal
is generated by using the second order simplified model (7) with the known parameters
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a1 = −1, c1 = 6.3246, d1 = 17.0763, c2 = −1.7568, d2 = 4.7343, and then mixed with
Gaussian noises according to a selected value of noise-to-signal ratio (NSR). The time
interval is 5 seconds. The investigation is done in two cases, and estimation results are
all obtained based on 25 Monte Carlo runs.

Figure 1. Input signal

Case 1: In this case, the output signal for noise free and 10% noises are used respectively.
Given M = 4, the FWLS-based HMF method is applied to identify the paramters of the
load model as N increases from 50 to 1000. The estimation loss J is observed and recorded
in Table 1. The results show that the accuracy of the estimated paramters increases as
N increases. It is because that smaller sampling time is selected (ts = T/N). In general,
N should be chosen carefully for good estimation accuracy.

Table 1. Estimation loss for different values of N

N 50 100 400 500 1000
0% 6.2638e-5 2.4334e-5 1.9609e-6 1.3609e-6 7.2941e-7
10% 3.0408e-3 9.2338e-4 8.6252e-5 4.7596e-5 4.0681e-6

Case 2: In this case, Gaussian random noises are imposed on measurements with three
different NSRs. Given N = 500, the FWLS-based HMF method is used to estimate
the parameters by setting different values of M . As all we know, the ture paramters
of aggregate load models are not known exactly in practical. So, the lost function for
different values of M is computed, and the value of M which gives the minimum loss can
be selected as the optimum value. The minimum value of M required for identification
can be obtained from 2M + 1 − n ≥ nθ, where nθ is the number of parameters to be
estimated. For the second order simplified model, the minimum value of M is 3.
The simulation results are shown in Figure 2. Clearly, from the observation of the

results, the optimal value of the mode number M is 3 in this case. This is because for the
simplified model which is a high-pass system, noises have a more important effect than
the relevant data does for a bigger M .
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Figure 2. Lost function J versus mode number M

4. Results of Parameter Identification. The proposed simplified models and FWLS-
based HMF method are tested using simulation data and laboratory measurements.

4.1. Comparative performance analysis. In order to select an optimum simplified
load model, the performance of the proposed three different order simplified models are
compared in this section.

In the simulation, given the same parameters and input signal as in Section 3.2, the
output data are generated by simulating the orignial exponential recovery load model
with the given parameters. Based on the input and output data, the Hartley spectra of
the input and output signals and some of their derivatives are computed first. Then for
M = 4, the parameters of the HMF model (9) are estimated using the FWLS algorithm.
Finally, perform the above two steps for 25 Monte Carlo runs, and calculate the average
value of the parameters. The estimation results are shown in Table 2.

Table 2. Parameter values of different simplified models with the first
input signal

a1 c1 d1 c2 d2 c3 d3 J
−1 6.3246 17.0763 −1.7568 4.7343 0.9760 −0.8784

First order model (8) −1.0039 6.3014 17.3613 − − − − 0.3750
Second order model (7) −1.0002 6.3235 17.1305 −1.7546 4.7393 − − 1.3694e-5
Third order model (6) −1.0002 6.3249 17.1217 −1.7538 5.1201 1.7845 −5.0726 1.3780e-5

It can be seen that the accuracy of the first order simplified model (8) is much less than
that of the models (6) and (7). Comparing the estimation results between the second
order model and the third order model, it can be observed that the two models get
similar accuracy of J , while the parameters c3 and d3 of the higher order model are not
accurate enough. Further more, the second order model is much simpler than the third
order model. From what has been discussed, it can be concluded that higher than second
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order models are not very useful and accurate as the simplified model. In this paper, the
second order simplified model is chosen for the simplification of the exponential recovery
load model.
The proposed simplified models are also tested by using another input signal different

from that in the last subsection, that is u(t) = 0.05 sin(2πt)+0.05 cos(3πt) over 2 seconds.
The obtained parameters and estimation loss of the three different order simplified models
are shown in Table 3. It can be observed that the proposed second order simplified model
is the optimal one for its accuracy and simplication.

Table 3. Parameter values of different simplified models with the second
input signal

a1 c1 d1 c2 d2 c3 d3 J
−1 6.3246 17.0763 −1.7568 4.7343 0.9760 −0.8784

First order model (8) −1.0049 6.4217 17.0727 − − − − 2.1023
Second order model (7) −0.9999 6.3277 17.0709 −1.7480 4.7914 − − 1.2581e-4
Third order model (6) −0.9985 6.3001 17.0758 −1.7622 4.7453 0.8492 −0.8897 1.1368e-6

4.2. Presence of output noises. In this section, the performance of the proposed
FWLS-based HMF method in the presence of output noises is analyzed.
Just as in Section 3.2, for the given input signal shown in Figure 1, V0 = 1 p.u., P0 = 12

