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ABSTRACT. This paper addresses the chaos control of uncertain chaotic nonlinear gyros
with unknown parameters. In general, the underlying class of gyros may be perturbed
by external disturbances with different sources. Depending on the characteristics of un-
certain parameters and disturbances, two different adaptive-based control algorithms are
proposed. In the first method, an adaptive Ho, controller is designed when the external
disturbances are square-integrable. The other proposed scheme is based on developing a
pure adaptive controller, in which the parameters and disturbances can be time-varying
with unknown bounds. In both methods, the prescribed robustness property is guaranteed
and the stability analysis is presented, using the Lyapunov stability theorem. Simulation
studies show that the goal of chaos control is achieved despite the system uncertainties
and external disturbances.

Keywords: Adaptive control, Chaotic gyros, Robustness, External disturbance, Time-
varying parameters

1. Introduction. During the past years, gyroscopes have been studied by many re-
searchers and applied in various scientific and engineering areas such as navigation, astro-
nautics and optics [1]. The investigations can be classified into three main areas including
gyro dynamics and nonlinear phenomena [2, 3, 4], chaos control [1, 5] and synchroniza-
tion [6, 7]. From a historical viewpoint, researches in the field of dynamic behaviors of
gyroscopes were first initiated about one hundred years ago [2], based upon which, the
nonlinear dynamics of symmetric gyroscopes with linear damping coefficients were studied
[4, 8]. Later, the assumption of a linear plus cubic form for dissipative force (damping
term) was identified as a more realistic case and considered in many works [2, 7]. Inves-
tigations into field of gyro dynamics show that the system may exhibit regular or chaotic
motions in different situations [6]. The chaotic behavior of gyros, first introduced in [9],
caused to pay a considerable attention to chaos control and synchronization.

Dealing with the chaos phenomenon in chaotic nonlinear systems, a wide variety of
approaches have been proposed such as adaptive-based methods [10, 11], active control
[6, 12], sliding mode control [1, 13] and fuzzy logic [7, 14, 15]. Nevertheless, the existing
methods suffer from at least one of the following drawbacks: (i) the perturbations are
supposed to have slow variations with known bounds; (ii) the problem of tuning various
numbers of adaptation mechanisms and large control efforts are not considered as the
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limitations of implementation; (iii) system uncertainties and external disturbances are
not taken into account altogether; (iv) the analysis and the given proofs have some flaws.
Hence, developing a chaos control algorithm with simplicity and versatility properties is
highly desired. Among the reported algorithms, adaptive-based control techniques are
powerful tools, especially when the variations of unknown parameters are slow enough
[16, 17]. In fact, conventional adaptive algorithms, including adaptive control laws to-
gether with some parameter adjusting mechanisms may fail when the variations are fast.
Meanwhile, these control methods do not guarantee the robustness properties against
unstructured uncertainties and external disturbances, which inevitably affect the system
performance. Hence, to tackle the both parametric uncertainties and external distur-
bances, the combination of tools from robust and adaptive approaches may yield better
performance than those produced by each method alone.

This paper concerns with robust adaptive control for a general class of uncertain chaotic
nonlinear gyros. To this end, two adaptive-based control algorithms are proposed, satis-
fying robustness with respect to system uncertainties and disturbances. Compared with
some previous works, the specific properties of the proposed methods are (i) the unknown
parameters and disturbances are required neither to be constant (slow time-varying) nor
to have known bounds; (ii) the convergence of tracking error is analytically shown despite
the perturbations; (iii) the number of adaptation mechanisms is reduced to minimum to
provide simple implementation; (iv) the both universality and simplicity properties are
met for implementation.

The organization of the paper is as follows. In Section 2, introducing the gyro dynamics,
the control problem is formulated. Section 3 presents the proposed robust adaptive control
techniques and their stability proofs. In Section 4, simulation studies are given to evaluate
the performance of the developed control schemes, taking the system uncertainties and
disturbances into account. Finally, the concluding remarks are given in Section 5.

Throughout the paper, for an n x 1 vector V, ||V||é := VTQV denotes the Euclidean

vector norm with weighting matrix Q. Furthermore, V' € Ly [0,T] if fOT |V (t)|]2dt < oo,
T € [0,00).

