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ABSTRACT. The permutation flowshop scheduling problem with the objective of mini-
mizing total flow time is known as a NP-hard problem, even for the two-machine cases.
Because of the computational complexity of this problem, a multi-start simulated anneal-
ing (MSA) heuristic, which adopts a multi-start hill climbing strategy in the simulated
annealing (SA) heuristic, is proposed to obtain close-to-optimal solutions. To examine
the performance of the MSA algorithm, a set of computational experiments was conducted
on a well-known benchmark-problem set from the literature. The experiment results show
that the performance of the traditional single-start SA can be significantly improved by
incorporating the multi-start hill climbing strategy. In addition, the proposed MSA algo-
rithm is highly effective and efficient as compared with the other state-of-the-art meta-
heuristics on the same benchmark-problem instances. In terms of both solution quality
and computational expense, the proposed algorithm contributes significantly to this ex-
tremely challenging scheduling problem.
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1. Imtroduction. Scheduling is a decision-making process for optimally allocating re-
sources [1]. Efficient scheduling has become essential for manufacturing firms to survive
in today’s intensely competitive business environment [2,3]. As one of the best known pro-
duction scheduling problems, permutation flowshop sequencing problems (PFSPs) have
long been a topic of interest for the researchers and practitioners in this field [4]. Since
Johnson’s pioneering work [5], more than one thousand papers on various aspects of PF-
SPs have been published in the operational research literature, most of which considered
the objective of minimizing makespan [6]. Recently, the objective of minimizing total flow
time or, equivalently, total completion time if all jobs are available for processing at the
beginning, has attracted more attention from researchers. As per the standard three-field
notation, introduced by Graham et al. [7], the PFSP with the criterion of total flow time
can be denoted as F' || > C}.

Total flow time is one of the most important performance measures, because, in practice,
it can lead to stable utilization of resources, rapid turn-around of jobs, and minimization
of work-in-process inventory costs [8]. Therefore, minimizing the total flow time is a very
important objective for scheduling in many flowshop systems in, for instance, electronics,
chemicals, textile, food and the service industries. Because the flowshop has been widely
applied in many manufacturing and service systems, the F' || > C; problem has become a
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subject of continuing interest for researchers and practitioners. However, even a relatively
simple F' || Y C; problem involving only two machines is known as a strongly NP-hard
problem [9]. Although exact methods, such as branch and bound [10-13] and mixed in-
teger linear programming [14], have been developed to obtain optimal solutions to this
problem, these techniques may be computationally intensive, even for moderate-size in-
stances, and thus cannot be applied to solve the problem instances with practical sizes.
Instead, heuristic methods that guarantee to obtain acceptable solutions with reasonable
computational resources have the advantage in computational efficiency. Existing heuris-
tic methods for solving this problem can be classified into two categories: constructive
heuristics and improvement heuristics. In a constructive heuristic, once a job sequence
is determined, it is fixed and cannot be reversed [15,16]. In the past decades, several
constructive heuristic methods [8,17-29] have been proposed for solving the F || > C;
problem, such as FL, RZ, WY, H(2) and CH3, presented by Framinan and Leisten [8],
Rajendra and Ziegler [26], Woo and Yim [27], Liu and Reeves [28], and Li and Wu [29], re-
spectively. However, these constructive heuristics are simple methods that aim to quickly
obtain feasible solutions without guaranteeing solution quality, especially for large-scale
instances [30]. On the other hand, an improvement heuristic starts with an initial solution
and then provides a scheme for iteratively obtaining an improved solution until reaching
stopping criteria [31,32]. Computational results showed that FLR2, IH7-FL, and FLRI1,
proposed by Allahverdi and Aldowaisan [33], Framinan and Leisten [8], and Framinan
et al. [34], respectively, significantly outperform other heuristics in the literature of the
F' || >~ C; problem. For further extensive reviews on this problem, the reader is referred
to Gupta and Stafford Jr. [6].

Recent interests in developing efficient improvement heuristics have resulted in consid-
erable attention to meta-heuristics that are particularly attractive for large-scale instances
[35]. Meta-heuristics typically refer to a general algorithmic framework that can be ap-
plied to different combinatorial optimization problems with minor modifications [36-39].
Meta-heuristics for the F || > C; problem include genetic algorithm [40-42], ant colony
optimization [43,44], particle swarm optimization [45,46], neural network algorithm [47],
iterated local search [48], estimation of distribution algorithm [49], and differential evolu-
tionary algorithm [50].

Among the modern meta-heuristics, the simulated annealing (SA) algorithm, proposed
by Metropolis et al. [51], has emerged as a highly effective and efficient algorithmic ap-
proach to NP-hard combinatorial optimization problems. However, the search procedure
in the SA algorithm typically requires some diversification mechanisms to escape from
local optima. Without such mechanisms, the SA algorithm may be trapped in a small
area of the solution space, missing the possibility of finding a global optimum [52]. One
way to achieve diversification is to utilize the multi-start hill climbing strategy which
performs the search procedure with several starting points. In light of this strategy, this
study proposes the effective and efficient multi-start simulated annealing (MSA) heuristic
to solve the F' || Y C; problem. This novel MSA heuristic combines the advantages of the
SA algorithm in effectively searching solution space and of the multi-start hill climbing
strategy in escaping from local optima, and offers a significant contribution to the growing
body of the literature for solving PFSPs.

