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Abstract. The permutation flowshop scheduling problem with the objective of mini-
mizing total flow time is known as a NP-hard problem, even for the two-machine cases.
Because of the computational complexity of this problem, a multi-start simulated anneal-
ing (MSA) heuristic, which adopts a multi-start hill climbing strategy in the simulated
annealing (SA) heuristic, is proposed to obtain close-to-optimal solutions. To examine
the performance of the MSA algorithm, a set of computational experiments was conducted
on a well-known benchmark-problem set from the literature. The experiment results show
that the performance of the traditional single-start SA can be significantly improved by
incorporating the multi-start hill climbing strategy. In addition, the proposed MSA algo-
rithm is highly effective and efficient as compared with the other state-of-the-art meta-
heuristics on the same benchmark-problem instances. In terms of both solution quality
and computational expense, the proposed algorithm contributes significantly to this ex-
tremely challenging scheduling problem.
Keywords: Scheduling, Permutation flowshop, Total flow time

1. Introduction. Scheduling is a decision-making process for optimally allocating re-
sources [1]. Efficient scheduling has become essential for manufacturing firms to survive
in today’s intensely competitive business environment [2,3]. As one of the best known pro-
duction scheduling problems, permutation flowshop sequencing problems (PFSPs) have
long been a topic of interest for the researchers and practitioners in this field [4]. Since
Johnson’s pioneering work [5], more than one thousand papers on various aspects of PF-
SPs have been published in the operational research literature, most of which considered
the objective of minimizing makespan [6]. Recently, the objective of minimizing total flow
time or, equivalently, total completion time if all jobs are available for processing at the
beginning, has attracted more attention from researchers. As per the standard three-field
notation, introduced by Graham et al. [7], the PFSP with the criterion of total flow time
can be denoted as F ‖

∑
Cj.

Total flow time is one of the most important performance measures, because, in practice,
it can lead to stable utilization of resources, rapid turn-around of jobs, and minimization
of work-in-process inventory costs [8]. Therefore, minimizing the total flow time is a very
important objective for scheduling in many flowshop systems in, for instance, electronics,
chemicals, textile, food and the service industries. Because the flowshop has been widely
applied in many manufacturing and service systems, the F ‖

∑
Cj problem has become a
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subject of continuing interest for researchers and practitioners. However, even a relatively
simple F ‖

∑
Cj problem involving only two machines is known as a strongly NP-hard

problem [9]. Although exact methods, such as branch and bound [10-13] and mixed in-
teger linear programming [14], have been developed to obtain optimal solutions to this
problem, these techniques may be computationally intensive, even for moderate-size in-
stances, and thus cannot be applied to solve the problem instances with practical sizes.
Instead, heuristic methods that guarantee to obtain acceptable solutions with reasonable
computational resources have the advantage in computational efficiency. Existing heuris-
tic methods for solving this problem can be classified into two categories: constructive
heuristics and improvement heuristics. In a constructive heuristic, once a job sequence
is determined, it is fixed and cannot be reversed [15,16]. In the past decades, several
constructive heuristic methods [8,17-29] have been proposed for solving the F ‖

∑
Cj

problem, such as FL, RZ, WY, H(2) and CH3, presented by Framinan and Leisten [8],
Rajendra and Ziegler [26], Woo and Yim [27], Liu and Reeves [28], and Li and Wu [29], re-
spectively. However, these constructive heuristics are simple methods that aim to quickly
obtain feasible solutions without guaranteeing solution quality, especially for large-scale
instances [30]. On the other hand, an improvement heuristic starts with an initial solution
and then provides a scheme for iteratively obtaining an improved solution until reaching
stopping criteria [31,32]. Computational results showed that FLR2, IH7-FL, and FLR1,
proposed by Allahverdi and Aldowaisan [33], Framinan and Leisten [8], and Framinan
et al. [34], respectively, significantly outperform other heuristics in the literature of the
F ‖

∑
Cj problem. For further extensive reviews on this problem, the reader is referred

to Gupta and Stafford Jr. [6].
Recent interests in developing efficient improvement heuristics have resulted in consid-

erable attention to meta-heuristics that are particularly attractive for large-scale instances
[35]. Meta-heuristics typically refer to a general algorithmic framework that can be ap-
plied to different combinatorial optimization problems with minor modifications [36-39].
Meta-heuristics for the F ‖

