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ABSTRACT. Moment invariants are widely used in reconstruction, recognition and dis-
crimination of 2D and 3D images. Accurate and efficient computation of these moment
invariants is a big challenge to the community of image processing and pattern recogni-
tion. Since the wide class of moment invariants of digital images is generally expressed
as a combination of geometric moments, highly accurate and efficient computation of 2D
and 3D geometric moments is a very desirable target. In this work, a novel highly effi-
cient symmetry-based method is proposed for exact computation of 2D and 3D geometric
moments. Exact values of 2D and 3D geometric moments are calculated by using pizel-
and vozel-wise integration of the monomial terms over digital image pizels/voxels. Three
types of symmetry are applied to reduce the computational complexity of 2D geometric
moments by 87%. The proposed method is extended to compute 8D geometric moments,
where the computational complexity is reduced by more than 93%. The proposed method
is adapted to compute different families of continuous and discrete orthogonal moments.
A comparison with other existing methods is performed where the numerical experiments
and the memory storage analysis ensure the efficiency of the proposed method.
Keywords: Geometric moments, Symmetry property, Fast algorithm, Exact computa-
tion, 3D moments, Gray level images, Discrete orthogonal moments

1. Introduction. Hu in his famous work [1] introduced the concept of geometric moment
and derived a set of two-dimensional (2D) geometric moments that are invariants with
respect to translation, scaling and rotation. Sadjadi and Hall [2] extended the work of
Hu and derived a set of 3D geometric moment invariants. Teague [3] introduced the
concept of orthogonal moments. Multidimensional geometric moments and orthogonal
moments with their invariants have been widely used in the different applications such as
optimum portfolio management [4], content-based retrieval [5], object identification and
positioning [6], medical image processing [7-11], face recognition [12], fingerprint matching
and verification [13,14].

Reconstruction, recognition and discrimination of 3D images/objects gained more in-
terest during the last decade. The 3D moment invariants are used as shape descriptors.
Novotni and Klein [15] are used 3D Zernike descriptors for content-based shape retrieval
where the set of 3D Zernike descriptors is computed according to their relation with the
3D geometric moments. Recently, 3D moment invariants play a crucial role in the shape
analysis and understanding protein structure-function relationships [16-18]. Generally, 3D
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moment invariants are promising descriptors in the field of electronic microscopic imaging
where 3D descriptors could be used to build up 3D views of biological entities such as
proteins, nucleic acids, cells, tumors, tissues, and whole organs or organisms.

Computational process of geometric moments and moment invariants encounters two
challenging problems. The first one is the accuracy where approximate computation
of geometric moments results in a set of inaccurate moments. The degraded accuracy
negatively affects the performance of the geometric moment invariants especially in con-
structing discrimination classifiers. The second problem is concerned with the highly
computational requirements especially for images of big sizes. For 3D moments, the com-
putational problem becomes more critical.

The conventional direct method which depends on using zeros-order approximation
(ZOA) is time-consuming and produces significant errors. Several methods and algo-
rithms are proposed to overcome these challenging problems. Spiliotis and Mertzios [19]
proposed a method which employs a binary image representation by non-overlapping rect-
angular homogeneous blocks, and then the image moments are calculated as the sum of
the moments of all blocks. Recently, Papakostas et al. [20] extended the method of Spili-
otis and Mertzios to compute geometric moments for gray level images. These methods
attempt to improve the accuracy of the computed 2D geometric moments while the com-
putational problem is still encountered. Unfortunately, these methods cannot be extended
to compute the 3D geometric moments of volumetric images.

Liao and Pawlak [21] used another methodology. They proposed a formula for com-
puting the 2D geometric moments of a digital image. They numerically integrate the
monomial functions over digital image pixels by using Simpson’s integration rule. Hosny
[22] modified the method of Liao and Pawlak where he evaluates the double integration
analytically and completely removes the numerical approximation error. Wee et al. [23]
applied a symmetry property which was based on 1D monomial to reduce the compu-
tational process of gray level images. These methods are accurate. On the other side,
their performance in reducing the computational process is limited. More reduction in
computational process is desirable especially in the case of big images.

Only a few works are interested in the computation of 3D geometric moments. Yang et
al. [24] used discrete divergence theorem for fast computation of 3D geometric moments
of binary images. The method of Yang cannot be applied to gray level images. However,
to the best of the authors’ knowledge, no previously published papers presented the idea
of symmetry-based efficient computation of 3D geometric moments for volumetric images.

The limitations in the existing methods for 2D geometric moment computation and
the lack of efficient and accurate methods for 3D geometric moment computation have
motivated the author to derive a novel symmetry-based method for highly efficient and
accurate computation of 2D and 3D geometric moments. The wide class of image moments
such as Zernike, pseudo Zernike, Legendre, Gaussian-Hermite, Tchebichef, Krawtchouk,
Hahn, Racah, complex, and radial moments and their invariants could be expressed in
terms of geometric moments of the same order or less [25]. This is an additional motivation
where highly efficient and accurate computation of 2D and 3D geometric moment offers an
excellent way to construct a library for highly efficient, accurate and easily programmable
image moments.