The rest of this paper is structured as follows. After formulating the F' || > C; problem
in Section 2, the proposed MSA heuristic is described in Section 3. Section 4 reports the
computational results of empirically evaluating the effectiveness and efficiency of the pro-
posed MSA algorithm by comparing its performance against the traditional single-start
SA and the state-of-the-art algorithms on a benchmark-problem set from the literature.
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Finally, conclusions are drawn together with recommendations for future research in Sec-
tion 5.

2. Problem Definition. The F' || >  C; problem aims at scheduling n jobs on m ma-
chines, where each job has one operation on each machine and all jobs are processed in
the same technological order on all machines. Meanwhile, the sequence in which each
machine processes all jobs is identical on all machines. Besides, the following assumptions
are considered in this study:

e Each machine can process at most one job at a time and each job can be processed
on only one machine at any given time.

e The schedule is non-preemptive, meaning once a job starts to be processed on a
machine, the process cannot be interrupted before completion.

e The number of jobs and their processing times on each machine are known in advance
and are non-negative integers.

e The number of machines is known in advance, and all machines are persistently
available to process all scheduled jobs as required.

e The individual operation setup times are small compared with their processing times,
and are included in the processing times.

e The ready time of all jobs is zero, meaning that all jobs are available for processing
at the beginning.

Based on the above definitions and assumptions, the objective is to identify a se-
quence 0 = (o(1),...,0(n)) for the n jobs so as to minimize the total flow time, F' =
>or,C(o(i),m), where o ranges over all those permutations of n jobs. By imposing
the condition that each operation is to be performed as soon as possible, the completion
time of each job o(i) on machine j, C(o(i), ), is calculated using the recursive formula:
C(o(i),j) = max{C(0(i),j—1);C(o(i—1),J)} +Dsg),j>J = 1,...,m, where py(;) ; denotes
the processing time of job o(7) on machine j, and C(¢,7) = C(o(i),0) = 0 for all i and
7; @ is the initial null schedule.

3. Proposed Multi-start Simulated Annealing Algorithm. The proposed multi-
start simulated annealing (MSA) algorithm combines the advantages of the SA algorithm
and of the multi-start hill climbing strategy. The following subsections further illustrate
the solution representation, initial solution, neighborhood, the parameters and the algo-
rithmic procedures in the MSA algorithm.

3.1. Solution representation and initial solution. In this study, a sequence of jobs
is represented by a string of numbers denoting a permutation of n jobs. For example, the
permutation, [4 8 52 1 3 7 6], can be decoded as the operation sequence 4-8-5-2-1-3-7-6
of eight jobs on each machine. Half of the initial solutions (at least one) are generated
by Nawaz-Enscore-Ham (NEH) heuristic [53], and the rest are generated by randomly
ordering the jobs.

3.2. Neighborhood. Let S denote the set of feasible solutions and let o (k = 1, ..., Py
represent the current solutions, where o € S, and Py, denotes the number of starting
points in the MSA algorithm. The set N(oy) consists of the solutions neighboring oy,
(k=1,..., Ps.). N(oy) can be defined by either a swap or an insertion operation. That
is, a solution in N(oy) is generated by randomly selecting a pair of jobs and swapping
them, or by randomly selecting one job and inserting the chosen job immediately before
another randomly selected job. The probabilities of performing the swap and insertion
operations were fixed at 0.5 and 0.5, respectively.
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3.3. Parameters. The proposed MSA algorithm has six parameters, namely I;.,., T,
Tr, Npon-improving, @ and Ps;.., where I, denotes the number of iterations performed at
a particular temperature, T represents the initial temperature, T is the final temperature
(the MSA procedure terminates when the current temperature is below T%), Nyon-improving
is the maximum number of reductions in temperature when the incumbent total flow time
is not improved, and « denotes the coefficient controlling the cooling schedule.

3.4. MSA procedure. The procedure of the proposed MSA algorithm is depicted in
Figure 1. First, the current temperature 7' is set to Ty. Next, initial solutions o, (k =

1,..., Ps..) are randomly generated as the multi-start points. For each iteration, the next
solutions o}, are chosen from their corresponding neighborhood, N(oy), (k= 1,..., Pse).
h’ISA ( Ir’rer"‘ I:'J‘ TF * ‘Mnonﬂ'mpmvmg' a and ‘Psi:e)

Step 1: Generate the initial solutions &, by NEH heuristic, k=1, 3, ... P, -1;
Generate the initial solutions &, randomly, k=2.4.... P, :
Step 2: Let T =T: R=0: N=0. 5, =the best &, amongthe P_ solutions:
TFT,,
Step 3: N=N+1.
Step4: For k=1 to Pqpe {
Step 4.1 Generate a solution &', basedon &, ;