∑
Cj problem include genetic algorithm [40-42], ant colony

optimization [43,44], particle swarm optimization [45,46], neural network algorithm [47],
iterated local search [48], estimation of distribution algorithm [49], and differential evolu-
tionary algorithm [50].
Among the modern meta-heuristics, the simulated annealing (SA) algorithm, proposed

by Metropolis et al. [51], has emerged as a highly effective and efficient algorithmic ap-
proach to NP-hard combinatorial optimization problems. However, the search procedure
in the SA algorithm typically requires some diversification mechanisms to escape from
local optima. Without such mechanisms, the SA algorithm may be trapped in a small
area of the solution space, missing the possibility of finding a global optimum [52]. One
way to achieve diversification is to utilize the multi-start hill climbing strategy which
performs the search procedure with several starting points. In light of this strategy, this
study proposes the effective and efficient multi-start simulated annealing (MSA) heuristic
to solve the F ‖

∑
Cj problem. This novel MSA heuristic combines the advantages of the

SA algorithm in effectively searching solution space and of the multi-start hill climbing
strategy in escaping from local optima, and offers a significant contribution to the growing
body of the literature for solving PFSPs.
The rest of this paper is structured as follows. After formulating the F ‖

∑
Cj problem

in Section 2, the proposed MSA heuristic is described in Section 3. Section 4 reports the
computational results of empirically evaluating the effectiveness and efficiency of the pro-
posed MSA algorithm by comparing its performance against the traditional single-start
SA and the state-of-the-art algorithms on a benchmark-problem set from the literature.
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Finally, conclusions are drawn together with recommendations for future research in Sec-
tion 5.

2. Problem Definition. The F ‖
∑

Cj problem aims at scheduling n jobs on m ma-
chines, where each job has one operation on each machine and all jobs are processed in
the same technological order on all machines. Meanwhile, the sequence in which each
machine processes all jobs is identical on all machines. Besides, the following assumptions
are considered in this study:

• Each machine can process at most one job at a time and each job can be processed
on only one machine at any given time.
• The schedule is non-preemptive, meaning once a job starts to be processed on a
machine, the process cannot be interrupted before completion.
• The number of jobs and their processing times on each machine are known in advance
and are non-negative integers.
• The number of machines is known in advance, and all machines are persistently
available to process all scheduled jobs as required.
• The individual operation setup times are small compared with their processing times,
and are included in the processing times.
• The ready time of all jobs is zero, meaning that all jobs are available for processing
at the beginning.

Based on the above definitions and assumptions, the objective is to identify a se-
quence σ = (σ(1), . . . , σ(n)) for the n jobs so as to minimize the total flow time, F =∑n

i=1C(σ(i),m), where σ ranges over all those permutations of n jobs. By imposing
the condition that each operation is to be performed as soon as possible, the completion
time of each job σ(i) on machine j, C(σ(i), j), is calculated using the recursive formula:
C(σ(i), j) = max{C(σ(i), j−1);C(σ(i−1), j)}+pσ(i),j, j = 1, . . . ,m, where pσ(i),j denotes
the processing time of job σ(i) on machine j, and C(φ, j) = C(σ(i), 0) = 0 for all i and
j; φ is the initial null schedule.

3. Proposed Multi-start Simulated Annealing Algorithm. The proposed multi-
start simulated annealing (MSA) algorithm combines the advantages of the SA algorithm
and of the multi-start hill climbing strategy. The following subsections further illustrate
the solution representation, initial solution, neighborhood, the parameters and the algo-
rithmic procedures in the MSA algorithm.

3.1. Solution representation and initial solution. In this study, a sequence of jobs
is represented by a string of numbers denoting a permutation of n jobs. For example, the
permutation, [4 8 5 2 1 3 7 6], can be decoded as the operation sequence 4-8-5-2-1-3-7-6
of eight jobs on each machine. Half of the initial solutions (at least one) are generated
by Nawaz-Enscore-Ham (NEH) heuristic [53], and the rest are generated by randomly
ordering the jobs.

