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ABSTRACT. Swarm-based optimization algorithms have demonstrated to have effective
ability to solve the classification problem in multiclass databases. However, these algo-
rithms tend to suffer from premature convergence in the high dimensional problem space.
This paper proposes a novel simplified swarm optimization (SSO) algorithm to overcome
the above convergence problem by incorporating it with the new local search strateqy. The
proposed algorithm can find a better solution from the neighbourhood of the current solu-
tion produced by SSO. The performance of the proposed algorithm has been evaluated by
using 18 different widely used databases and compared with the standard PSO and three
other well-known classification algorithms. In addition, the practicability of the approach
1s studied by applying it in analysing golf swing from weight shift data. Empirical results
illustrate that the proposed algorithm can achieve the highest classification accuracy.
Keywords: Particle swarm optimization, Discrete particle swarm optimization, Simpli-
fied swarm optimization, Local search, Data classification, Data mining

1. Introduction. Data mining is the process of analysing data from different perspec-
tives and summarizing it into useful information. It blends the traditional data analysis
methods with sophisticated algorithms for processing large volumes of data [1]. It has been
widely used and unifies research in fields such as statistics, databases, machine learning
and artificial intelligence (AI). Regarding that, data mining has been seen as an explosion
of interest from both academia and industry to alleviate the process of visualizing and un-
derstanding the pattern of the data. Data mining applies specific algorithm to extracting
meaningful knowledge so that the discovered knowledge can be applied in the related ar-
eas to increase the working efficiency and also improve the quality of decision making [2].
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The most commonly used data mining techniques include classification, data clustering,
association rule discovery, and outlier detection. Data classification is one of the most
common tasks in data mining that generates a set of rules from a set of training examples
to classify future testing data. The classification system usually starts by generating a
model from data instances (or learning examples) of labelled class, and finally classifies
the new instances from the target variable with the use of a mapping from instances to
classes.

The previous literature introduces the most commonly used conventional classification
algorithms such as Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbour
(KNN) and Neural Networks. SVM [3] is a well-known learning algorithm based on statis-
tical learning theory [4]. SVM has shown promising empirical good performance and has
been successfully used in many fields such as bioinformatics, text categorization, speaker
verification, handwritten digit recognition, face detection, financial market evaluation [5],
pattern recognition [6,7] and image recognition [8,9]. The classification accuracy of SVM
is good, but it is slow to classify new examples. There is a fast algorithm to reduce the
processing time [10]. Meanwhile, the Decision Tree adopts a divide-and-conquer approach
to build a predictive model that estimates the value of a target variable based on several
input variables. There are a lot of modified versions of the Decision Tree methods such
as Classification and Regression Trees (CART), PART, C4.5 and J4.8 [11]. The Decision
Tree algorithms have been successfully applied in a broad range of tasks from medical di-
agnosis to credit risk assessment for loan application [12]. In addition, KNN, Naive Bayes,
and Neural Networks have also been widely used in various applications as reported in
[13-17].

Recently, biology inspired algorithms have been implemented and tried out as a new
method for data classification problems. In the previous studies, the stochastic population-
based algorithms including Genetic Algorithm [18,19], Ant Colony [20], Immune Algo-
rithm [21], Artificial Bee Colony [22], Particle Swarm Optimization [23,24] were the most
commonly used algorithms in the context of optimization [22,25]. The hybrid approach
of PSO with simulated annealing and k-means [26], ant colony [27], SVM [28], Neural
Networks [29], and the fuzzy set theory with rough set theory [30] are several attempts
which have been made to accomplish a classification task in data mining. The experimen-
tal results of the above studies show that these methods can outperform the conventional
approaches in terms of classification accuracy. Recent studies have shown that PSO is one
of the popular heuristic techniques which have emerged as promising technique to discover
the useful and interesting knowledge from databases [23]. Tt has been successfully applied
in many different application areas due to its robustness and simplicity [31,32]. However,
PSO suffers from premature convergence especially in high dimension multimodal prob-
lems. The convergence speed decreases as the number of iteration is increased. These facts
lead to the difficulties for the particles to achieve the best fitness values [33]. To improve
the performance and overcome the drawback of PSO, this paper proposes a novel Sim-
plified Particle Swarm Optimization (SSO) algorithm with a new Exchange Local Search
(ELS) strategy. We shall refer this new algorithm as the SSO-ELS algorithm. In this
paper, the ELS strategy is introduced to find a better solution from the neighbourhood of
the current solution which is produced by SSO. It allows the particles to better explore the
search space, and preserves swarm diversity which is important in preventing premature
convergence of the particles. SSO is originally named DPSO (Discrete Particle Swarm
Optimization). In order to emphasize its simpleness, we shall refer it as SSO instead of
DPSO.
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The performance of the proposed algorithm is first measured using 13 popular datasets
from UCI repository. Moreover, in order to evaluate the practicability of the new ap-
proach, it is used to analyse golf swing from weight shift signal. Weight shift in golf
refers to the change of weight between the feet during the swing. In typical golf swing,
bodyweight shifts from evenly distributed between the feet at address towards the back
foot during backswing, and moves towards the front foot in downswing till follow-through
[34,35]. A correct weight shift is an important factor in developing momentum in the
golf swing, and is crucial to a shot’s range and accuracy [35]. In this study, we applied
our SSO-ELS algorithm to classifying weight shift data and identifying patterns of actual
golf swing. The information can then be used for correcting and improving swing pose of
golfer.