= Obj(o—besl) :

Step 4.2 If A, =obj(c',)-0bj(c,)<0 {Let o, =0",:}
Else {
Generate »~U(0,1):
If r<BEpa,/T) {Let o,=0";:}
Else {Discard &',:}
¥
Step4.3If 0bj(c,)<TFT,,. {
Gy =03 TFT,,., =0bj(G,): R=0;

Let Jj' :Gbesr (.j:L 2 JDsr':c)

;
Step5:1If N=1_. {
T=Txa: N=0:
Perform local search for each o, :

Ifobj( o, )< TFT,

est L

Oy = 0+ ITFT,  =o0bj(c,): R=0:
Let Gl‘ :gbesx (-}:1 e 10:1‘:3)

}

Else {R=R+1:}

}
Else {Go to Step 3.}

Step 6:If T<T, or R=N,

won-mprovng 1 LeTmninate the MSA procedure:}
Else {Go to Step 3:}

F1GURE 1. The pseudo-code of proposed MSA algorithm
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Furthermore, let 0bj(oy) denote the total flow time of o, and let A; denote the difference
between obj(oy) and obj(oy,), that is Ay, = 0bj(oy) —obj(o}.). The probability of replacing
o, with o}, given that Ay > 0, is Fxp(—Ay/T). This step is performed by generating
a random number r € [0, 1] and replacing the solution oy with o}, if r < Exp(—Ag/T).
Meanwhile, if A; < 0, the probability of replacing oy with o}, is 1.

T is decreased after running I, iterations from the previous reduction in temperature,
according to the formula 7" < o7, where 0 < o < 1. Whenever T is decreased, a local
search procedure that sequentially performs swap and insertion operations is used to
improve the current best solution among all the current solutions oy (k = 1,..., Pyye).
If T is less than Ty, the algorithm is terminated. If the incumbent solution, e, is
not improved in Ny on-improving Successive reductions in temperature, the algorithm is also
terminated. If a new oy solution is obtained, then all the current solutions oy (k =
1,..., Py.e) are set to be the same as this new solution, opes, and the MSA procedure is
continued. Following the termination of the MSA procedure, the near-optimal sequence
can be derived from opeq;.

4. Experimental Results. This section describes the computational experiments con-
ducted to evaluate the performance of the proposed MSA algorithm for solving the
F || >~ C; problem. The test problems, parameters selection, and computational results
are further detailed in the following subsections.

4.1. Test problems. The proposed MSA algorithm was tested on the benchmark-proble-
m set, provided by Taillard [54]. This set was also adopted to evaluate the state-of-the-
art meta-heuristics in the literature. In order to conduct a systematic evaluation of the
performance of different algorithms, Taillard [54] generated the test instances based on
the characteristics of real flowshop systems. The benchmark instances have 12 different
sizes, the number of jobs ranges from 20 to 500, and the number of machines varies from
5 to 20. Moreover, for each job i (i = 1,...,n) on each machine j (j = 1,...,m), an
integer was generated from the uniform distribution [1,99] as the processing time p; ;.
The levels of variations in problem size and job processing times could accommodate a
wide spectrum and well-balanced test instances. In order to generate instances that are
more challenging, for each problem size, Taillard selected the most difficult ten instances
to form the basic problem set. Thus, there are 120 instances in all. The job processing
times in each of these instances were randomly generated using a different random seed.
The files containing the instances are available to be downloaded on Taillard’s web site
(URL: http://www.idsia.ch/~eric) or can be downloaded from the OR-Library web site
(URL: http://mscmga.ms.ic.ac.uk/jeb/orlib/&owshopinfo.html).

4.2. Parameters selection. The parameters’ values influence the effectiveness and ef-
ficiency of the MSA algorithm. To determine the best set of parameter values in terms
of solution quality and computational efficiency, an extensive set of preliminary experi-
ments were conducted. Based on the results, the following parameters were used in the
final computational experiments in this study: Iy, = n X 4000/ Pyi.e, To = 2.5 X n,
Tr = 0.0025 X 1, Nyon-improing = 40 and o = 0.90, where Pi;.. ranges from 1 to 9, and n
is the number of jobs requiring scheduling.

With this parameter setting, in all the experiments, the algorithm terminates when
current temperature is less than 0.0025 x n or when the best objective function value was
not improved in 40 successive temperature reductions. Since the number of iterations
(Liter) is inversely proportion to the value of Pj;.., the number of solutions evaluated for
the instances with the same size are almost the same for each P,;.. value, making the
comparison on a fair basis. To determine the best values of P;.. for the experiments,
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each instance was solved five times (each of which used different random seeds) under
each P, value and the best solution out of the five solutions was chosen as the output
in the experiment. The average relative percentage deviation (ARPD) from the best
objective values over the 120 benchmark-problem instance is calculated according to

N .
ARPD =" (Obji — Bisl)/BKS’ % 100%
=1

where OBJ; denotes the objective value of instance [ obtained by the algorithm being
evaluated, and BKS; is the best objective value instance [ obtained by existing algorithms,
lHChlleg BESTLR& WY [27,28], BESTLWW [30], M-MMAS [43], PACO [44], PSOVNS [45],
C-PSO [46], ILS [47], HGAziw [42], HGATy [41], QDEA [50], EDA and EDA-VNS [49].