3.2. Neighborhood. Let S denote the set of feasible solutions and let σk(k = 1, . . . , Psize)
represent the current solutions, where σk ∈ S, and Psize denotes the number of starting
points in the MSA algorithm. The set N(σk) consists of the solutions neighboring σk,
(k = 1, . . . , Psize). N(σk) can be defined by either a swap or an insertion operation. That
is, a solution in N(σk) is generated by randomly selecting a pair of jobs and swapping
them, or by randomly selecting one job and inserting the chosen job immediately before
another randomly selected job. The probabilities of performing the swap and insertion
operations were fixed at 0.5 and 0.5, respectively.
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3.3. Parameters. The proposed MSA algorithm has six parameters, namely Iiter, T0,
TF , Nnon-improving, α and Psize, where Iiter denotes the number of iterations performed at
a particular temperature, T0 represents the initial temperature, TF is the final temperature
(the MSA procedure terminates when the current temperature is below TF ), Nnon-improving

is the maximum number of reductions in temperature when the incumbent total flow time
is not improved, and α denotes the coefficient controlling the cooling schedule.

3.4. MSA procedure. The procedure of the proposed MSA algorithm is depicted in
Figure 1. First, the current temperature T is set to T0. Next, initial solutions σk (k =
1, . . . , Psize) are randomly generated as the multi-start points. For each iteration, the next
solutions σ′

k are chosen from their corresponding neighborhood, N(σk), (k = 1, . . . , Psize).

Figure 1. The pseudo-code of proposed MSA algorithm
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Furthermore, let obj(σk) denote the total flow time of σk, and let ∆i denote the difference
between obj(σk) and obj(σ′

k), that is ∆k = obj(σk)−obj(σ′
k). The probability of replacing

σk with σ′
k, given that ∆k > 0, is Exp(−∆k/T ). This step is performed by generating

a random number r ∈ [0, 1] and replacing the solution σk with σ′
k if r < Exp(−∆k/T ).

Meanwhile, if ∆i ≤ 0, the probability of replacing σk with σ′
k is 1.

T is decreased after running Iiter iterations from the previous reduction in temperature,
according to the formula T ← αT , where 0 < α < 1. Whenever T is decreased, a local
search procedure that sequentially performs swap and insertion operations is used to
improve the current best solution among all the current solutions σk (k = 1, . . . , Psize).
If T is less than TF , the algorithm is terminated. If the incumbent solution, σbest, is
not improved in Nnon-improving successive reductions in temperature, the algorithm is also
terminated. If a new σbest solution is obtained, then all the current solutions σk (k =
1, . . . , Psize) are set to be the same as this new solution, σbest, and the MSA procedure is
continued. Following the termination of the MSA procedure, the near-optimal sequence
can be derived from σbest.

4. Experimental Results. This section describes the computational experiments con-
ducted to evaluate the performance of the proposed MSA algorithm for solving the
F ‖

∑
Cj problem. The test problems, parameters selection, and computational results

are further detailed in the following subsections.

4.1. Test problems. The proposed MSA algorithm was tested on the benchmark-proble-
m set, provided by Taillard [54]. This set was also adopted to evaluate the state-of-the-
art meta-heuristics in the literature. In order to conduct a systematic evaluation of the
performance of different algorithms, Taillard [54] generated the test instances based on
the characteristics of real flowshop systems. The benchmark instances have 12 different
sizes, the number of jobs ranges from 20 to 500, and the number of machines varies from
5 to 20. Moreover, for each job i (i = 1, . . . , n) on each machine j (j = 1, . . . ,m), an
integer was generated from the uniform distribution [1, 99] as the processing time pi,j.
The levels of variations in problem size and job processing times could accommodate a
wide spectrum and well-balanced test instances. In order to generate instances that are
more challenging, for each problem size, Taillard selected the most difficult ten instances
to form the basic problem set. Thus, there are 120 instances in all. The job processing
times in each of these instances were randomly generated using a different random seed.
The files containing the instances are available to be downloaded on Taillard’s web site
(URL: http://www.idsia.ch/∼eric) or can be downloaded from the OR-Library web site
(URL: http://mscmga.ms.ic.ac.uk/jeb/orlib/&owshopinfo.html).