The rest of the paper is organized as follows. Section 2 briefly introduces the previous
PSO and SSO algorithm. Section 3 describes in detail about the proposed SSO-ELS
algorithm in the context of data mining. Section 4 reports the experimental results of
SSO-ELS compared with SSO, PSO, PSO-ELS and three other benchmark classifiers on
selected datasets. Finally, conclusions and future works are provided towards the end.

2. Particle Swarm Optimization and Simplified Swarm Optimization. The pro-
posed approach is based on the idea of the original PSO [36] and DPSO [37]. This section
briefly describes these two algorithms.

2.1. PSO (particle swarm optimization). Particle Swarm Optimization has been
known as an emerging population-based meta-heuristic algorithm that performs searching
using a population (called swarm) of individuals (called particles) that are updated from
iteration to iteration [28,36]. In the standard PSO [36], each particle has its own fitness
value which is calculated by a fitness function at its current position in order to be
optimized [38], and a velocity with social and cognitive components guiding flying towards
the optimum [39,40]. PSO starts with initial population of random particles, random
positions and velocities which are updated iteration-by-iteration inside the problem space.
In each iteration, the particles move around in a multidimensional search space with their
velocities constantly updated by the particle’s own experience and the best experience of
the whole swarm. The former is called the particle’s best position (pbest) or local best
position (lbest), while the latter is called the particle’s global best position (gbest) in the
literature [23,36,37].

In PSO, a swarm consists of NV particles moving around in a D-dimensional searching
space. The i-th particle is represented as X; = (z;1,2,...,2;p). The best previous
position pbest of any particle is P; = (pj1, pie, - - -, Pin), and the velocity for particle i is
Vi = (vi1, Vi2, . . ., v;p). The global best particle which represents the fittest particle found
so far in the entire swarm is denoted by P,. During each iteration, each particle updates
its velocity according to the following equation:

vl =w vl + e s rand, - (pid — xf;l) + co - rands - (pgd - xf;l) : (1)
where ¢; and ¢y denote the acceleration coefficients, d = 1,2, ..., D, and rand; and rands
are random numbers uniformly distributed within [0, 1]. Acceleration coefficients ¢; and
co control the exploration of the particle movement in a single iteration. Typically, both
coefficients are equal to 2.0 in general cases. The inertia weight w in (1) is also used to
control the convergence behaviour of the PSO [37]. Each particle then moves to a new
potential position as follows:

$§d:$521+vfd7 d=12,...,D. (2>

The algorithm of the standard PSO is presented as follows:
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1. Initialize a population of particles with random positions and velocities.

Evaluate the fitness value of each particle in the population.

3. Get the pbest value. If the fitness value of the particle ¢ is better than its pbest
fitness value, and then set the fitness value as a new pbest of particle 1.

4. Get the gbest value. If any pbest is updated and it is better than the current gbest,
and then set gbest to the current pbest value of particle 7.

5. Update particle’s velocity and position according to (1) and (2).

6. Stop iteration if the best fitness value or the maximum generation is met;

N

otherwise go back to step 2.

2.2. SSO (simplified swarm optimization). This section introduces SSO algorithm.
Initially, the number of swarm population size, the number of maximum generation, and
three prespecified parameters are determined. In every generation, the particle’s position
value in each dimension will be kept or be updated by its pbest value or by the gbest value
or be replaced by new random value according to this procedure.