2. Problem Statement. Consider the equation governing the motion of a symmetric
gyro, mounted on a vibrating base, as [2]

0 + g(0) + h(0,0) = f sinwtsin @ (1)

where the nutation angle 6 is the angle which the spin axis of the gyro makes with the
vertical axis, fsinwt is a parametric excitation that models the base excitation, g denotes
a nonlinear resilience force described by

1 — cos 0)?

0) = 042(7 — [sinf 2

9(0) = 0> — )

and h is a damping function, consisting of linear and nonlinear damping terms, given by
h9,0) = c16 + o6 (3)

In order to analyze the chaotic behavior of nonlinear gyros and also design adaptive

chaos controllers, a state space parametric model is derived here. To this end, define

AT
X = [ml,xQ]T = [9, 9] as the state vector, and

n= [02 Ba 02]T
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as the system parameter vector. Therefore, the nonlinear dynamics (1) can be written in
a controlled form as

1:1 = T2

Ty =T (X)n + fsinwtsinz; + d(t) + u(t) (4)
where
(1 —coszy)? . 7
P(X) = | ——=—,sinzy, —29, — 75
sin®

denotes the regression matrix, u(¢) is the control input, and d(¢) represents the external
disturbance with unknown bound, i.e., |d(¢)|| < D, where D > 0 is unknown.

Researches on nonlinear behavior of gyros show that for the numerical values of w = 2,
f = 35.5, and parameter vector n = [100, 1, 0.5, 0.05], the symmetric gyro exhibits chaotic
behavior [2]. The chaotic attractor, exhibited in the phase plane, and the irregular motion
of the states for two different initial conditions [z1(0), z2(0)] = [1, —1], and [z1(0), 22(0)] =
[—0.5, —1] are respectively illustrated in Figures 1 and 2.

The control objective is to design the control input u(t) such that the states of gyro
track the prescribed reference trajectories despite the system uncertainties and external
disturbances. For a given desired state trajectory x4, the tracking error vector is formed

by E=X — X, = ey, 62]T with Xy = [z4, x'd]T, and the error dynamic can be obtained as

E=AE + B[—g(X) — h(X) + fsinwtsinz; + d(t) + u(t) — 7] (5)

01 0
=Loo) #=[h]
Choosing a gain vector as K = [ky, ko]? such that A = A — BKT is Hurwitz, the error
dynamic (5) is rewritten as

where

E=AFE+ B[KT"E + ¢"(X)n+ fsinwtsina, + d(t) +u(t) — i,] (6)

-15 -1 -0.5 0 0.5 1 15

FiGURE 1. The phase plane trajectory x;—x5 of chaotic gyro
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x1(t)

Time (sec) Time (sec)

FIGURE 2. Demonstrating the irregular motion of system states for initial
conditions [x,(0), z2(0)] = [1, —1] (—), and [x,(0), z2(0)] = [-0.5, —1] (- -)

3. Robust Adaptive Control Algorithms for Uncertain Chaotic Gyros. In this
section, the design procedure of chaos control algorithms for uncertain chaotic gyros is
focused. Depending on the characteristics of disturbance vector d and parameter vector
n in (4), different robust adaptive techniques are developed based on a control input of
the form

U = Up + Ug + Uy (7)
where

uy = —KTE — fsinwtsinz, + &4

is called the nominal term, and u, and wu, denote respectively the adaptive and robust
terms. In fact, the unknown system parameters are tackled by the adaptive subcontroller
uq, and the system robustness with respect to disturbances is ensured by the robust
subcontroller wu,.

3.1. H,-based adaptive control. Robust H,, control technique is incorporated into
control input (7) to ensure the robustness property with respect to external disturbances.
The disturbance signal d(¢) in (4) has unknown bound and is supposed to belong to
L5[0,0¢]. In the following, the H..-based adaptive controllers are developed for chaotic
system (4) by two theorems, to deal with constant and time-varying parameters, respec-
tively.