MW, V ∗ = 0.9 p.u., the output signal is generated based on another set of practical
parameters: Tp = 1.2, αs = 0.67 and αt = 2.8. In the simulation, Gaussian random
noises are imposed on output measurements with different NSRs. The paramteres are
estimated using the proposed FWLS-based HMF method and the Levenberg-Marquardt
(LM) method [9], respectively.
The LM method identifies the original exponential recovery load model directly, and the

input and output signal of the original model are the voltage and real power of the load,
while the input and output data of the simplified models are deviations values. Hence,
for the LM method, the input and output data should be added V ∗ and P ∗, respectively.
In the simulation, the finite difference method (central difference) is used to denoise the
data first. In order to conveniently compare the performance of the two methods, relative
error is introduced in this paper:

ζ = 100×

(
1

N

N∑
k=1

(
Pd(k)− P̂d(k)

)2
)1/2

(
1

N

N∑
k=1

Pd(k)2
)1/2

(14)

where Pd(k) and P̂d(k) are the measured and simulated output data, respectively.
Based on the relationship between the parameters of the simplified load model and

these of the exponential recovery dynamic load model, it can be easily calculated αs, αt

and Tp from the estimated values of a1, c1, d1, c2 and d2.
The estimation results of the LM method for NSR increasing from 0 to 2% are shown in

Table 4. The performance of the proposed FWLS-based HMF method for NSR increasing
from 0 to 30% are shown in Table 5 (M = 3, N = 500). The results show that the
FWLS-based HMF method is able to estimate parameters of the dynamic load model
in the presence of additive measurement noises precisely, while the LM method can get
acceptable results only for the data with few noises. Besides, as all we know, the LM
method is initial-sensitive and suffers from finding a local optimal solution, instead of a
global optimal solution.
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From what has been disscussed above, it can be concluded that the proposed FWLS-
based HMF method shows more advantages for identification of the dynamic load model.

Table 4. Estimation results using the LM method

NSR
αs αt Tp ζ(%)

In %
0 0.6700 2.8253 1.2017 0.0027

0.01 0.6700 2.8254 1.2029 0.0100
0.1 0.6704 2.8364 1.1062 0.0967
0.5 0.6774 2.8673 1.0951 0.4306
1 0.6874 3.7264 0.9808 0.6613
2 0.6967 6.1647 0.7278 0.8280

Table 5. Estimation results using the FWLS-based HMF method

NSR
αs αt Tp ζ(%)

In %
0 0.6683 2.8209 1.2025 0.1348
1 0.6683 2.8216 1.2029 0.1351
2 0.6687 2.8140 1.2048 0.1496
5 0.6689 2.8267 1.1885 0.1756
10 0.6714 2.8969 1.1696 0.3224
20 0.6690 2.8697 1.0940 0.4476
30 0.6736 3.0415 1.0023 0.5485

4.3. Laboratory experiments. In this section, the proposed model and identification
method are verified through laboratory experiments. The laboratory measurements are
carried out on a laboratory test system shown in Figure 3, which is modeled as a dynamic
load. The load contains various types of lightings, which are expressed as R and X, a
direct current (DC) machine and an induction machine. The voltage source is the supply
voltage source at the laboratory facilities in University of Alberta, and is considered as
an infinite bus.

In the dynamic measurements, the voltage changes are created by quickly turning the
adjustable transformer T , which results in a voltage step with a rise time of approximately

Figure 3. A laboratory test system
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Figure 4. Measured load voltage profile

0.2 to 0.3 seconds. Figure 4 shows the measured voltage profile for 0.7 seconds. The
voltage changes are applied to the system. Three-phase voltage and current of the load
bus are recorded and stored on a computer, and then transformed into phasor form using
the discrete Fourier transform technique. The voltage and current phasors are then used
to compute the load power. Finally, the voltage and power signals are used as the input
and output data to estimate parameters of the load model.
Based on the optimum value of M = 3, the FWLS-based HMF method is used for

identifying the load model. The estimated parameters and relative error are obtained as
αs = 1.8992, αt = 5.5431, Tp = 0.0201 and ζ = 0.2042%.
The LM method is also used to estimate the load parameters based on the laboratory

measurements. The estimated parameters and relative error are got as αs = 2.0667,
αt = 8.8916, Tp = 0.0024 and ζ = 2.0177%.
The measured and simulated real power profiles using the FWLS-based HMF method

and LM method are shown in Figure 5. It can be observed that, for the laboratory
measurements, which contain measurement noises, the FWLS-based HMF method is more
effective than the LM method to estimate the parameters of the dynamic load model of
power systems.

5. Conclusions. In the paper, a second order Taylor series expansion model has been
presented as the simplification of the popular used exponential recovery dynamic load
model. Then a FWLS-based HMF method has been proposed to estimate the parameters
of the simplified load model. Several case studies using simulation data and laboratory
measurements have been conducted to illustrate the performance of the proposed load
model and identification method. The estimation results have showed the effectiveness
of the proposed method for the identification of the continuous-time dynamic load model
even in the presence of noticeable additive measurement noises. The proposed simplified
model and method are of considerable practical importance in problems of parameter
identification of dynamic load model in power systems.
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(a) LM method

(b) HMF method

Figure 5. Estimation results for laboratory measurements
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