)

-1 .
x;,, if rand(

) €[0,Cu),
fEt _ p§;17 1f rand() € [O’UM Op)7 (3)
id gt ifrand() € [Cy, Cy),
x, if rand() € [Cy, 1).
In this equation, ¢ = 1,2,...,m, where m is the swarm population. X; = (z;1, Z;o,. . .,

x;p), where z;p is the position value of the i-th particle with respect to the D-th dimension
of the feature space. C,, C, and C, are three predetermined positive constants with
Cy < C, < Cy. P, = (pa,pi2;---,pip) denotes the best solution achieved so far by itself
(pbest), and the best solution achieved so far by the whole swarm (gbest) is represented by
G; = (9i1, 92, - - -, gip). The x represents the new value for the particle in every dimension
which are randomly generated from random function rand(), where the random number
is between 0 and 1. The SSO algorithm is illustrated in Figure 1.

3. The Proposed SSO-ELS Data Mining Algorithm. In this paper, we propose a
new data mining approach based on the idea of the original PSO [36] and DPSO [37]
and call it Simplified Swarm Optimization (SSO) with Exchange Local Search scheme.
The SSO-ELS has developed in which each particle is coded as a positive integer number
with a new rule encoding scheme and local search strategy. In this paper, the proposed
SSO-ELS algorithm is used to solve the classification problem and can cope with dataset
containing both discrete and continuous variables.

This approach is significantly different from other previous research works which had
only combined data mining and PSO. We found that most of their efforts were dealing
with the development of PSO as optimization techniques to solve data mining problems,
such as classification algorithm in [41] and clustering algorithm in [42]. To improve the
performance of SSO, we proposed to incorporate it with the new local search strategy
to perform on the global best solution obtained in each generation. Figure 2 shows the
flowchart of how the proposed SSO-ELS algorithm incorporates with the novel local search
for data mining classification task.

3.1. The rule mining encoding. In the context of the data mining task, knowledge
discovery is represented by the form of IF-THEN prediction rules that have the advantage
of being high-level symbolic knowledge representation which contribute to the ability to
find small number of rules with high fitness value [43]. Figure 3 shows the form of rule
mining encoding for the particles’ position. The position of each particle contains N
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maxFit= maximum fitness value

v
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v
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v

| Generate random number |

Keep the original value l—

Replace value by pbest l—
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Randomly generate new value
toreplace the original value

Meet termination criteria?

FiGurE 1. Flowchart of SSO algorithm

dimensions (attributes) and the predictive class, namely Class X. Here we introduce a
threshold for each attribute which comes from the lowest data range value and the highest
data range value of the given dataset. The former is called LowerBound and the latter
is called Upper Bound. The Lower Bound and Upper Bound values are obtained by using
(4) and (5), respectively.

Lower Bound = z — rand() * (max(X;) — min(X;)), (4)
Upper Bound = z + rand() * (max(X;) — min(X;)), (5)
where X; = (x;,%,...,x;p) denotes the i-th seed value of the N-th corresponding

attribute in each D-dimension, rand() is a random number in a range between 0 and 1,
and (max(X;) — min(X;)) is the range value of the data source in each attribute. The
general form of the IF-THEN rules generated by PSO and SSO will be performed in all
dimensions:

IF Lower Bound < z;; < Upper Bound is true, THEN prediction is Class X.
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FiGURE 2. The SSO based mining approach with local search strategy

Attribute Lower Upper Attribute Lower Upper

1 Bound Bound o N Bound Bound Class X

FI1GURE 3. Rule mining encoding

This approach is likely to produce some seeding position outside the range of the values
seen within the dataset. The most likely place a particle will be seeded is around the
lowest and the highest values from all of their examples. However, the seeding examples
are from the class being predicted by the rule that the particle is encoding. Hence, if the
distribution of data from these examples is different from all other examples, then hope-
fully the search can go in other useful way. In the case of PSO and SSO rule mining, the
value of Lower Bound and Upper Bound will be updated during and after the generation
process. (2) has been employed to update the new current value of the corresponding
position.

3.2. Rule evaluation. In previous literature, several different evaluation metrics for rule
evaluation have been presented and the most commonly used metric is the classification
accuracy which has a more direct relation to generalization accuracy. It is necessary to
estimate the quality of every candidate rule. To evaluate the goodness of the rules, the
rule’s quality (fitness function) is computed in the solution space. The rule evaluation
method returns a single number that representing the value of the related position. In
data mining, typically, data will be divided into two parts, such as training data and
testing data. Training data is used to generate a model according to the given rules in
the target problem, and later the model will be used on the testing data to obtain the
validation accuracy. Usually, we use classification accuracy to measure how well the rule
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can perform in the testing phase. In general, the standard classification accuracy rate can
be written as:

TP+TN 6
TP+ FP+FN+TN’ (6)
where TP, FP, TN and F'N are the number of true positive, false positive, true negative
and false negative associated with the rule respectively [11].