Specifically, BESTre wy denotes three composite heuristics and an insetion-based
heuristic, proposed by Liu and Reeves [28] and Woo and Yim [27]. M-MMAS and PACO
denotes the two ant-colony-based approaches, proposed by Rajendran and Ziegler [43,44].
BESTpww [30] represents the best objective value obtained by BESTpre wy, PSOvns,
BESTLre wy and three composite heuristics, presented by Li et al. [30]. PSOyng rep-
resents the particle swarm optimization approach with variable neighborhood search, de-
veloped by Tasgetiren et al. [45]. ILS is the iterated local search approach, proposed by
Dong et al. [48]. HGAzw is the hybrid genetic algorithm, proposed by Zhang et al. [42].
HGATy, is another hybrid genetic algorithm, proposed by Tseng and Lin [41]. C-PSO
is the combinatorial particle swarm optimization approach, developed by Jarboui et al.
[46]. QDEA is the quantum differential evolutionary algorithm, proposed by Zheng and
Yamashiro [50]. EDA and EDA-VNS are the estimation-of-distribution-algorithm-based
approaches, developed by Jarboui et al. [49].

The above-mentioned approaches represent the effective algorithms currently available
for solving the F' || > C; problem. Thus, the performance of the proposed MSA algorithm
was compared with that of these state-of-the-art algorithms and of the traditional single-
start SA, on the same benchmark-problem instances. The ARPD of each P,;.. value for
the first 90 benchmark-problem problems (with the number of jobs less than or equal
to 100) is shown in Figure 2. As shown in Figure 2, the smallest average ARPD of the
proposed MSA algorithm is obtained by setting P,;.. = 2. Thus, the solutions of the
benchmark-problem instances obtained by the proposed MSA algorithm with P, = 2
were used for further comparison.

4.3. Results and discussion. The proposed MSA algorithm was implemented using C
language and evaluated on a PC with an Pentium 4 (3.2GHz) CPU and 2048 MB memory.

0.250
0.200
0.150
ARDP 0 BKS
0.100
0.050

0.000

FIGURE 2. The ARDP of each Pi;,. value for the instances with the number
of jobs n is no more than 100
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Each of the test instances was solved five times by the MSA and the other algorithms
mentioned in Section 4.2 using different random seeds. For each test instance and each
evaluated algorithm, the best solution out of the five runs is shown in Tables 1-4 for
different combination of number of jobs and machines. Note that the original papers
did not report the results of evaluating M-MMAS, PACO, PSOvyxs, ILS, DE, HGAr,, C-
PSO, EDA and EDA-VNS on the larger instances with more than 100 jobs (i.e., they were

TABLE 1. Results on the instances with n = 20, and m = 5, 10 and 20

; BEST.. M-MMAS PACO  PSOyg ILS HGAzw DE HGApp C-PSO VNS  EDA-VNS SA MSA
14041 14056 14056 140337 14033 14033 14033 14033 14033 14033 14033 14033 14033
15151 15151 15214 15151 15151 15151 15151 15151 15151 15151 15151 15151 15151
13386 13416 13403 13301 13301 13301 13313 13301 13301 13301 13301 13301 13301
15486 15486 15505 15447 15447 15447 15447 15447 15447 13447 15447 15447 15447
13529 13529 13520 13529 13520 13520 13529 13519 13529 13520 13529 13520 13529
13123 13123 13123 13123 13123 13123 13123 13123 13123 13123 13123 13123
13559 13674 13548 13548 13548 13557 13548 13548 13548 13548 13548 13548
13968 14042 13948 13948 13948 13948 13948 13948 13948 13948 13948 13948
14317 14383 14295 14295 14295 14295 14295 14295 14295 14205 14295 14295
12968 13021 12943 12043 12043 12943 12043 12043 12943 12943 12043 12943

20958 20980 20958 20911 20911 20911 20911 20911 20911 20911 20911 20911 20011
22440 22440 22591 22440 22440 22440 22440 22440 22440 22440 22440 22440 22440

19833 19833 19968 19833 19833 19833 19833 19833 19833 19833 19833 19833 19833
18724 18724 18769 18710 18710 18710 18710 18710 18710 18724 18710 18717 18710
18644 18644 7 18641 18641 18641 18641 18641 18041 18641 18641 18041
19245 19245 2 19245 19245 19245 19245 19245 19249 10245 10245 19245
1837 18376 377 18363 18363 18363 18363 18363 183063 18363 18363 18363
20241 20241 77 20241 20241 20241 20241 20241 20241 20241 20241 20241
20330 20330 20330 20330 20330 20330 20330 20330 20330 20330 20330
21320 21320 21320 21320 21320 21320 21320 21320 21320 21320 21320
33623 33623 34975 33623 33623 33623 33623 33623 33623 33623 33623 33623
31604 7 5 31587 31587 31587 31587 31587 31587 31587 31587 31587
33920 - ] 33920 33920 33920 33920 33920 33920 33920 33920 33920
31698 31661 31661 31661 31661 31661 31661 31661 31661 31661
345 : 34557 34557 34557 34557 34557 34557 34557 34557 34557
32 32564 32564 32564 32564 32504 32564 32504 32564 32504
33 32022 32922 32922 32922 32922 32922 32922 32922 32922
32 32412 32412 32412 32412 32412 32412 32412 32412 32412