This paper proposes a novel-symmetry based method for fast, memory-efficient and
accurate computation of geometric moments for both 2D and 3D images/objects. The set
of 2D geometric moments is computed exactly by using pixel-wise integration of the 2D
monomials, and then, three kinds of symmetry properties are applied for computational
complexity reduction. In the proposed method, the derived symmetry-based method has
achieved 87% reduction for gray level images.
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The proposed method is extended to compute 3D geometric moments where four kinds
of symmetry properties are applied. A 93% reduction is achieved for gray level volumet-
ric images. Conducted numerical experiments and complexity analysis clearly show the
efficiency of the proposed method in comparison with the existing methods.

The rest of the paper is organized as follows: In Section 2, an overview of geometric
moments is given. The proposed method is described in Section 3. Section 4 is devoted to
discuss experimental results. Conclusion and concluding remarks are presented in Section

5.

2. Approximate Geometric Moments. Geometric moments are defined as the pro-
jection of the image intensity function f(z,y) onto the monomial z? y?. The geometric
moments of order (p + ¢q), G, are defined as:

Gpg = ]O ]O 2Py f(z, y)dady (1)

—00 —00

For the discrete-space version of the image, Equation (1) was approximated where the
integration is replaced by summation as follows:

N N

épq = Z foy?f(xia yj)AzAy (2)

i=1 j=1
Both Az and Ay are the pixel width in z- and y-direction respectively. This process
produces what is called approximation error. This error increases as the moment order
increases. The accumulation of this error produces numerical instabilities which degrade
the accuracy of the computed moments. Liao and Pawlak [21] show that, Equation (2) is
not an accurate approximation of Equation (1). They attempt to improve the accuracy
of the computed geometric moments by using the following form:

A
+
ZIE

Ay,
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aPyldxdy, (3)

x
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Gpg = ZZf (@i, y5)

_ay;
2 Z/]- p)

Liao and Pawlak proposed an alternative extended Simpson’s rule to evaluate the double
integral in Equation (3), then used to calculate the geometric moments. In fact, their
proposed method marginally improved the accuracy.

3. The Proposed Method. All aspects of the proposed method are presented in this
section. Mapping of 2D images and 3D objects is discussed in the first subsection. Detailed
discussions of symmetry property for the 2D and 3D geometric moments are presented in
the second and third subsections where the concept of augmented image/object intensity
functions is discussed. The fourth subsection is devoted to discuss the efficient computa-
tion of exact 2D and 3D geometric moments. Extension to exactly compute 2D and 3D
continuous and discrete orthogonal moments is briefly discussed in the fifth subsection.

3.1. Image and object mapping. In the literature of digital image processing, the
origin of a 2D digital image of size N x N is located on the upper left of the image and
its indices, ¢ and j increase from left to right and from top to bottom, respectively, i.e.,
i,j7=1,2,...,N as shown in Figure 1(a). A kind of transformation is applied to the input
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image where the transformed image is defined in the square [—1, 1] x [—1, 1] as shown in
Figure 1(b). This transformation could be done by using the following equations:

__N+2i-1  -N+2j-1 "
‘/Lll_ N 9 y]_ N

With 4,7 = 1,2,3,...,N. The mapped digital image has the same size of the input
image. This image is N x N array of pixels, where centers of these pixels are the points
(zi,y;). The image intensity function is defined for this set of discrete points (z;,y;) €
[—1,1] x [-1, 1] as shown in Figure 1(b). The sampling intervals in the z- and y-directions
are Ax; = 241 — T, Ay; = y;41 — y; respectively. In the literature of digital image
processing, the intervals Az; and Ay; are fixed at the constant value Ax; = Ay; =2/N.
It is clear that, the centre of input image is coinciding with the center of the square
[—1,1] x [-1,1].
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FIGURE 1. Image mapping: (a) original image, (b) mapped image

Similar to the 2D case, a 3D digital image/object of size N x N x N is mapped into
the cube [—1, 1] x [—1, 1] x [—1, 1] by using the following equation:

_ -N42i-1  —N+2j—-1  —N+42%-1 -
T = N ) Yy; = N ) 2k = N

With 4,5, k =1,2,3,..., N. This mapped object is N x N x N array of voxels, where the
centers of these voxels are the points (x;,y;, 2¢). The object intensity function is defined
for this set of points (z;,y;, z¢) where Az; = i1 — x4, Ayj = Y1 — Yy, Dz = 241 — 2
are sampling intervals in the z-, y- and z-direction respectively. The intervals Az;, Ay;
and Az, have the constant values, Az; = Ay; = Az, =2/N.

3.2. Symmetry for 2D geometric moments. The z- and y-axis in addition to the
two lines x = y and x = —y divided the transformed image into eight octants as shown
in Figure 2(a). Three types of symmetry could be observed and explored. In the first
type, each point P; in the first octant with the Cartesian coordinates (z;,y;) has three
similar points in the other three octants as shown in Figure 2(b). These points are Py, Ps
and Pg where the index associated with the point symbol referring to the octant number.
The second type of symmetry is concerned with the rest of the eight points where the
subscripts ¢ and j are interchanged.
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FIGURE 2. (a) The symmetry axes divide the transformed image into eight
octants; (b) similar points of the different octants

The point Py(z;,y;) in the second octant has three sibling points P, Pg and Pr. It
must be noted that all of these eight points have the same radial distance to the origin
point [26]. The third type of symmetry is concerned with the points which lie on the
symmetrical lines, z = y and © = —y. These points are Q1 (z;, x;), Q2, Q3 and Q4. All
points of the three symmetrical types and their coordinates are shown in Table 1.