The standard classification accuracy rate =

- True Positive (T'P): the number of examples that covered by the rule that have the
class predicted by the rule.

- False Positive (F'P): the number of examples covered by the rule that have a class
different from the class predicted by the rule.

- True Negative (T'N): the number of examples that are not covered by the rule that
have a class different from the class predicted by the rule.

- False Negative (F'N): the number of examples that are not covered by the rule that
have the class predicted by the rule.

On the other hand, the class distribution is highly unbalanced in most nonlinear classifi-
cation problems. Therefore, (6) is ineffective to measure the accuracy rate of the model
[44]. For that reason, a more comprehensive metric for rule evaluation is adopted in this
paper and its quality is expressed as follows:

TP " TN (7)
TP+ FN TN+ FP
According to [33], the highest fitness value of the individual within the range will be

searched in every optimization process which is significantly important to obtain the best
quality of the rule to solve the classification problems.

The rule quality = sensitivity x specifigity =

3.3. Rule pruning. In data mining, the main goal of rule pruning is to eliminate the
irrelevant attributes that might have been unnecessarily included in the rule. Rule pruning
can potentially increase the predictive power of the rule, and also can avoid overfitting to
the training set [11]. In addition, it also contributes to the minimalism of the rule’s length
as the shorter rule can be easier to understand by the user [20]. In the rule discovery
process, once we found the highest quality rule for the main class in the training set, the
best rule is then added to the rule set after being pruned using a pruning procedure.

The principal idea of pruning process is to iteratively remove each attribute (term) at
one time from the rule, and at the same time keep improving the quality of the rule.
Typically, the pruning process will start with the full rule in the initial iteration. Then
the rule quality is computed according to (7). After that, the attribute pairs are checked
in reverse order in which they were selected to see if a pair can be removed without
decreasing the rule quality. This involves tentatively removing terms from each rule and
seeing if each terms’ removal affects the accuracy of the entire rule set. If the individual
terms’ removal does not affect the accuracy, it will be removed permanently. If it does
affect the accuracy, it will be replaced and the algorithm will move to the next term, and
eventually to the next rule.

After the pruning procedure, the examples which are covered by the rule are removed
from the training set. An example is said to be covered by the rule if that example
satisfies all the terms (attribute value pairs) in the rule antecedent (IF part). A WHILE
loop is performed as long as the number of uncovered examples of the main class in the
training set is greater than zero. Once this threshold has been reached, the training set
will be reset by adding the previously covered examples. After completing the pruning
process, all the redundant rules which do not contribute to the classification accuracy are
removed. This is achieved by classifying the training set using the rule list. If any rules do
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not classify any examples correctly, they will be removed. Later, a series of testing data
are used to measure its classification accuracy according to the rule set obtained. For
each instance, a prediction value is computed by examining every element in the rule set
for the corresponding class if it is covered by the rule. The prediction value is calculated
according to the prediction function as in (8).

Prediction value+=a * rule quality + 3 * percentage of the rule covered, (8)

where o and 3 are two parameters corresponding to the importance of the rule quality
and the percentage of the rule covered, respectively. The former is known as Quality
Weight and the latter is known as Coverage Weight, a € [0,1] and 8 = (1 — «). The
prediction value for each class is accumulated and the final result is calculated from the
class with the highest prediction value.

3.4. The proposed exchange local search strategy. Apparently, SSO can only con-
duct a rough search that produces premature results which may not be able to offer the
satisfactory solutions. For this reason, we have embedded a local search strategy to SSO
for producing more satisfactory solutions. Local search is an algorithm that moves from
one solution to another solution that allows us to explore the solution space until an
optimal solution is found [45]. It starts from a current solution and then tries to improve
the searching result by looking for a better solution from its neighbour solution. The
neighbourhood search is repeated until a local optimal solution is found.

In this paper, we propose a novel exchange local search (ELS) method to incorporate
with the SSO algorithm, namely SSO-ELS. The aim of ELS is to find a new pbest of
the particle or a new gbest from the current particles themselves without doing any new
generation. The ELS scheme can also be applied to the original PSO algorithm. We have
considered PSO-ELS as well as SSO-ELS.

Figure 4 shows the process of the ELS in flow diagram. The principle of the ELS
applied in SSO and PSO rule mining is to exchange the lower bound and upper bound
value for one selected attribute from the neighbour particle, re-evaluate the fitness value
of the target particle, and then try to find out the new pbest of the target particle or new
gbest in the swarm. This idea is supported by an improvement in performance observed
in our initial experiments.