4.2. Parameters selection. The parameters’ values influence the effectiveness and ef-
ficiency of the MSA algorithm. To determine the best set of parameter values in terms
of solution quality and computational efficiency, an extensive set of preliminary experi-
ments were conducted. Based on the results, the following parameters were used in the
final computational experiments in this study: Iiter = n × 4000/Psize, T0 = 2.5 × n,
TF = 0.0025× n, Nnon-imprving = 40 and α = 0.90, where Psize ranges from 1 to 9, and n
is the number of jobs requiring scheduling.

With this parameter setting, in all the experiments, the algorithm terminates when
current temperature is less than 0.0025×n or when the best objective function value was
not improved in 40 successive temperature reductions. Since the number of iterations
(Iiter) is inversely proportion to the value of Psize, the number of solutions evaluated for
the instances with the same size are almost the same for each Psize value, making the
comparison on a fair basis. To determine the best values of Psize for the experiments,
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each instance was solved five times (each of which used different random seeds) under
each Psize value and the best solution out of the five solutions was chosen as the output
in the experiment. The average relative percentage deviation (ARPD) from the best
objective values over the 120 benchmark-problem instance is calculated according to

ARPD =
N∑
l=1

(Objl −BKSl)/BKSl

N
× 100%

where OBJl denotes the objective value of instance l obtained by the algorithm being
evaluated, and BKSl is the best objective value instance l obtained by existing algorithms,
including BESTLR& WY [27,28], BESTLWW [30], M-MMAS [43], PACO [44], PSOVNS [45],
C-PSO [46], ILS [47], HGAZLW [42], HGATL [41], QDEA [50], EDA and EDA-VNS [49].
Specifically, BESTLR& WY denotes three composite heuristics and an insetion-based

heuristic, proposed by Liu and Reeves [28] and Woo and Yim [27]. M-MMAS and PACO
denotes the two ant-colony-based approaches, proposed by Rajendran and Ziegler [43,44].
BESTLWW [30] represents the best objective value obtained by BESTLR& WY, PSOVNS,
BESTLR& WY and three composite heuristics, presented by Li et al. [30]. PSOVNS rep-
resents the particle swarm optimization approach with variable neighborhood search, de-
veloped by Tasgetiren et al. [45]. ILS is the iterated local search approach, proposed by
Dong et al. [48]. HGAZLW is the hybrid genetic algorithm, proposed by Zhang et al. [42].
HGATL is another hybrid genetic algorithm, proposed by Tseng and Lin [41]. C-PSO
is the combinatorial particle swarm optimization approach, developed by Jarboui et al.
[46]. QDEA is the quantum differential evolutionary algorithm, proposed by Zheng and
Yamashiro [50]. EDA and EDA-VNS are the estimation-of-distribution-algorithm-based
approaches, developed by Jarboui et al. [49].
The above-mentioned approaches represent the effective algorithms currently available

for solving the F ‖
∑

Cj problem. Thus, the performance of the proposed MSA algorithm
was compared with that of these state-of-the-art algorithms and of the traditional single-
start SA, on the same benchmark-problem instances. The ARPD of each Psize value for
the first 90 benchmark-problem problems (with the number of jobs less than or equal
to 100) is shown in Figure 2. As shown in Figure 2, the smallest average ARPD of the
proposed MSA algorithm is obtained by setting Psize = 2. Thus, the solutions of the
benchmark-problem instances obtained by the proposed MSA algorithm with Psize = 2
were used for further comparison.

4.3. Results and discussion. The proposed MSA algorithm was implemented using C
language and evaluated on a PC with an Pentium 4 (3.2GHz) CPU and 2048 MB memory.