33600 33600 33600 33600 33600 33600 33600 33600 33600
323 7 32262 32262 32262 32262 32262 32262 32262 32262 32262

TABLE 2. Results on the instances with n = 50, and m = 5, 10 and 20

n_m BEST... M-MMAS PACO DE VNS EDA-VNS  SA
50 5 65546 65768 65546 65058 64841 64817 64901
68485 68828 68485 68306 68066 68151 68179
64149 64166 64149 63652 63240 63258 63337
69113 69359 68701 68459 68287 68416
70154 70154 69696 69478 69495 69462
67563 7 67664 67197 66997
66600 67014 66600 66334 66335
64863 65123 64601 64424
62981 63968 63483 63483 63217 62981
68843 70273 69831 69831 69220 68843
50 10 87238 gg77 8877 88942 88028 87299
83001 85600 83612 83612 84549 83525 83187
80132 82456 81338 81655 81338 30388 80132
86725 80356 87024 87924 38014 86972 86725
26626 88482 87801 28826 87801 87194 86626
86735 89602 88260 88394 88260 87024 86785
88996 01422 89984 90686 89984 89279 89192
26860 89549 88281 28595 88281 7790 87123
25688 88230 86975 86975 36095 86125 85806
88149 900787 89238 89470 89238 88937 88319
50 20 125831 120005 126962 127348 126962 126338 126898 126126 125831 126129 125878
119247 122004 121208 121098 119558 119373 119936 119247 119247 119441
116696 121379 118051 117258 117248 117210 116950 116696 116888
124083 123061 121158 122003 121540 120978 120834 121074
122158 119920 118534 118950 118783 118833 118457 118589
124061 122369 121100 121507 120914 120851 120820 121008
126363 125609 123666 123607 123756 123526 123271 123672
126317 124543 123428 123451 122000 122062 122820 122860
125318 124059 122623 122398 122281 122315 121872 122145
124354 127823 126582 124647 124936 125149 124520 124537 124486 124215

Bold font means the best solution among various algorithms.
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TABLE 3. Results on the instances with n = 100, and m = 5, 10 and 20

BEST,.. M-MMAS PACO HGAznw DE HGATr C-PSO VNS EDA-VNS  SA MSA

100 5 256780 256066 257025 257886 254762 2542507 254850 254444 254279
245600 244885 246612 246326 243850 243365 243227 243542 243498
241013 240537 241271 239173 238580 238809 238780 238757
228705 228542 228520 228278 228544
242245 241432 241397 241528 241442 241149
234082 233698 233161 233721 233685
241650 241213 241270 241138 241550
234164 232734 234224 231865 232091 232235 231850
251201 249920 249838 240038 240166 248656 249038
24 246261 244131 245139 243902 243647 243923 244004
100 10 3 305004 300507 303028 301413 301001 300837 299799
2 278921 277109 278160 275601 276077 276069 275675
2 294239 290468 292243 288043 289961 289799 289661
3 306739 303443 305722 303597 303555 304106 302313
2 289676 2 286911 287201 286559 286514
2 275420 272790 271056 272052 272099 272443
2 284846 282440 281306 281090 282115 281938 281328
2 296130 293572 293628 203460 293842 293127 293671
3 307043 304275 303803 304479 304530 303576
2 296869 293465 203584 203492 293643 293551
100 20 3 369391
374838
372423
37 375447
371820
374596
376336
387802
377201
381044
Bold font

TABLE 4. Results on the instances with n = 200 and 500, and m = 10 and 20

n  om  BKS BESTswy BEST.. MMMAS PACO  PSOns  [I§  HGAzy DE  HGA; (PSSO VNS EDA-VNS  SA MSA
200 10 1050564 1063976 1057244

N/A N/A N/A N/A 1050564 1061356 N/A N/A NA N/A 1052491 1052058

1040604 1049076 1049076 N/A N/A NA N/A 1040604 1045405 N/A NA NA N/A 1042851 1042806
1050785 1039765 1039763 NA N/A N/A N/A 1050785 1033712 NA NA NA N/A 1051427 1051625
1038885 1051335 1042435 N/A N/A N/A N/A 1038885 1049792 N/A N/A NA NA 1035920 1037395
1041510 1055823 1051089 N/A N/A N/A N/A 1041510 1052792 N/A NA NA N/A 1040586 1040209
1013421 1023054 1018049 N/A N/A N/A N/A 1013421 1021684 N/A NA NA N/A 1011654 1011018
1061285 1071471 1068762 NA N/A N/A N/A 1061285 1070612 NA NA NA N/A 1059562 1059194
1049007 1054500 1051772 N/A N/A N/A N/A 1049007 1052870 N/A NA NA N/A 1051724 1050631
1026991 1045183 1036608 N/A N/A N/A N/A 1026991 1041205 N/A N/A NA N/A 1028996 1029734
1038016 1044888 1044888 N/A N/A N/A N/A 1038016 1042602 N/A N/A N/A NA 1034819 1035628
200 20 1243608 N/A N/A N/A N/A 1235238 1244599 N/A NA NA N/A 1231607 1232832
N/A N/A N/A N/A 1154529 1260944 N/A NA NA N/A 1249520 1249029