Figure 5 has illustrated the performance of ELS in each generation. By assuming that
the rule set of the corresponding dataset contains four attributes, the following eight steps
present the sequence involved in ELS algorithm. Figure 5 has illustrated Step 2 to Step
6 in detail.

The steps of ELS strategy:

Step 1 Pre-determine local search time (7°) which will only be used for gbest.

Step 2 Choose a target particle (FP;). In this phase, gbest will be the first target particle
to be run in T times’ of local search. Later, the other pbest will be sequentially
selected as target particles and they will only be run once in local search.

Step 3 Randomly select one attribute from the rule set in the dataset. This process is
called exchangeAttribute.

Step 4 Randomly select two different neighbour particles, P, and P, from the population.

Step 5 Get a Lower Bound(z) of the selected attribute (selected from Step 3) of P,, and
get an Upper Bound(y) of the selected attribute of P,.

Step 6 Temporarily replace the corresponding Lower Bound and Upper Bound of the tar-
get particle with x and y.

Step 7 Re-evaluate the fitness value of the target particle.
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FIGURE 4. The process of the exchange local search (ELS)
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F1GURE 5. The Upper Bound and Lower Bound exchange strategy for one
selected attribute in each generation (note: UB = UpperBound, LB =
Lower Bound)

Step 8 Check whether the fitness value is better than the current pbest of the target
particle or better than gbest. If it is better, pbest and gbest will be updated,
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and the exchange value for the target particle will be kept; otherwise, the orig-
inal Lower Bound and Upper Bound values will be positioned back to the target
particle.

This process will be repeated until all particles have completed their local search strategy.

4. Experimental Results. We have compared our scheme with PSO and three other
well-known data mining classification algorithms which include Support Vector Machine
(SVM), and two Decision Tree algorithms such as PART and J48.

All benchmark classifiers have been implemented from Weka 3.6.1 [11]. The classifica-
tion performance of all classifiers was evaluated by using 10-fold cross validation proce-
dure. The dataset was divided into 10 partitions where each procedure is run ten times
by using a different partition of testing data set each time, while the other nine data sets
will be used for training set. The average of the classification accuracies of the ten runs
are reported as the classification accuracy of the discovered rule set. In order to verify
the performance of the proposed SSO-ELS method, we have conducted the experiments
in two parts. First, we tested the algorithms on chosen UCI datasets. The description of
test data and set up are described in Section 4.1, and results are discussed in Section 4.2.
In second part, weight shift data of golf swing is used for evaluation, and the details are
explained in Section 4.3, followed by discussion of the results in Section 4.4.

4.1. Dataset description and testing conditions for experiments on UCI data.
In the first part our testing experiments, we have selected 13 datasets taken from UCI
repository database [46] to test the performance of the proposed SSO-ELS. These datasets
contain various types of attributes that are discrete, continuous and nominal. The nominal
attributes in the Credit dataset were mapped into discrete values to suit the SSO or SSO-
ELS program.

As mentioned earlier in Section 3, SSO can cope with discrete and continuous variables;
hence, data discretization is completely discarded in the pre-processing phase. Details of
the properties of 13 datasets used in the experiments have been summarized in Table 1.
Some of these datasets contain missing values such as Breast Cancer, Lung, Credit and
Heart-Cleveland (from now on called Heart) dataset. The number of missing values of
the corresponding datasets is shown in brackets in the last column. In this experiment,

TABLE 1. Details about the 13 UCI repository datasets used in the experiments

Dataset Attributes | Instances | Classes Data type Missing value
Breast Cancer 9 683 2 Discrete Yes (16)
Lung 56 27 3 Discrete Yes (5)
Iris 4 150 3 Continuous No
Zoo 16 101 7 Discrete No
Monk 6 432 2 Discrete No
Thyroid 5 215 3 Discrete, Continuous No
Credit 15 653 2 Discrete, Continuous | Yes (37)
Glass 9 214 6 Continuous No
Wine 13 178 3 Continuous No
Ecoli 7 336 8 Continuous No
Balance 4 625 3 Continuous No
Dermatology 34 358 6 Discrete Yes (8)
Heart 13 297 6 Discrete, Continuous Yes (6)
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TABLE 2. Parameters setting for SSO and PSO algorithms

Parameter Setting | SSO/SSO-ELS | PSO/PSO-ELS
Number of Particles 30 30
Maximum Generation 20 20
Maximum Fitness 1.0 1.0
Cw, Cp, Cy 0.1, 04, 0.9 -
Quality Weight («) 0.5 -
Coverage Weight () 0.5 -

C1, C9 - 207 2.0

Maximum Weight - 0.9
Minimum Weight - 0.4

those missing values were discarded from our consideration as their deleted numbers are
relatively small [47].