Figure 2. The ARDP of each Psize value for the instances with the number
of jobs n is no more than 100
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Each of the test instances was solved five times by the MSA and the other algorithms
mentioned in Section 4.2 using different random seeds. For each test instance and each
evaluated algorithm, the best solution out of the five runs is shown in Tables 1-4 for
different combination of number of jobs and machines. Note that the original papers
did not report the results of evaluating M-MMAS, PACO, PSOVNS, ILS, DE, HGATL, C-
PSO, EDA and EDA-VNS on the larger instances with more than 100 jobs (i.e., they were

Table 1. Results on the instances with n = 20, and m = 5, 10 and 20

Table 2. Results on the instances with n = 50, and m = 5, 10 and 20
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Table 3. Results on the instances with n = 100, and m = 5, 10 and 20

Table 4. Results on the instances with n = 200 and 500, and m = 10 and 20

tested on only 90 instances in Taillard’s benchmark-problem set), so the corresponding
results are not shown in Table 4.
As shown in Tables 1-4, out of the 120 instances, the proposed MSA algorithm outper-

forms the other algorithms on 38 instances, and obtains the same objective values on 31
instances as the other algorithms. These results reveal that the proposed MSA algorithm
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could obtain better solutions than the state-of-the-art algorithms. If Psize = 1, the pro-
posed MSA algorithm reduces to the traditional single-start SA algorithm. In this case,
the proposed MSA algorithm obtains a better solution on 28 instances, and the same
objective value on 29 instances. The results indicate that the proposed MSA algorithm
is relatively more effective in minimizing total flow time than the traditional single-start
SA.

For the instances with n less than or equal to 100 (i.e., the first 90 instances), the 14
approaches (i.e., BESTLR& WY, BESTLWW, M-MMAS, PACO, PSOVNS, ILS, HGAZLW,
DE, HGATL, C-PSO, VNS, EDA-VNS, SA, MSA) obtain the best solution on 0 (0/90 =
0.00%), 12 (12/90 = 13.33%), 10 (10/90 = 11.11%), 6 (6/90 = 6.67%), 19 (19/90 =
21.11%), 31 (31/90 = 34.44%), 34 (34/90 = 37.77%), 28 (28/90 = 31.11%), 35 (35/90 =
38.89%), 31 (31/90 = 34.44%), 43 (43/90 = 47.78%), 44 (44/90 = 48.89%), 34 (34/90 =
37.78%) and 47 (47/90 = 52.22%) instances, respectively. By far, the MSA obtains the
most number of best solutions among all of the approaches under comparison. For the
larger instances (n is more than 100), the six approaches (i.e., BESTLR& WY, BESTLWW,
HGAZLW, DE, SA, MSA) obtains the best solution on 0 (0/30 = 0.00%), 0 (0/30 = 0.00%),
8 (8/30 = 26.67%), 1 (1/30 = 3.33%), 9 (9/30 = 30.00%), and 12 (12/30 = 40.00%)
instances, respectively. The MSA also obtains the most number of best solutions among
the six approaches under evaluation.

The ARPD over 10 different benchmark-problem instances for each problem size is
reported in Table 5. For the instances with the number of jobs less than or equal to 100,
the total ARPD is 0.061% for the proposed MSA algorithm, whereas the total APRD
for BESTLR& WY, BESTLWW, M-MMAS, PACO, PSOVNS, ILS, HGAZLW, DE, HGATL,
C-PSO, VNS, EDA-VNS and SA are 1.953%, 0.823%, 1.052%, 0.990%, 0.910%, 0.302%,
0.182%, 0.361%, 0.114%, 0.326%, 0.063%, 0.072% and 0.093%, respectively. The total
ARPD for all the 120 instances is 0.020% for the proposed MSA algorithm, whereas,
for BESTLR& WY, BESTLWW, HGAZLW, DE, and SA, the values are 1.727%, 0.790%,
1.146%, 0.435% and 0.054%, respectively. According to the results, the performance of
the proposed MSA algorithm is better than that of the state-of-art algorithms as well as
the traditional single-start SA on solving the F ‖

∑
Cj problem.