N/A N/A N/A N/A 1282514 N/A N/A NA N/A 1272495 1271136

N/A N/A N/A N/A 1262987 N/A NA NA N/A 1243433 1244300

N/A N/A N/A N/A 1249780 N/A N/A NA N/A 1229370 1230550

1248909 N/A N/A N/A N/A 1245824 NA N/A NA N/A 1232910 1233043

1265967 N/A N/A N/A N/A 1264431 N/A N/A NA N/A 1249017 1246752

1268583 N/A N/A N/A N/A 1269343 N/A NA NA N/A 1249430 1248323

1249406 N/A N/A N/A N/A 1251134 N/A NA NA N/A 1240528 1236393

1269812 N/A N/A N/A N/A 1253075 1263586 NA N/A NA N/A 1256725 1256193

00 10 6746310 6732747 N/A N/A N/A N/A 67213143 6739564 N/A N/A NA N/A 6692467 6696073
6868018 6858362 N/A N/A N/A N/A 6844840 6770735 N/A NA NA N/A 6821192 6814417

6793698 6778136 NA N/A N/A N/A 6772110 6784318 NA N/A NA NA 755556 6736622

6812857 GB12837 NA N/A NA N/A 6809460 6803343 NA NA NA NA 6785246

6760655 N/A N/A N/A N/A 6742209 N/A N/A NA N/A 6736622

7 6736190 NA N/A N/A N/A 6729388 6763837 NA N/A NA N/A 6750667

6739792 6713386 N/A N/A N/A N/A 6706950 6724431 N/A NA NA N/A 6708140

6821619 6801698 N/A N/A N/A N/A 6809832 N/A NA NA N/A  6TBET1T 6776403

6753839 6746074 NA N/A N/A N/A 673057 NA NA NA N/A - 6711373 6712900

778403 6771808 N/A N/A N/A N/A 6769981 N/A N/A NA N/A 759750 6759547

"Bold font means the best solution among various algorithms.

tested on only 90 instances in Taillard’s benchmark-problem set), so the corresponding
results are not shown in Table 4.

As shown in Tables 1-4, out of the 120 instances, the proposed MSA algorithm outper-
forms the other algorithms on 38 instances, and obtains the same objective values on 31
instances as the other algorithms. These results reveal that the proposed MSA algorithm
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could obtain better solutions than the state-of-the-art algorithms. If P,,. = 1, the pro-
posed MSA algorithm reduces to the traditional single-start SA algorithm. In this case,
the proposed MSA algorithm obtains a better solution on 28 instances, and the same
objective value on 29 instances. The results indicate that the proposed MSA algorithm
is relatively more effective in minimizing total flow time than the traditional single-start
SA.

For the instances with n less than or equal to 100 (i.e., the first 90 instances), the 14
approaches (i.e., BESTLR& WY, BESTLW\;V, M-MMAS, PACO, PSOVNs, ILS, HGAZL\N,
DE, HGArp,, C-PSO, VNS, EDA-VNS, SA, MSA) obtain the best solution on 0 (0/90 =
0.00%), 12 (12/90 = 13.33%), 10 (10/90 = 11.11%), 6 (6/90 = 6.67%), 19 (19/90 =
21.11%), 31 (31/90 = 34.44%), 34 (34/90 = 37.77%), 28 (28/90 = 31.11%), 35 (35/90 =
38.89%), 31 (31/90 = 34.44%), 43 (43/90 = 47.78%), 44 (44/90 = 48.89%), 34 (34/90 =
37.78%) and 47 (47/90 = 52.22%) instances, respectively. By far, the MSA obtains the
most number of best solutions among all of the approaches under comparison. For the
larger instances (n is more than 100), the six approaches (i.e., BESTre wy, BESTrww,
HGAzw, DE, SA, MSA) obtains the best solution on 0 (0/30 = 0.00%), 0 (0/30 = 0.00%),
8 (8/30 = 26.67%), 1 (1/30 = 3.33%), 9 (9/30 = 30.00%), and 12 (12/30 = 40.00%)
instances, respectively. The MSA also obtains the most number of best solutions among
the six approaches under evaluation.