Meanwhile, Table 2 shows the parameter settings for the algorithm of SSO, SSO-ELS,
PSO and PSO-ELS which have been used in all datasets for the experiments. The number
of particles and maximum generation were chosen based on the best results obtained from
trails. It is worth mentioning that the best setting of the parameters is case dependent
and requires further study, and the rest of the parameter values used in this experiment
were adopted from [48]. It is assumed based on our preliminary testing that this setup
provides a good chance of finding the global optimal solution and ensures convergence of
particles in a satisfactory amount of time.

4.2. Results and discussion on UCI data experiments. The classification accuracies
and the average rule set size results are presented in Table 3. The CA columns list the
highest classification accuracies from each run while the ARS columns show the shortest
average rule set size generated from the highest classification accuracy of the particular
problems. The rankings of the techniques in each problem are also given in the parenthesis.
In Table 3, we can see that SSO-ELS could achieve 7 highest score from all datasets when
compared with SSO, PSO and PSO-ELS. According to Table 3, the classification accuracy
of SSO-ELS can outperform the standard PSO and PSO-ELS in 5 datasets (Breast Cancer,
Lung, Monk, Wine and Ecoli) and competitive with PSO in Iris and PSO-ELS in Iris
and Zoo datasets. According to the testing results, the SSO-ELS algorithm manages to
achieve higher than 94% of classification accuracy in Breast Cancer, Iris, Monk, Zoo and
Wine datasets. Furthermore, for Lung dataset the accuracy for SSO-ELS is higher than
SSO and PSO by about 6.1% and 15% respectively, while being only slightly better than
PSO-ELS by 1.6%.

SSO-ELS also shows good performance in wine dataset where its classification accura-
cies are 3.5%, 5.5% and 6.6% higher than SSO, PSO and PSO-ELS respectively. Inter-
estingly, after applying ELS in PSO, the classification accuracies for Thyroid and Derma-
tology datasets have increased to 94.8% and 86.0% respectively. We believe that this is
due to the ability of ELS which can perform a refine searching to find the best solution
within the problem space. On the other hand, when we compared the average rule set
size, PSO and PSO-ELS tend to produce a minimal rule set size with 9.1 respectively.
However, their classification performances are still not as good as SSO-ELS even though
the average rule set size of SSO-ELS is greater than PSO and PSO-ELS. Overall, SSO-
ELS (84.8%) could outperform SSO, PSO and PSO-ELS with 84.0%, 83.0% and 84.1%
respectively over the 13 problems. Among swarm-based optimization algorithms involved
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TABLE 3. Summarization of classification accuracies (%) and average rule
set size for SSO and PSO with and without exchange local search

SSO PSO SSO-ELS PSO-ELS

Dataset CA ARS CA ARS CA ARS CA ARS
Breast Cancer | 97.1(3) | 6.4(4) | 96.8(4) | 6.1(1) | 97.4(1) | 6.2(2) | 97.2(2) | 6.3(3)
Lung 68.3(3) | 9.5(4) | 59.4(4) | 7.9(1) | 74.4(1) | 8.3(3) | 72.8(2) | 8.1(2)
Tris 95.3(2) | 4.7(2) |96.0(1)| 4.8(3) | 96.0(1) | 4.5(1) |96.0(1)| 4.8(3)
Z00 90.2(3) | 12.6(3) | 93.1(2) | 7.4(1) | 94.1(1) | 9.9(2) |94.1(1)| 7.4(2)

Monk 100.0(1) | 4.0(2) | 99.3
Thyroid 94.1(3) | 6.3(3) | 94.4

(3) | 3.9(1) |100.0(1)| 4.0(2) | 99.5(2) | 4.1(3)

(
Credit 85.8(1) | 11.5(3) | 85.2(

(

(

)

)

) | 5.1(1) | 93.5(4) | 6.3(3) |94.8(1)| 5.5(2)

)| 9.0(1) | 85.7(2) | 14.1(4) | 85.3(3) | 9.1(2)
Glass 65.8(1) | 14.3(4) | 57.9(4) | 6.2(1) | 62.3(2) | 6.4(3) | 60.8(3) | 6.3(2)
)
)

)
)

Wine 94.1(2) | 6.8(1) | 92.1(3) | 14.8(3) | 97.6(1) | 14.1(2) | 91.0(4) | 14.1(2)
)