TABLE 1. Symmetry points and their coordinates: 2D case

First type

Second type

Third type

Pl(xzay])

Py(z4,y;)

Q1 (i, i)

P4(xN7i+17 yj)

Py(xn_ji1, i)

Q2($N7i+1, xz)

Ps(tN—it1, YN—j+1)

P6($N—j+1, yN—z'+1)

Q3($N—z’+1, 27N-z'+1)

Ps(fﬂz',?JN—jﬂ)

P?(l'jayN—z’—i—l)

Q4($i, 37N-z'+1)

Since the points Py, Py, P3, Py, Ps, Ps, P; and P has the same radial distance to the
coordinate origin, then; the numerical value of 2Py? will be dependent on whatever p and
g are even or odd. An illustrative example is presented to ensure this fact. Assume a
small image of size 8 x 8. The point P;(z7,ys) in the first octant has the coordinates P, =
(5/8,3/8). Consequently, the coordinates of the other corresponding seven points that
refer to the octants ranging from 2 to 8 are: P5(3/8,5/8), P5(—3/8,5/8), Ps(—5/8,3/8),
Ps(—5/8,—-3/8), Ps(—3/8,—5/8), P;(3/8,—5/8) and Ps(5/8,—3/8). Numerical values of
2Py? for the points Py, P,, Ps and Fs; and z9P for the points P, P3, Ps and P; with
different possibilities of exponent indices p and ¢ are listed in Table 2. The values for the
third type of symmetry are listed in Table 3. The computational process of 2D geometric
moments requires only one octant.

Based on the first type of symmetry property, the image intensity function in differ-
ent octants could be represented by only one augmented function. This function is a
combination of the image intensity functions in the first, fourth, fifth and eighth octants
respectively. The augmented function is defined as follows:

Case 1: p = Even, ¢ = Even:

fei(@i, y5) = fil@i,yy) + fa(@iyy) + f5(s,y5) + fa(xiv)), (6.1)
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TABLE 2. First and second symmetry: values of the monomials xPy? are
dependent on whatever p and ¢ are even or odd

2Py zTyP
p q 2] 12 P P 7 2 P P,
E=4|E = 2|+0.02145| +0.02145 | +0.02145 | +0.02145 | +0.02145 | +0.02145 | +0.02145 | +0.02145
E=2]0 = 1]+0.14648] +0.14648| —0.14648 | —0.14648 | +-0.14648 | —0.14648 | —0.14648 | +-0.14648
O = 3|E = 2| +0.03433] —0.03433 | —0.03433| +-0.03433 | +0.03433 | +0.03433| —0.03433 | —0.03433
0 =3[0 = 1|+0.09155]| —0.09155| +0.09155] —0.09155 | +0.09155 | —0.09155| +0.09155 | —0.09155

TABLE 3. Third symmetry: values of the monomials xPy? are dependent
on whatever p and ¢ are even or odd

2Py

ro| @ ol o3 o o
E=4|E=21|4+0.002780 | +0.002780 | +0.002780 | +0.002780
E=210=11]-0.052734 | —0.052734 | +0.052734 | +0.052734
O=3|E=2|4+0.007415 | —0.007415 | —0.007415 | +0.007415
O=3]0=11|-0.0197751| +0.019775 | —0.019775 | +0.019775

Case 2: p = Even, ¢ = Odd:

fir (@i, y5) = fi(zi, ys) + falwi, ys) — fs5(xi, y5) — felzis vy), (6.2)
Case 3: p = Odd, ¢ = Even:

fi(zisyy) = fi(@e, v) — fal@s, y5) — Fs(wi,y5) + fa(zis yg), (6.3)
Case 4: p = Odd, ¢ = Odd:

fei(@iy;) = fil@i, y;) — fal@i, y;) + f5(@i, y5) — fel@i, y;)- (6.4)

Similar to the first type of symmetry, the second augmented intensity function could be
represented by a combination of the image intensity functions in the second, third, sixth
and seventh octants respectively and defined as follows:

Case 1: p = Even, ¢ = Even:

fr2(@inys) = fol@y, i) + fa(@g, i) + fo(@g, i) + fa(@5, vi), (7.1)
Case 2: p = Even, ¢ = Odd:

sz(ﬁvi,yj) = f2(xjayi) - f3($j,yi) - f6(xjayi) + f7($j,yz'), (7-2)
Case 3: p = Odd, ¢ = Even:

fra(wi, y5) = fol@g, ui) + fa(xg, us) — fo(zjus) — falxg, vi), (7.3)
Case 4: p = Odd, ¢ = Odd:

fra(wiy y5) = fol@g, ui) — fazy, us) + feljus) — fa(ws, ). (7.4)

Similarly, the augmented intensity function of the third type of symmetry is represented
as a combination of the image intensity functions for the points that lie on the symmetrical
lines x = y and x = —y as follows:

Case 1: p = Even, ¢ = Even:

frs (@i 25) = Qu(wi, x3) + Qa(s, ;) + Q3(4, 7)) + Qulwi, 3), (8.1)
Case 2: p = Even, ¢ = Odd:
Jes(@i, 25) = Qu(@i, 1) + Qa(w4i, i) — Q3(w4, 3) — Qu(ws, 75), (8.2)
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Case 3: p = Odd, ¢ = Even:

fes (@i, 25) = Qu(wi, x3) — Qalws, 1) — Q3(w4, ;) + Qu(xs, 74), (8.3)
Case 4: p = Odd, ¢ = Odd:
Jes(@i, 25) = Qu( @i, v3) — Qo(w, i) + Q3(4, %) — Qa(wi, 7;). (8.4)

3.3. Symmetry for 3D geometric moments. The main axes, z-, y- and z-axis, divide
the cube [—1,1] x [-1,1] x [-1,1] into eight small cubes as shown in Figure 3(a). Each
one of these small cubes could be divided into two prisms. Therefore, the original cube is
divided into 16 small prisms. Similar to the 2D case, there are different types of symmetry
that could be observed and explored. Four types of symmetry are observed. In the first
type; each point P in the first prism with the Cartesian coordinates (x;,y;, 2) has eight
similar points in the other eight prisms. These points are P, P5, Py, Py, P2, P;3 and
Pis. In the second type of symmetry, the other eight points, Py(z;, vi, 2), P, Fs, Pr, Py,
Py, P, and Pi5, are considered where the subscripts 7 and j are interchanged. All of
these sixteen points have the same radial distance to the origin point. In the third type of
symmetry, all points Q1 (x;, i, z), @2, @3, Q4, @5, Qs, Q@7 and Qg that have equal z- and
y-coordinates with different z-coordinate. The final type of symmetry points represents
the points that lie on the body diagonals of the whole cube. In other words, these points
have equal Cartesian coordinates. These points are D(z;,z;, x;), Do, D3, Dy, Ds, D,
D7 and Dg. All points of the four symmetrical types and their Cartesian coordinates are
shown in Table 4. The computed numerical values of xPy%x" for the points Py, P,, Ps,
Pg, Pg, P127 P13 and PIG; and qupxr for the points Pg, P3, Pﬁ, P7, PlO; Pll; P14 and P15
with different possibilities of exponent indices p, ¢ and r confirm the proposed idea. The
entire computational process of 3D geometric moments could be done by using only one
prism from the 3D object space as in Figure 3(b).

TABLE 4. Four types of symmetry points and their coordinates: 3D case

First type Second type Third type Fourth type
Py (w4, 95, 21) Py(xj, yi, 21) Q1 (xi, i, 24) D (w4, 24, 7;)
P4(-75N—i+17 Yj, Zk) PS(-TN—j-f—lv Yi, Zk) QQ(-Ti—J\/'+17 Ti, Zk) D2(17i—N+17 Ly, IL)
P5(@n_is1, YN—js1, 2k) Ps(tn—ji1, Yn—it1, 2k) Qs(wi, TN_iv1, 2) Dy(wi, on i1, %)
Pg(l'n YN—j+1, Zk) P7($j, YN—i+1, Zk) Q4(17N—i+1a TN—it+1, Zk) D4(I1\"—i+1: IN—it+1, SEL)
Py(i, i, 28 k11) Pio(4, Yis 28 k11) Qs (i, i, 28 k11) Ds (w4, w4, N8 _i11)
Pro(@N_ig1, Yjs ZN—k11) Pui(@N_js1, Yis ZN—k11) Qs(Ti-Ny1,Ti, ZN_k41) Dg(2;_ N1, Tiy Tn_ig1)
PlS(-TN—i+1, YN—j+1, ZN—kJrL) P14(1'N—j+1, YN—it1, ZN—}chL) Q?(Ii,IN—iJrl, ZN719+1) D?(Ii, TN—it1, -TN—iJrl)
Pro(i, YN—j1, ZN—11) Pis(;, Yn_it1; ZN—k+1) Qs(TN_it1, TN_ix1, 2N—pt1) | Ds(TN—is1, TN_it1, TN_it1)

Based on the four symmetry types, the object intensity function in different prisms
could be represented by only one augmented function. The augmented function is defined
as follows:

Case 1: p = Even, ¢ = Even, r = Even;

far(@i,yj, z) = fi+ fa+ fs + fs + fo+ fio + fiz + fie, (9.1)
Case 2: p = Even, ¢ = Even, r = Odd;

fa(i,yj,20) = fr + fa+ fs + fs — fo — fi2 — fiz = fis, (9.2)
Case 3: p = Even, ¢ = Odd, r = Even;

far(@i, yj,26) = fr — fa— fs + fs + fo — fi2 — fis + fis, (9:3)

Case 4: p = Even, ¢ = Odd, r = Odd;
far(@i,yjo2e) = fr — fo — fs + fs — fo + fi2 + f13 — fies (9.4)
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FIGURE 3. (a) A unit cube represents the 3D object space; (b) computa-

tional process of 3D GMs is done by using one prism

Case 5: p = Odd, ¢ = Even, r = Even;

far(@isyj, 21) = fr + fa — f5 — fs + fo + fr2 — fi3 — fie,
Case 6: p = Odd, ¢ = Even, r = Odd;

fa(ziyjoz) = fr + fa— fs — fs = fo— fiz + fis + fue,
Case 7: p = Odd, ¢ = Odd, r = Even,;

far(@isyj, 2k) = fr — fa+ fs — fs + fo — fio + fi3 — fie,
Case 8: p = Odd, ¢ = Odd, r = Odd;

fa(wiyjz) = fr — fa+ f5 — fs = fo+ fiz = fis + fie,

9.5)