The ARPD over 10 different benchmark-problem instances for each problem size is
reported in Table 5. For the instances with the number of jobs less than or equal to 100,
the total ARPD is 0.061% for the proposed MSA algorithm, whereas the total APRD
for BESTLR& WY BESTLW\)V, M—MMAS, PACO, PSO\/NS7 ILS, HGAZLW; DE, HGATL,
C-PSO, VNS, EDA-VNS and SA are 1.953%, 0.823%, 1.052%, 0.990%, 0.910%, 0.302%,
0.182%, 0.361%, 0.114%, 0.326%, 0.063%, 0.072% and 0.093%, respectively. The total
ARPD for all the 120 instances is 0.020% for the proposed MSA algorithm, whereas,
for BEST1re wy, BESTrww, HGAzrw, DE, and SA, the values are 1.727%, 0.790%,
1.146%, 0.435% and 0.054%, respectively. According to the results, the performance of
the proposed MSA algorithm is better than that of the state-of-art algorithms as well as
the traditional single-start SA on solving the F' || Y C; problem.

Table 6 lists the average computational time (CPU time in seconds) over 10 different
benchmark-problem instances for each problem size. The heuristics of BEST re, wy were

TABLE 5. Performance comparison on Taillard’s benchmark-problems (RPD)

Prob. BESTgwy BEST.. M-MMAS PACO PSOywy ILS HGAzw DE HGAp C-PSO VNS EDA-VNS SA MSA (Pi.=2)
20[5 1361 0152 0187 0454 0000 0.000 0000 0016 0.000 0000 0000 0000  0.000 0.000
2010 1433 0039 0049 0324 0002 0000 0000 0000 0.000 0000 0010 0000  0.004 0.000
20/20 1224 0068 0119 0.8 2828 0000 0000 0000 0.000 0000 0000 0000  0.000 0.000
5005 1679 0980 1257 1072 0371 0544 0424 0422 0132 0246 0057 0049  0.137 0.142
50110 2819 1413 1821 1558 0581 0448 0356 0606 0121 0257 0134 0136 0236 0.123
50120 2850 1191  1.530  1.222 2088 0342 0276 0528 0122 0317 0155 0038 0159 0.134
100/5 1157 0858  1.112 1231 0401 0603 0230 0642 0125 0512 0033 0096  0.067 0.074
100/10 2037 1253 1627 1338 0571 0468 0213 0600 0215 0733 0062 0179  0.141 0.002
100/20 3020 1451 1732 1519 1344 0312 0136 0437 0315 0868 0.115 0154  0.094 0.076
200/10 1039 0659 - - - — 0000 0798 — - - - -0.010  -0.008
200/20 1640 1170 - - - — 0000 0979 - - - 0146 -0.198
500/10 0463  0.248 - - - — 0118 0189 - - - -0.029  -0.100
Ave for n<100 1953 0823 1052 099 0910 0302 0182 0361 0114 0326 0063 0072  0.093 0.061

Ave for n=500 1727 0790 - - - — 0146 0435 - - - 0.054  0.020
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TABLE 6. Performance comparison on Taillard’s benchmark-problems
(time in seconds)

Prob. ‘BESTirewy ‘BESTiww “M-MMAS ‘PACO PSOwys ILS HGAzw 'DE HGA7 C-PSO VNS EDA-VNS SA  MSA (Pix=2)
20/5 NA NA <3600 <3600 318 0.25 218 N/A 1.11 213 0.13 0.30 3.74 3.74
20010 NA N/A <3600 <3600 721 0.53 414 N/A 345 921 0.30 1.20 6.81 680
20120 NA NA <3600 <3600 11.93 1.00 7.57 N/A 6.83 988 074 1.51 1142 11.55
5005 NA NA <3600 <3600 41.71 345 40.85 N/A 6.55 5480 31.98 57.22 27.28 2795
50110 NA NA <3600 <3600 7449 743 111.74 N/A 3654 13212 356.18  105.45 35420 35457
50120 NA NA <3600 <3600 14332 1452 18998 NA 1p651  277.08 142.08 240.96 100.11 100.60
100(3 NA NA <3600 <3600 22228 2532 46133 N/A 16540 12163 17426 124.55 9955 10287
10010 NA NA <3600 <3600 40788 5598  826.76 N/A 884505 27460 32437  266.02 202.86 208.95
100120 NA NA <3600 =3600 82441 11122 201496 N/A 20002 268.80 644.98 570.27 407.52 42253
200110 NA NA NA NA N/A N/A 851501 N/A N/A N/A N/A N/A 72186 76249
20020 NA N/A N/A N/A N/A N/A 1784958 N/A N/A N/A  NA N/A 146245 1536.80
500(10 NA NA NA NA N/A N/A 50000.00 N/A N/A N/A  N/A N/A 886300 026140
Avg. for n=100 NA NA NA N/A 19293 2441 406.61 N/A 6289 12792 15278 151.95 101.50 104.39
Avg. for 11 500 N/A N/A N/A N/A N/A N/A  6668.68 NA NA NA  NA N/A 99682  1041.69

1: Executing time is not provided in the paper.
2: Run on a PC that has a Pentium III 800 MHz processor and the computing time for each problem is less than one hour. No detailed time information is provided in their
original paper.