)

Ecoli 82.2(2) | 14.3(3) | 81.8(3) |12.2(1) | 83.1(1) | 12.7(3) | 80.5(4) |12.2(1)
Balance 79.7(2) | 12.8(4) |80.4(1) | 11.0(2) | 78.6(3) | 11.1(3) | 78.1(4) | 10.9(1)
Dermatology | 83.0(4) |11.5(1)| 85.6(2) | 15.1(2) | 83.6(3) | 27.1(3) |86.0(1) | 14.8(2)
Heart 56.2(3) | 31.6(4) |56.9(1) | 14.9(3) | 56.4(2) |11.3(1)|56.9(1) | 14.8(2)
Average 84.0 1.3 | 83.0 9.1 84.8 105 | 84.1 9.1
Rank 3 3 1 1 1 2 2 1

TABLE 4. Comparison of classification accuracies (%) and ranking of the
techniques for SSO-ELS and other classifiers

Data SSO SSO-ELS | PSO | PSO-ELS | PART SVM J48
Breast Cancer | 97.1(3) | 97.4(1) |96.8(4) | 97.2(2) | 95.5(7) |96.3(5) | 96.1(6)
Lung 68.3(3) | 74.4(1) |59.4(4) | 72.8(2) | 48.2(5) | 40.7(6) | 48.2(5)
Iris 95.3(2) | 96.0(1) |96.0(1)| 96.0(1) | 94.0(3) | 92.7(4) | 96.0(1)
Zoo 90.2(4) | 94.1(1) |93.1(2) | 94.1(1) | 92.1(3) | 73.3(5) | 92.1(3)
Monk 100.0(1) | 100.0(1) |99.3(3) | 99.5(2) | 100.0(1) | 81.7(4) | 100.0(1)
Thyroid | 94.1(3) | 93.5(5) | 94.4(2) | 94.8(1) | 94.0(4) |69.8(7) | 92.0(6)
Credit 85.3(3) | 85.7(2) |85.2(4) | 85.3(3) | 83.8(6) | 86.4(1) | 84.8(5)
Glass 65.8(3) | 62.3(4) |57.9(6) | 60.8(5) | 67.8(1) | 35.5(7) | 65.9(2)
Wine 04.1(2) | 97.6(1) |92.1(5)| 91.0(6) | 93.3(4) | 41.6(7) | 93.8(3)
Ecoli 82.2(4) | 83.1(3) |S8L8(5)| 80.5(6) | 83.6(2) | 42.6(7) | 84.2(1)
Balance | 79.7(4) | 78.6(5) |80.4(3)| 78.1(6) | 83.5(2) |88.3(1) | 76.6(7)
Dermatology | 83.0(6) | 83.6(5) |85.6(4) | 86.0(3) | 93.3(2) | 81.6(7) | 95.3(1)
Heart 56.2(3) | 56.4(2) |56.9(1) | 56.9(1) | 50.2(6) |53.9(4) | 52.2(5)
Average | 83.9(3) | 84.8(1) |83.0(4) | 841(2) | 83.0(4) |68.0(6) | 82.9(5)

in this study, SSO-ELS shows the best performance, while PSO shows the lowest results,
as shown in Table 3.

In order to validate the competitiveness of SSO-ELS in various datasets, we have com-
pared its classification accuracy performance with three other benchmark classifiers. All
three benchmark classifiers were employed with their default parameters as set in WEKA.
In this paper, sequential minimal optimization (SMO) [49] algorithm was implemented
for training an SVM classifier.

The comparison results are presented in Table 4 which can clearly show that SSO-ELS
can achieve higher classification accuracy for Breast Cancer, Lung, and Wine datasets
when compared with three other benchmark classifiers. Moreover, the SSO-ELS algorithm
is found competitive with J48 in Lung dataset as well as competitive with PART and J48
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TABLE 5. Average classification accuracies and ranking of all techniques
on 13 testing datasets

Data SSO | SSO-ELS | PSO | PSO-ELS | PART | SVM | J48
Average (%) | 83.9 84.8 83.0 4.1 3.0 | 68.0 | 82.9
Rank 3 1 4 2 4 6 H

TABLE 6. Sum of ranking of the techniques and ranking based on the total ranking

Data SSO-ELS | PSO-ELS | SSO | PSO | J48 | PART | SVM
Total Score 32 39 41 44 | 46 46 65
Rank 1 2 3 4 5 5 6

in Monk dataset. In addition, for Lung dataset SSO-ELS shows about 1.4%~33.7% better
against 6 other benchmark classifiers which can be considered as a significant contribution
in data mining problem. Besides, about 56% of difference in accuracy can be seen in Wine
dataset when compared with SVM.