Theorem 3.1. Consider the uncertain chaotic nonlinear gyros described by (4). Suppose
there exists a positive definite symmetric matriz P, satisfying the Riccati-like inequality

1 1
ATP+ PA+Q+ PB (-21—4) BTP <0 (8)
P r

where p > 0 is a prescribed attenuation gain, () > 0 is a prescribed weighting matriz, and
r > 0 is the Hy, controller gain. The proposed control law (7) with

1

,=——BT'PE 9
u 5 (9)
Uy = =" (X)) (10)

and adaptation law .
n=T¢(X)B"PE (11)
where 1) denotes the estimate of n, and T = T'" > 0 is the adaptation gain matriz,

ensures the convergence of tracking error, despite the system uncertainties and external
disturbances.
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Proof: Choose a Lyapunov function as

1 1
V(E,E,)) = 5ETPE + §EZ’F‘1E” (12)
. T
where £, = n —1n = [az —q, B—p0, ¢c1 — ¢, o — 62] denotes the estimation error

vector. The time derivative of V(E, E})) along (6) is

: 1
V(E,E,) = 5ET (A"P+ PA)E+ (K"E + fsinwtsinz, — i) B'PE 13)
+¢"(X)nB"PE + ETPBd(t) + E" PBu(t) + ET'E,
Applying the control input (7) yields
. 1 s
V= 5ET (A"P+ PA)E+ (¢"(X)n+u,) B PE+ E"PB(d+u,) — EIT 'n  (14)

Using the inequality (8) and substituting subcontrollers u, and u,, respectively from (9)
and (10), imply that

: 1
V< - 5ETQE +¢"(X)E,B"PE

1/1 s! 1 : (15)
— — | =B"PE — pd ~BTPE — pd | + =p*||d||* — EIT '5
2 \p P 2 K
Hence, by replacing the adaptation law (11), one can obtain
. 1 1
V(E,E,) < —§ETQE + 5p2||d||2 (16)

Now, integrating (16) from ¢t = 0 to ¢t = T yields

/0 1E(@®)[[gdt < 2V(E(0), E,(0)) — 2V (E(T), £,(T)) + pZ/ﬂ ld(t)[|*dt

for all 0 < T < oo. This implies that F(t) is square-integrable.
On the other hand, the boundedness of disturbance signal d implies that there exists a
D > 0 such that ||d|| < D. By inequality (16), one can obtain V < —1Xo||E||? + 1p?D?,

where Ag is the minimum eigenvalue of (). Choosing Ao > p?.f? for any small ( > 0,

there exists a £ > 0 such that V < —x||E||> < 0 for all ||[E|| > ¢. Thus, there is a T > 0
such that ||E|| < ¢ for all ¢ > T. This implies that the tracking error E(t) is uniformly
ultimately bounded [17], and all the closed-loop signals are bounded. The error dynamics
(6) and the boundedness of all variables ensure that E(t) is also bounded. Hence, by
Barbalat’s lemma [17], the convergence of tracking error and the goal of chaos control are
ensured. [

Remark 3.1. There exists a trade-off between the value of sub-controller gain p and the
magnitude of control input u. In other words, choosing a smaller p > 0 provides the
system with faster time response at the expense of larger control effort.

Remark 3.2. Unlike some previous works [1, 7, 14], the upper bound of perturbations is
not required in controller design.

Remark 3.3. In general, the inequality (8) can be easily satisfied by various selections
of r and P. As a special case, choosing r = p?, one can obtain the Lyapunov equation
ATP + PA = —Q, known in nonlinear control literature.
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In practice, the system parameter vector 1 in (4), may be time-varying with unknown
bound, as stated in the following property.
Property 3.1. Parameter vector n(t) may be a time-varying vector belonging to a compact
set Q ={n(t) : [|n(t)|| <}, in which 6 > 0 is an unknown constant parameter.

Hence, a robust adaptive control scheme is developed for this case, in the sequel.

Theorem 3.2. Consider the uncertain chaotic gyros described by (4) with Property 3.1.
Suppose P = PT > 0 emists, satisfying the inequality (8). The goal of chaos control is
achieved by control input (7), with robust subcontroller (9) and adaptive law

U, — _52 ¢T(X)¢(X)BTPE (17)
¢ |¢(X)BTPE||é + ee—t

tn which 5, the estimate of 9, is updated by the adaptation mechanism
b =76(X)B"PE|, 7>0 (18)
where € and o are (small) positive constants and v > 0 denotes the adaptation gain.