run on a PC with a Pentium 200 CPU and a CRAY Y/MP system. All the heuristics of
BESTww were implemented using Visual Basic 6.0 and evaluated on an IBM PC with a
2.0GHz CPU and 256MB RAM. The M-MMAS and PACO were coded using FORTRAN
and run on a PC with a Pentium III 800MHz CPU. The only information, regarding
computational time, provided in the original papers of M-MMAS and PACO is that every
instance can be solved in less than one hour. The PSOyyg algorithms were coded using
C and run on a PC with a Pentium IV 2.6GHz CPU and 256MB memory. ILS was
implemented using C++, and run on a PC with an AMD Sempron 3200+ (1.8GHz) CPU
and 512M memory. The computational time of DE was not provided in the original paper.
HGAz,w was implemented using Java, and run on a PC with a Pentium IV 2.93GHz CPU
and 512MB DRAM. HGA 1, was implemented using C++4, and run on a PC with an AMD
K7 1.83GHz CPU and 512MB DRAM. C-PSO was implemented using C++, and run on a
PC with a Pentium IV 3.2GHz CPU. VNS and EDA-VNS were implemented using C++,
and run on a PC with a Pentium IV 3.2GHz CPU and 1GB Memory. Note that since some
of the literature did not report detailed computational times that depend heavily on the
testing environment (e.g., hardware, software) and programming skills, it may not be fair
to compare directly the computational efficiency of all the algorithms. Moreover, for the
smaller instances, the parameter setting in the experiments could result in a large number
of iterations for the proposed MSA to obtain the solution quality which can be attained
with less number of iterations (and hence less computational times). For example, for
the instances with the number of jobs equal to 20, only 0.57, 0.96 and 1.41 seconds are
required to converge to the best solution with number of machines equals 5, 10 and 20,
respectively.

Indeed, according to the results, the proposed MSA outperforms the other algorithms
in terms of solution quality (i.e., effectiveness). In addition to the outstanding compu-
tational performance on the smaller instances, for the large instances with 500 jobs and
10 machines, the proposed MSA algorithm still obtains better solutions than the other
algorithm, using reasonable computational expenses. Judging from the experimental re-
sults, it is clear that the proposed MSA algorithm has made a step towards establishing
an effective and efficient approach for solving the F' || Y C; problem.

To make a more rigorous comparison, a set of one-sided paired-samples t-tests, with
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TABLE 7. Results of the paired-samples t-tests with respect to RPD

MSA vs. MSAwvs, MSAwvs, MSAvs. MSA vs. MSA vs. MSA vs. MSA vs. MSA vs. MSA vs. MSA vs. MSA vs, MSA vs.

BEST,. BEST, MMMAS PACO PSOps IS HGA DE  HGAz CPSO VNS EDAVNS  sA
Paired difference (RPD)  -1.706 -0.770 0901 -0928  -0849  -0241 -0.126 -0.414 -0.053 -02648 -0176 0011  -0.024
t-Value 21,746 215421 -13.120  -16207  -8202  -8257 -5623 -10.797 -3.074 27583 0014 -0.646 0 031
Degree of freedom 119 119 89 80 80 80 119 119 89 80 89 89 119
P-Value 0.0000 00000 00000 00000  0.0000 0.0000 0.0000 00000 00014 0000 04546 02599  0.002

respect to the relative percentage deviation (RPD = (Obj — BKS)/BKS x 100%), were
performed to examine the difference in solution quality between the proposed MSA algo-
rithm and BESTLR& WY, BESTLW\N, M—MMAS, PACO, PSOVNS) ILS, HGA, C-PSO and
SA. The test results are listed in Table 7. At confidence level a = 0.05, Table 7 shows
that the proposed MSA algorithm significantly outperforms all the other approaches. Be-
sides, the test results also show that the performance of the single-start SA algorithm
can be significantly improved by incorporating the multi-start hill climbing strategy. Al-
though the MSA only slightly outperforms the VNS and EDA-VNS, the MSA spends
less computational time and obtains the best solution in more instances than VNS and

EDA-VNS.

5. Conclusions and Future Research. The MSA heuristic which encompasses the
main properties of the SA (e.g., effective convergence, efficient use of memory, and easy
implementation) and of the multi-start hill climbing strategies (e.g., sufficient diversifica-
tion, excellent capability of escaping local optima, and efficient sampling in the solution
space) is proposed for solving the F' || > C; problem. In light of the comparison of
the computational results with the best known solutions on a wide range of benchmark-
problem instances, the proposed MSA algorithm is relatively more effective in minimizing
total flow time than the existing algorithms and the traditional single-start SA. Given
that the F' || > C; problem is an extremely challenging NP-hard problem, the proposed
MSA algorithm contributes significantly to the research of the optimization techniques
for solving this problem.

There are several possible research directions based on this research. One of them is
to develop other efficient and effective meta-heuristics for solving this problem. Another
interesting research direction is to apply the proposed MSA algorithm to solve other
complex scheduling problems, such as hybrid flowshop scheduling problems. Finally, the
proposed MSA algorithm can be used to solve this problem with other performance criteria
or with multiple criteria.
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