(9.6)

9.7)

9.8)

Similar to the first type of symmetry, the augmented intensity function of the second

symmetry type is defined as follows:
Case 1: p = Even, ¢ = Even, r = Even;

fao(@isys, k) = fo+ fs+ fo + fr+ fio + fir + fua + fis,
Case 2: p = Even, ¢ = Even, r = Odd;

fao(@isys, 21) = fo+ fs + fo + fr — fio — fuu — fia — fi5s
Case 3: p = Even, ¢ = Odd, r = Even;

fao(@i,ys, 21) = fo+ f5 — fo — fr + fio + fir — fia — fi5,
Case 4: p = Even, ¢ = Odd, r = Odd;

fao(@isys, 21) = fo+ fs — fo — fr — frio — fir + fia + fiss
Case 5: p = Odd, ¢ = Even, r = Even;

fao(@i,ys, 2z1) = fo— f3 — fo + fr + fio — fiu — fia + fi5,
Case 6: p = Odd, ¢ = Even, r = Odd;

fao(@isys, 21) = fo — f3 — fo + fr — fro + fuu + fia — fi5s

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)

(10.6)
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Case 7: p = Odd, ¢ = Odd, r = Even;

faz(@isysn2e) = fo — fs + fo — fr 4 fio — fur + fua — fis, (10.7)
Case 8: p = Odd, ¢ = Odd, r = Odd;
fao(@isys, 21) = fo — fs + fo — fr — fro + fu1 — fia + fiss (10.8)

For the third type of symmetry, the augmented function is represented as a combination
of the object intensity functions as follows:
Case 1: p = Even, ¢ = Even, r = Even;

Qas(i, Ti, 21) = Q1 + Qo + Q3 + Qu + Qs + Qs + Q7 + Qs, (11.1)
Case 2: p = Even, ¢ = Even, r = Odd;

Qaz(Ti, i, 2) = Q1 + Qo + Q3 + Qu — Qs — Qs — Q7 — Qs (11.2)
Case 3: p = Even, ¢ = Odd, r = Even;

Qaz(@i, iy 21) = Q1+ Q2 — Q3 — Qu + Qs + Qs — Q7 — Qs (11.3)
Case 4: p = Even, ¢ = Odd, r = Odd;

Qaz(@i, iy 21) = Q1+ Q2 — Q3 — Qu — Qs — Qs + Q7 + s, (11.4)
Case 5: p = Odd, ¢ = Even, r = Even;

Qaz(Ti, i, 2) = Q1 — Q2 — Q3 + Qu + Qs — Qs — Q7 + Qs (11.5)
Case 6: p = Odd, ¢ = Even, r = Odd

Qaz(Ti, i, 2) = Q1 — Qo — Q3 + Qu — Qs + Qs + Q7 — Qs, (11.6)
Case 7: p = Odd, ¢ = Odd, r = Even;

Qas(wi, i, 2p) = Q1 — Qo+ Q3 — Qu + Qs — Qs + Q7 — Qs, (11.7)
Case 8: p = Odd, ¢ = Odd, r = Odd;

Qas(wi, w4, 2p) = Q1 — Qo+ Q3 — Q1 — Qs + Qs — Q7 + Qs. (11.8)

Finally, the augmented function of the fourth type of symmetry is represented as a
combination of the object intensity functions which lie on the body diagonals of the
whole cube as follows:

Case 1: p =Even, ¢ = Even, r = Even

D s4(2, %5, x;) = Dy + Dy + D3+ Dy + Ds + Dg + D7 + Ds, (12.1)
Case 2: p = Even, ¢ = Even, r = Odd;

D y(zi, x5, ;) = Dy + Dy + D3 + Dy — D5 — Dg — D7 — D, (12.2)
Case 3: p = Even, ¢ = Odd, r = Even;

D s4(4, w5, 2;) = Dy — Dy — D3 + Dy + D5 — Dg — D7 + D, (12.3)
Case 4: p = Even, ¢ = Odd, r = Odd;

D s4(5, w5, 2;) = Dy — Dy — D3 + Dy — D5 + Dg + D7 — D, (12.4)
Case 5: p = Odd, ¢ = Even, r = Even;

D sy(zi, x5, ;) = Dy + Dy — D3 — Dy + D5+ Dg — D7 — D, (12.5)

Case 6: p = Odd, ¢ = Even, r = Odd;
DA4(.CUZ',1'Z‘,1'Z‘) = D1 —+ D2 — D3 — D4 — D5 — Dg + D7 + Dg, (126)
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Case 7: p = Odd, ¢ = Odd, r = Even,;

DA4(IL’Z',1‘i, IL’Z) = D1 - D2 + D3 - D4 + D5 - D6 + D7 - Dg, (127)
Case 8: p = Odd, ¢ = Odd, r = Odd;
DA4(IL’Z',1‘i, IL’Z) = D1 — D2 + D3 — D4 — D5 + D6 — D7 + Dg. (128)

3.4. Exact computation of 2D and 3D geometric moments. The approximation of
the integral terms in Equation (3) is responsible for the approximation error of geometric
moments. These integrals need to be evaluated exactly to remove the approximation
error.