Table 6 lists the average computational time (CPU time in seconds) over 10 different
benchmark-problem instances for each problem size. The heuristics of BESTLR& WY were

Table 5. Performance comparison on Taillard’s benchmark-problems (RPD)
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Table 6. Performance comparison on Taillard’s benchmark-problems
(time in seconds)

run on a PC with a Pentium 200 CPU and a CRAY Y/MP system. All the heuristics of
BESTLWW were implemented using Visual Basic 6.0 and evaluated on an IBM PC with a
2.0GHz CPU and 256MB RAM. The M-MMAS and PACO were coded using FORTRAN
and run on a PC with a Pentium III 800MHz CPU. The only information, regarding
computational time, provided in the original papers of M-MMAS and PACO is that every
instance can be solved in less than one hour. The PSOVNS algorithms were coded using
C and run on a PC with a Pentium IV 2.6GHz CPU and 256MB memory. ILS was
implemented using C++, and run on a PC with an AMD Sempron 3200+ (1.8GHz) CPU
and 512M memory. The computational time of DE was not provided in the original paper.
HGAZLW was implemented using Java, and run on a PC with a Pentium IV 2.93GHz CPU
and 512MB DRAM. HGATL was implemented using C++, and run on a PC with an AMD
K7 1.83GHz CPU and 512MB DRAM. C-PSO was implemented using C++, and run on a
PC with a Pentium IV 3.2GHz CPU. VNS and EDA-VNS were implemented using C++,
and run on a PC with a Pentium IV 3.2GHz CPU and 1GB Memory. Note that since some
of the literature did not report detailed computational times that depend heavily on the
testing environment (e.g., hardware, software) and programming skills, it may not be fair
to compare directly the computational efficiency of all the algorithms. Moreover, for the
smaller instances, the parameter setting in the experiments could result in a large number
of iterations for the proposed MSA to obtain the solution quality which can be attained
with less number of iterations (and hence less computational times). For example, for
the instances with the number of jobs equal to 20, only 0.57, 0.96 and 1.41 seconds are
required to converge to the best solution with number of machines equals 5, 10 and 20,
respectively.
Indeed, according to the results, the proposed MSA outperforms the other algorithms

in terms of solution quality (i.e., effectiveness). In addition to the outstanding compu-
tational performance on the smaller instances, for the large instances with 500 jobs and
10 machines, the proposed MSA algorithm still obtains better solutions than the other
algorithm, using reasonable computational expenses. Judging from the experimental re-
sults, it is clear that the proposed MSA algorithm has made a step towards establishing
an effective and efficient approach for solving the F ‖

∑
Cj problem.

To make a more rigorous comparison, a set of one-sided paired-samples t-tests, with
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Table 7. Results of the paired-samples t-tests with respect to RPD

respect to the relative percentage deviation (RPD = (Obj −BKS)/BKS × 100%), were
performed to examine the difference in solution quality between the proposed MSA algo-
rithm and BESTLR& WY, BESTLWW, M-MMAS, PACO, PSOVNS, ILS, HGA, C-PSO and
SA. The test results are listed in Table 7. At confidence level α = 0.05, Table 7 shows
that the proposed MSA algorithm significantly outperforms all the other approaches. Be-
sides, the test results also show that the performance of the single-start SA algorithm
can be significantly improved by incorporating the multi-start hill climbing strategy. Al-
though the MSA only slightly outperforms the VNS and EDA-VNS, the MSA spends
less computational time and obtains the best solution in more instances than VNS and
EDA-VNS.

5. Conclusions and Future Research. The MSA heuristic which encompasses the
main properties of the SA (e.g., effective convergence, efficient use of memory, and easy
implementation) and of the multi-start hill climbing strategies (e.g., sufficient diversifica-
tion, excellent capability of escaping local optima, and efficient sampling in the solution
space) is proposed for solving the F ‖

∑
Cj problem. In light of the comparison of

the computational results with the best known solutions on a wide range of benchmark-
problem instances, the proposed MSA algorithm is relatively more effective in minimizing
total flow time than the existing algorithms and the traditional single-start SA. Given
that the F ‖

∑
Cj problem is an extremely challenging NP-hard problem, the proposed

MSA algorithm contributes significantly to the research of the optimization techniques
for solving this problem.

There are several possible research directions based on this research. One of them is
to develop other efficient and effective meta-heuristics for solving this problem. Another
interesting research direction is to apply the proposed MSA algorithm to solve other
complex scheduling problems, such as hybrid flowshop scheduling problems. Finally, the
proposed MSA algorithm can be used to solve this problem with other performance criteria
or with multiple criteria.
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