In order to make a good comparison of these 7 algorithms, Table 5 and Table 6 are
reported. The former one presents the average classification accuracies of all datasets and
the ranking based on the average values, and the latter one is the sum of the algorithm’s
ranking of each problem which have arranged from minimum value to maximum value.
From Table 5, we can note that the best two techniques on this databases set are SSO-
ELS and PSO-ELS, followed by SSO. Then, a group of three techniques (PSO, PART and
J48) follows at some distance. Finally, SVM follows at more distant.

Since the difference of average classification accuracy in these 7 techniques is quite
slim, Table 6 has calculated the sum of the ranks of each dataset from Table 4. From this
ranking, SSO-ELS can be seen as the best approach among swarm intelligence algorithms
and among all 7 data mining techniques. Therefore, we can conclude that SSO-ELS is the
most effective technique in facing classification problem and also can compete with other
most popular data mining techniques. According to the good performance of SSO-ELS,
we can conclude that the proposed swarm-intelligence data mining algorithm can be used
to solve classification problems.

4.3. Dataset description and testing conditions for experiments on golf swing
data. In this study, we used data collected from our golf swing experiment. The dataset
contains 516 instances of weight shift patterns, of which 150 of them represent golf swings
and the rest were not actual swing motions. The attributes are shown in Table 7. The
first three attributes are measures of time between various points of swing motion. These
points are time when weight starts to transfer from one foot to another. PeakRatio is
the maximum weight per second of the front foot in the second run, and the next three
features are ratios of weights between the two feet. Lastly, PeakLoc is the ratio of length
from first peak to cross point over length of SecondRun. The parameters set up in this
experiment were the same as part 1.

4.4. Results and discussion on golf experiments. The classification accuracies of
SSO-ELS and rest of the algorithms are listed in Table 8. SSO-ELS again achieves the best
result with the accuracy rate of 98.8%, and outruns SVM and PART. In the meantime,
the accuracy of PSO-ELS is also 0.7% higher than then standard PSO. The high accuracy
obtained shows that our proposed algorithm is suitable for classifying real world data and
can be applied in practical systems.
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TABLE 7. Details about the golf swing weight shift data used in the experiments

Attribute Description

PrevRun time of a range from cross point before assumed address
point to address point

FirstRun time of a range from assumed address point to assumed im-
pact point

SecondRun | time of a range from assumed impact point to next cross
point

PeakRatio ratio of width to height of the first peak point in the Secon-
dRun

PrevRatio | ratio of the minimum value of the right weight to the maxi-
mum value of the left weight

FirstRatio | ratio of the minimum value of the left weight to the maxi-
mum value of the right weight

SecondRatio | ratio of the minimum value of the right weight to the maxi-
mum value of the left weight in the SecondRun

PeakLoc ratio of PeakLoctime to the length of SecondRun

TABLE 8. Average classification accuracies and ranking of all techniques
on golf swing weight shift data

Data SSO | SSO-ELS | PSO | PSO-ELS | PART | SVM | J48
Accuracy (%) | 98.1 98.8 97.5 98.2 98.3 | 98.4 | 97.7
Rank 5 1 7 4 3 2 6

5. Conclusions. In this paper, we have presented a novel way of incorporating local
search strategy into SSO and PSO algorithm for rule mining classification algorithm. A
local search strategy named ELS (Exchange Local Search) is proposed and the results have
been analysed and discussed in detail. The main idea of exchange local search is to improve
and refine the searching process by exchanging the LowerBound and Upper Bound for
one selected attribute into the Lower Bound and U pper Bound of the corresponding target
particle. The fitness evaluation is performed to find out the new pbest or gbest from the
target particle without doing any new generation. The performance of SSO-ELS has been
compared with SSO, PSO, PSO-ELS and other three most popular data mining techniques
on 13 UCI repository datasets and weight shift data from golf swing. Our experimental
results show that the proposed method has comparable results for both SSO-ELS and
PSO-ELS. The technique proposed in this paper managed to get the highest classification
accuracy with more than 94% (except for Lung with 74.4%) and can outperform the other
three benchmark classifiers in 13 datasets. It also achieved the best result in classifying
golf swing from weight shift data and demonstrated it is suitable for practical systems. In
the future, we plan to investigate the applicability of the proposed SSO algorithm with
exchange local strategy to various domains of problems.
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