A:I:

z,+—
/ - o - o) (13)

yj+T]

. 1

Li = [ vy = - (14

Ay]-

yj_T

The upper and lower limits of the integration in Equations (13) and (14) are defined
according [27]. Substituting Equations (13) and (14) into (3) yields a set of exact geomet-
ric moments. The computational complexity could be significantly reduced through the
computation of the first octant only by applying the three types of symmetry as follows:

15 )i 5]

= 2 ZI (0) g (7) fr (ziy ) + 22 ZI () Iy () frz (i, y5)

. iz\?J == (15)
+ 1:231 [p (Z) Iq (Z) Jr3 (xzaxz)

where |N/2] equal (N — 1)/2 for odd values of N and equal to N/2 otherwise. The
augmented intensity functions fyi(zi,y;), fro(zi,y;) and fiz(zi, 7;) are defined by Equa-
tions (6), (7) and (8), respectively. The moment kernel of exact 2D geometric moments
is defined by Equations (13) and (14). These kernels are image-independent. Therefore,
these kernels could be pre-computed, stored, recalled whenever needed to avoid repetitive
computation. The proposed method is extended to the 3D case, where 3D geometric
moments are defined as:

1 1 1
Grar = / / / Py (g, 2)dudyds (16)

Z121 2
For 3D digital objects of size N x N x N, the set of the 3D geometric moments is computed
exactly by using the following equation:

N N N

Goor = > D> T(i) (k) f (i, yj, 2) (17)

i=1 j=1 k=1
where I,(i), I,(j) are defined by Equations (13) and (14), while [, (k) is defined as:

p +Azk
k 2
's 1 T r
L(k) = / o = —— Wit - Wi (18)
_ Bz
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By applying the symmetry property of the 3D case, the computational complexity could
be significantly reduced through the computation of only one prism of the total sixteen
prisms. Equation (17) is rewritten as follows:

o = 525 L, )L (k) far (20050 28)
S S L), G) I () Fa (i, 20)

=2 j=1 k=1 (19)
+ Z [p (Z) Iq (Z) I (k) fas (xi’yj’zk)

+
Rl

(Z) Iq (Z) I, (Z) faa (ﬁi, Yis Zk)

3.5. Extension to 2D/3D continuous and discrete orthogonal moments. The
wide class of image moments could be classified into orthogonal and non-orthogonal mo-
ments. Orthogonal moments are divided into continuous and discrete moments. Zernike,
pseudo Zernike, Legendre, Gaussian-Hermite and Gegenbauer moments are examples of
the orthogonal continuous moments while Tchebichef, Krawtchouk, Hahn and Racah mo-
ments are examples of the discrete orthogonal moments. On the other side, complex and
radial moments are examples of non-orthogonal moments. As previously stated, all of
these mentioned moments and their invariants could be expressed in terms of geometric
moments of the same order or less [25]. This subsection presents a concise description
of the implementation of the proposed in computation of both 2D and 3D continuous,
discrete orthogonal and non-orthogonal moments.

The 2D continuous orthogonal moments such as Legendre, Gaussian-Hermite and Gege-
nbauer moments are defined over the square [—1,1] x [—1,1]. The proposed method
is applied to exactly compute the aforementioned sets of moments according to their
relations with the 2D geometric moments without any modifications. The implementation
to exactly 2D orthogonal Legendre moments is discussed as an example through the next
subsections. For 3D objects, this family of continuous orthogonal moments is defined in
the cube [—1,1] x[—1, 1] x [—1, 1]. Therefore, the implementation of the proposed method
in 3D case is straightforward.

The 2D circular continuous orthogonal moments are defined over a unit disk. Zernike,
pseudo Zernike, Fourier-Mellin are examples of these moments. The proposed method is
slightly modified where the input image is mapped inside the unit circle and the mapped
image is defined over the square |—1/v/2,1/v2| x |—1/v/2,1/v/2|. All other steps of
the proposed method are applied without any modification. For 3D objects, the family of
spherical continuous orthogonal moments is defined inside a unit ball. The input object
is mapped to be defined in the cube L—l/\/g, 1/\/§J X L—l/\/g, 1/\/§J X L—l/\/g, 1/\/§J
Then, the implementation of the proposed method in 3D is straightforward.

On the other side, the 2D discrete orthogonal moments could be expressed in terms of
geometric moments. Recently, Papakostas et al. [28] derived a set of translation, scaling
and rotation Krawtchouk moment invariants by using 2D geometric moment invariants.
The discrete orthogonal moments are defined over the square [0, N — 1] x [0, N — 1]. In
order to apply the proposed method with discrete orthogonal moments, the input squared
image is divided into eight equal octants by using horizontal, vertical and diagonal lines
and then the proposed method is applied where only one octant is used to compute the
entire set of 2D moments.
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For 3D image/object, the family of discrete orthogonal moments is defined over a cub
[0, N—1] x [0, N—1] x [0, N —1]. This cube is divided into 16 similar parts. Each of these
parts is a collection of voxels and could be represented as a prism. The rest of the steps
are the same where only one prism is used to compute the entire set of 3D moments.