Proof: Choose the Lyapunov function candidate

~ 1 1 -~
V(E,d) = 5ETPE + 552 (19)

where § = 0 — 0 represents the estimation error. Differentiating (19) along the error
trajectory (6) and replacing the control law (7) with (17) yields

. T T T
o lpr (ATP+ PA)E +n"(t)¢(X)B"PE — B 2B (X)$(X)B PE
2 |¢(X)BTPE||d + et (20)
1~2
+ETPB(d+u,) + =00
gl
Substituting u, from (9) and using inequality (8) imply that
. 1 A
V< — 5ETQE + 8||¢(X)BTPE|| - §||¢(X)B" PE|| 4 ee™"
1/1 " 1 1<: (21)
— = (—BTPE — pd> (—BTPE — pd> + =p?||d||* — =56
2 \p p 2 gl
By adaptation law (18), one can obtain
o 1 1
V(E,6) < —§ETQE + §P2||al||2 +ee” (22)

integrating the inequality (16) from ¢ = 0 to ¢ = T implies that E(t) is square-integrable.
Moreover, by inequality (22), it can be concluded that V' < —IXo||E|? + 1p?D? + ¢,
where \g is the minimum eigenvalue of ). Following a procedure, similar to the proof
of Theorem 3.1, implies that the convergence of tracking error is achieved, despite the
perturbations. [

Remark 3.4. From a practical point of view, the exponential term in subcontroller u,,
formed by € > 0 and o > 0, provides the smoothness of control law without violating the
convergence property of tracking error.
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3.2. Adaptive rejection of time-varying perturbations. Theorems 3.1 and 3.2 show
that the H-based technique is restricted to those disturbances which belong to Ly [0, 00).
This condition may be not satisfied for many disturbance signals. This fact motivates
relaxing this assumption and developing a less conservative chaos control scheme to tackle
such perturbations. To this end, define the augmented regressor vector ¢,(X) and the
augmented time-varying vector n,(t) as

a(X) = [7(X),1]",
() [ (1), d(t)]"

where 1,(t) satisfies Property 3.1, i.e., ||na.(2)]|
constant. Hence, the dynamical Equamon (4) ca

(23)

e, and 0, is an unknown positive

<0
n be rewritten as

1‘1 =T2

T : : (24)
= ¢, (X)na(t) + fsinwtsinx, + u(t)

Theorem 3.3. The goal of chaos control for uncertain chaotic gyros (4) or equivalently
(24) is ensured by control law (7) with u, = 0, adaptive subcontroller

_ 2 9(X)8,(X)BTPE

" 0u(X)BTPE]G, + ot 29)
and adaptation law
b0 = 7all6L(X) BT PE] (26)
where b, represents the estimate of 6., and v, > 0 is the adaptation gain.
Proof: Take a Lyapunov function as
V(E,d,) = %ETPE + %53 (27)

where Sa =0 — Sa denotes the estimation error and P = P” > 0 is the solution of the
Lyapunov equation ATP + PA = —W, for a given positive definite symmetric matrix
W. Taking the time derivative of V/(F,d,) along (6) and replacing control input (7) with
adaptive law (25) imply that

L ETPBYT(X)0u(X)B'PE 1

¢ Y _Sasa 28
|6a(X)BTPE||6, + et Va (28)

: 1
V= —§ETWE + 1L (t)¢o(X)BTPE —
Using the adaptation law (26) and some manipulations, one obtains
: < 1
V(E,d,) < —§ETWE + e (29)

which E € L0, 00) is concluded by integrating. Besides, by inequality (29), V can be
bounded as V' < —1A\y||E[?* + ¢, where Ay is the minimum eigenvalue of . Hence,
following the procedure given for the proof of Theorem 3.1, completes the proof. [