4. Experimental Results. The conducted numerical experiments in this section con-
centrate on the accuracy and efficiency of the proposed method in both 2D and 3D cases.
Image reconstruction and robustness against image noise are used to rate the accuracy of
the proposed method. The computed geometric moments are used to compute a set of
orthogonal moments where the later are used in the image reconstruction process. Mean
square error (MSE) is used as a measure of the accuracy of the reconstruction process.
Elapsed CPU times of the conducted numerical experiments and theoretical complexity
analysis are used to judge the efficiency of the proposed method. The performance of the
proposed method is compared with the performance of the existing methods.

4.1. Accuracy. The accuracy of the proposed method could be tested by reconstructing
the input image by using the computed moments and compare the reconstructed im-
age with the original one. The proposed method is accurate if the Mean-Square Error
(MSE) approaches zero as the moment order increases. At a certain moment order, both
original and reconstructed images are almost identical. Image reconstruction by using
non-orthogonal geometric moments is very difficult and impractical when higher orders
are required [3]. This process could be easily achieved by using the orthogonal moments.
Legendre moments are very popular orthogonal moments where this set of moments could
be represented as a linear combination of geometric moments of the same order or less.
Image reconstruction by using Legendre moments is used to rate the accuracy of the
proposed method. For digital image of size N x N, the MSE is defined as:

ZWSE—~———_§:§:<ﬁmzxw%) f@myﬂ>2 (20)

where faes (s, y;) and f(z;,y;) are the intensity functions of the reconstructed and the
original images respectively. The subscript Max refers to the maximum order used in the
reconstruction process. The 2D Legendre moments of image function f(z,y) are:

Lpg = (2p+1 2q+1) // ) f (@, y)dxdy, (21)

-1 -1

Legendre moments are expressed as a combination of geometric moments as follows:

15 [%]
(2p+1)(2¢+1)
Lpq = 4 Z Z ByiBy,iGp-2iq-2; (22)
i=0 j=0

Legendre polynomial coefficients are defined in [25]. Geometric moments are computed by
using the proposed method, and then used in Equation (22) to compute the corresponding
Legendre moments. Fortunately, both sets of geometric and Legendre moments have the
same number of independent moments.

The inverse Legendre transform is used to reconstruct the input images by using the
computed Legendre moments up to the maximum moment order Max. Then, the MSE
is computed by using Equation (20) for the input images where the computed values
are plotted against the moment order. In order to address the accuracy of the proposed
method, two numerical experiments are conducted with real world binary and gray level
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images. In the first one, a binary image of Chinese letter of size 128 x 128 as displayed in
Figure 4(a) is used. The standard gray level image of ‘Blonde Woman’ of size 128 x 128
as displayed in Figure 5(a) is used in the second numerical experiment.

The MSE for these two images are computed by using the proposed and the conventional
ZOA method where the computed values are plotted against the moment order. Figures
6(a) and 7(a) display the MSE plotted curves of noise-free image of the binary Chinese
letter and the noise-free image of ‘Blonde Woman’ respectively. These figures clearly
show that, the MSE of the proposed method is decreases as the moment order increases
and approaches the zero value while the MSE of the conventional ZOA method strongly
increases as the moment order increases. The results of these numerical experiments
ensure the accuracy of the proposed method.

(a) (b) (c)

FIGURE 4. Binary image: (a) noise-free image; (b) first noisy image; (c)
second noisy image

FIGURE 5. Gray image: (a) noise-free image; (b) first noisy image; (c)
second noisy image

Robustness against different kinds of image noise is another way to ensure the accuracy
of the proposed method. The original images of the Chinese letter and the ‘Blonde
Woman’ are contaminated with two kinds of popular image noise. The first one is the
“salt & Peppers” noise while the white Gaussian noise represents the second kind. The
“salt & Peppers” noise is added to the images by using the Matlab statement; A = imnoise
(A, ‘salt & pepper’, S) where S = 0.08. The white Gaussian noise is added to images by
using the Matlab statement; A = imnoise (A, ‘gaussian’, m, v ) where m and v are the
mean and the variance respectively.
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FI1GURE 6. MSE of Binary image: (a) noise-free image; (b) first noisy im-
age; (c) second noisy image

In the conducted numerical experiment, these parameters are m = 0 and v = 0.05. The
contaminated images of the Chinese letter are displayed in Figures 4(b) and 4(c) while
the contaminated images of the gray level image are displayed in Figures 5(b) and 5(c).

The Figures 6(b), 6(c), 7(b) and 7(c) display the MSE plotted the curves of contam-
inated binary Chinese letter image and the gray level image of ‘Blonde Woman’ respec-
tively. These figures clearly show that, the MSE decreases as the moment order increases.
Despite the fact that the gray-level images are more sensitive to the Gaussian white noise
than the binary images, the values of MSE approach zero value as the moment order
increases. This is an evidence of the accuracy of the proposed method.

4.2. Complexity analysis. The performance of the proposed method is compared with
the other existing methods. The efficiency is an essential issue that must be addressed
and proved. Theoretical complexity analysis is a very attractive aspect in the area of
moment computation. This analysis addresses the theoretical proof for the efficiency of the
proposed method. Such proofis not affected by any circumstances of conducting numerical
experiments. In this section, a discussion of the complexity analysis is presented. The
reduction in the computational complexity is the result of applying symmetry properties.

Based on the symmetry property, one octant will be used to compute the full set
of 2D geometric moments. The computation process requires only two points. The
first one is fall inside the first octant and has a similar seven points in the other seven
octants. The second one is defined according to the third type of symmetry and has three
similar points. Consequently, the total number of points in the first octant is equal to
[1+2+3+...+ (N/2—1)] + N/2. Therefore, the reduction in the computed points
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(a) (b)
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()
FIGURE 7. MSE of gray level image: (a) noise-free image; (b) first noisy
image; (c) second noisy image
TABLE 5. Reduction percentage (RP) of the proposed method: 2D case
2D Image size | Direct Method | Wee’s Method [23] | Proposed Method | RP
64 x 64 4096 1024 528 87.1 %
128 x 128 16384 4096 2080 87.3 %
256 x 256 65536 16384 8256 87.4 %
512 x 512 262144 65536 32896 87.5 %
1024 x 1024 1048576 262144 131328 87.5 %
according to the symmetry property is defined as follows:
N(N +2
RP = (1 - %) x 100 (23)

An explicit comparison is presented where the theoretical complexity analysis is per-
formed for the proposed method and a recent existing method (Wee et al. [23]). The
results of this theoretical complexity analysis are listed in Table 5. The obtained results
clearly show the superiority of the proposed method over the other existing methods. The
difference between the proposed method in 2D case and the method of Wee et al. [23]
could be easily noticed. Wee and his co-authors achieved 75% reduction for squared im-
ages and 50% reduction for rectangular images. On the other side, the proposed method
achieved 87% reduction for square image and 75% reduction for rectangular images.
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TABLE 6. Reduction percentage (RP) of the proposed method: 3D case

3D Image size Direct Method | Proposed Method RP
64 x 64 x 64 262,144 16,896 93.55 %
128 x 128 x 128 2,097,152 133,120 93.65 %
256 x 256 x 256 16,777,216 1,056,768 93.70 %
512 x 512 x 512 134,217,728 8,421,376 93.72 %
1024 x 1024 x 1024 | 1,073,741,824 67,239,936 93.74 %

A similar theoretical complexity analysis is performed for 3D geometric moments. The
reduction percentage based on the four types of symmetry is defined as follows:

RP = (1 - w) x 100 (24)

16
To the best of the authors’ knowledge, no previously published papers presented the
idea of symmetry-based method in 3D case. Consequently, Table 6 shows an explicit
comparison between the proposed method and the direct method. The obtained results
clearly show that, the computational complexity of the proposed method is tremendously
reduced where the percentage of the reduction exceeds 93%.

4.3. Computational time. Reduction in the computational time is an essential target
especially with big size 2D and 3D images. In addition to theoretical complexity analysis,
the elapsed CPU times of the conducted numerical experiments are used to measure the
efficiency of the proposed method. Two numerical experiments are conducted. The first
one is concerned with the 2D geometric moments while the second is concerned with 3D
geometric moments. In the first experiment, a set of standard gray level images of size
512 x 512 are used. These images are displayed in Figure 8. In the second experiment,
a 3D dataset of protein structure is used. All computational processes are performed by
using a code designed with Matlab8 and operated on a Lenovo R400 Laptop.

The full set of 2D geometric moments is computed by using the proposed method and
a group of the existing methods. These methods are the direct ZOA method represented
by Equation (2) and the method of Wee et al. [23]. The elapsed CPU times are computed
ten times for each gray level image and the averages elapsed CPU times are compared
and plotted in Figure 9(a).

Similarly, the full of 3D geometric moments is computed by the proposed method where
the elapsed CPU times are computed. The experiment is executed ten times where average
CPU times are compared with the direct ZOA method. The results are graphically plotted

FIGURE 8. A set of standard gray images
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FIGURE 9. Elapsed CPU times: (a) 2D GMs; (b) 3D GMs

in Figure 9(b). It is clear that, the direct method in 2D and 3D cases is impractical.
The proposed method outperformed the method of Wee [23] in 2D case. Generally, we
could see that, the proposed method tremendously reduced the computational time which
candidate it for highly efficient computation of big size images and the implementation in
real time applications. The comparison ensures the superiority of the proposed method.

5. Conclusion. This paper proposes a novel symmetry-based method for highly effi-
cient computation of accurate 2D and 3D geometric moments for binary and gray level
images/objects. In 2D case, three types of symmetry are applied where 87% of the com-
putational demands are removed. The reduction percentage increased to 93% in the case
of 3D geometric moments. The calculated values of geometric moments are very accurate
where the double and triple integrations are analytically evaluated without any kind of
approximation. Implementation of the proposed method to the families of continuous
and discrete 2D and 3D orthogonal moments is promising and leads to the construction
of very efficient and easily programmable generic library of functions. The conducted
numerical experiments and theoretical complexity analysis confirm the efficiency of the
proposed method.
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