Remark 3.5. In wvarious circumstances, the variation of unknown system parameters
and external disturbances can violate the system stability. The stability analysis for the
case of time-varying perturbations has not been presented in most of the existing methods
[1, 2, 14], or have some flaws [6, 12]. Such drawback is removed here by taking a general
case for system parameters and external disturbances.
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4. Simulation Study. The dynamics under investigation are for a symmetrical gyro
with nonlinear damping, which can be subjected to harmonic excitation [2], produced by
white Gaussian noise. On the other hand, sinusoidal signal can model all periodic dis-
turbances, occurred in some real world applications. Meanwhile, depending on environ-
mental circumstances, the unknown system parameters may be constant or time-varying.
In order to evaluate the performance of the developed algorithms, three cases are taken
here to cover all the practical situations, depending on the characteristics of system pa-
rameters and external disturbances. Throughout the simulations, the system parameters
are taken as 7, = [1001 0.5 0.05]T, w = 2, f = 35.5, and the initial state vector as
(1(0),22(0)) = (0.2,0.9). Furthermore, the desired reference trajectory is specified by
1q(t) = sin(1.1¢) [1], and the gain vector is taken as K = [2 2]7. The external inputs
including control law and disturbance signal are activated at ¢ = 5s.

In Cases 1 and 2, the tracking controllers are developed by choosing the weighting
matrix () = 21545. For attenuation levels p = 1 and p = 0.3, the H,, controller gains are
respectively computed as 7 = 1 and r = 0.09, and the Riccati-like inequality (8) gives

20 2
P-4

Meanwhile, the adaptive controller u,, in Cases 2 and 3, is constructed by ¢ = 0.5, 0 = 0.1,
and adaptation gains v = v, = 0.5.

Case 1. Unknown constant parameters and square-integrable disturbances. Consider
a situation in which a Gaussian noise with mean 0 and variance 1 perturbs the system.
To construct the control input developed by Theorem 3.1, take I' = diag(1,0.5,0.5,0.5).
Figures 3 and 4 show the effectiveness of control algorithm to make the system states
track the reference trajectories. Demonstrating the role of attenuation gain p, Figure 5
illustrates the convergence of tracking error despite the perturbations.

x1(t)

0 5 10 15 20 0 5 10 15 20
Time (sec) Time (sec)

FIGURE 3. Time responses of controlled chaotic gyro in Case 1; system
states (—), and reference trajectories (- -)

Case 2. Time-varying parameters and square-integrable disturbances. In this case, a
time-varying term as 0.2, sin(2t), is supposed to be added to the nominal vector 7,, in
the presence of Gaussian noise as disturbance. Applying the control algorithm proposed
by Theorem 3.2, the phase plane trajectory of tracking errors, plotted in Figure 6, shows
that the error states are driven to zero.

Case 3. Time-varying parameters and disturbances with unknown bound. As a general
case, the system parameters are taken similar to Case 2, whereas the system is perturbed
by d = 0.5 + 0.5sin ¢, which do not belong to L[0,c0). By applying the robust adaptive
controller, developed by Theorem 3.3, the phase portrait of tracking error is illustrated
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0 5 10 15 20
Time (sec)

FIGURE 4. Tracking errors of chaotic gyro in case 1; e;(t) (—), and ey(t) (- -)

0 5 10 15 20 0 5 10 15 20
Time (sec) Time (sec)

u(t)

-8t

10}

—12+

-14}

-16
0
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FIGURE 5. Time responses of tracking errors and control input in case 1,
when p=0.3 (—),and p=1 (- -)

in Figure 7. As demonstrated in Figure 8, comparing the performance of the control
algorithms proposed by Theorems 3.2 and 3.3 shows the effectiveness and necessity of the
latter method to tackle non-square integrable disturbances with unknown bounds.

5. Conclusions. Two robust adaptive algorithms are proposed for chaos control of un-
certain chaotic nonlinear gyros, based on H, control and adaptive control strategies. The
bounds of perturbations need not to be known in the design procedure. The performance
of the proposed robust adaptive control schemes are demonstrated by various simulations.
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FIGURE 7. The phase portrait e;—ey in case 3, for t > 5's

15 T T 0.5

el(t)

10 15 20 "5 10 15 20
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FiGure 8. Time responses of tracking errors in case 3, applying the control
law developed by Theorem 3.2 (- -), and Theorem 3.3 (—)
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