International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 10(A), October 2012 pp. 6613—6628

GENERATION OF SPECIFIC SOLVERS FOR QUERY-ANSWERING
PROBLEMS WITH SKOLEM FUNCTIONS

SongHAO HE!, KivosHr AKAMA? AND BIN Lit

!Graduate School of Information Science and Technology
Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814, Japan
hesonghao@ist.hokudai.ac.jp; zjulb@hotmail.com

2Information Initiative Center
Hokkaido University
Kita 11, Nishi 5, Kita-ku, Sapporo, 060-0811, Japan
akama@Qiic.hokudai.ac.jp

Received June 2011; revised October 2011

ABSTRACT. In this research, we propose a novel technology for solving the Query-Answe-
ring Problems (QA Problems) including Skolem functions by generating a specific solver
corresponding to each QA Problem in the Semantic Web. A specific solver is constructed
by using the knowledge (conditions) analyzed from a given QA Problem and is only used
to deal with this given problem, since we think by this way the computation efficiency can
be much higher than generating a general solver for all QA Problems based on the common
knowledge. We first get the clause set including the Skolem functions from a given QA
Problem based on the theory of meaning-preserving Skolemization. Then, a specific solver
corresponding to this given QA Problem will be generated by using the clause set based
on the Bottom-up solution. Moreover, we have also developed the technology to suppress
the size of the generated specific solver for reducing the usage of memory in order to deal
with larger scale QA Problems. In the final part of this paper, experimental results will
be used to prove the efficiency of solving the QA Problems by generating specific solvers.
Keywords: Query-answering problems, Skolem function, Clause, Bottom-up solution,
Specific solver, Meaning-preserving Skolemization

1. Introduction. We know that the Semantic Web, which enables machines to under-
stand and use web contents to answer the complex human requests, has already been
known as the next stage in the evolution of the web [1]. A powerful reasoning system is
essential in the developing of Semantic Web for solving the logical problems. There are
mainly two kinds of logical problems. The proof problem is a pair of (K1, K2), where K1
and K2 are logical formulae. It is a yes-no question, i.e., the answer to a proof problem
(K1,K2) is “yes” if K1 logically entails K2, and the answer is “no” otherwise. The
query-answering problem (QA problem) [2] is a pair of (K, q), where K is a logical formula
and ¢ is an atomic formula (atom). The answer to a QA Problem (K ¢q) is the set of all
ground instances of ¢ that are logically entailed by K. In this research, we mainly work
on the solution to the QA Problems.

The conventional approaches for solving the QA Problems are mainly based on the
Description Logic (DL) and Rules [3,4]. However, because of the limited ability of ex-
pression, QA Problems composed of logical expression such as FOL, Horn Clauses cannot
be dealt with soundly, and the correctness of the obtained solutions maybe regarded
as a question, which is a major reason why conventional Skolemization is insufficient.
Therefore, in order to construct an excellent solution corresponding to even wider range

6613

6614 S. HE, K. AKAMA AND B. LI

QA Problems, a theory of the meaning-preserving Skolemization based on the Equivalent
Transformation (ET) has been proposed by our research group [5,6]. In the previous
research [7], the Bottom-up solution used to deal with the QA Problems with Skolem
functions based on the meaning-preserving Skolemization was proposed. The following
computation procedures were proposed by [7] to solve the QA Problems.

1) convert K (knowledge) into a set of clauses using meaning-preserving Skolemization
2) construct all models of the clause set based on the Bottom-up solution
3) find the intersection of the models and the set of all ground instances of ¢ (query)

However, the proposed method [7] for deciding the value set used to assign to the
Skolem functions in step 1) is not entirely perfect. What is more important is that when
reinitializing the Skolem functions to find even more models used to acquire the final
correct answer of the QA Problem, the proposed Bottom-up computation in step 2) will
be applied. Actually, the computational complexity is considerably large.

The reason for the large computational complexity is that in the previous approach [7],
also in conventional approaches [3,4,8-10], the generation of an efficient general solver is
thought to be the main target. The general solver takes the most common knowledge
(conditions) included in the whole QA Problems into consideration, to solve all the QA
Problems. Although the range of the correspondent QA Problems that could be dealt with
by the general solver is considerably large, the specific knowledge (conditions) analyzed
from each given QA Problem is not been made good use.

In this research, we think from a different angle. For each given QA Problem, we
generate a specific solver by using the knowledge (K, clause set) acquired from the given
QA Problem based on the meaning-preserving Skolemization. In this way, although the
generation of each specific solver by analyzing the QA Problem will cost little time,
the execution time (based on Bottom-up computation) of the specific solver is thought
to be absolutely fast, especially when it will be repeatedly done only by changing the
parameters (whenever reinitializing the Skolem functions). We call this the QA Problem
specific approach, which is an absolutely novel technology for solving the QA Problems.

The purposes of this research are concluded as follows.

e The generation method of a specific Bottom-up solver by Low level Procedure (LPD,
such as C program) for each given QA problem is proposed.
e The method for initializing Skolem functions is proposed.

The rest of the paper is structured as follows. In Section 2, we will introduce the QA
Problems defined in our research and the Bottom-up solution, which is the basic idea used
to generate a specific solver. In Section 3, the framework for generating a specific solver
will be introduced, and the details of each step will be demonstrated with examples. In
Section 4, experimental results and analysis will be introduced. In Section 5, conclusions
and future work will be talked about.

2. Query-Answering Problems and Bottom-up Solution.

2.1. Query-answering (QA) problems. Recently, QA Problems have gained wide at-
tention, owing partly to emerging applications in systems involving integration between
formal ontological background knowledge [11] and instance-level rule-oriented compo-
nents, e.g., interaction between Description Logics and Horn rules [12] in the Semantic
Web’s ontology-based rule layer. The QA Problem is a problem containing knowledge (K,
logical formula) and the query atom (¢, atomic formula). And all ground answers have
to be obtained. We define a set of ground atom (G) obtained by automatically reasoning
the information clauses used to described the QA Problems. The answer A is composed
of a set ¢ of ground atoms of the query included in G, where 6 is a substitution on q.

GENERATION OF SPECIFIC SOLVERS 6615

The answer to the QA Problem can be formulated by the following formulae.
AK,q) ={g|K FgeG,g=q0,0 € S}
The answer requests all ground instances g, and g must satisfy the following constraints.

e ¢ must be a logical consequence of K
e ¢ must be a logical instance of ¢

Logical consequence is a fundamental concept in logic. It is the relationship between
the premises and the conclusion of a valid argument.
Here, we take the Oedipus [13] problem as an example.

“OF is the child of 10. PO is the child of 10. PO is the child of OF. TH is the child
of PO. OF is a patricide. TH is not a patricide. A person’s child is a patricide, but
his/her grandchild is not a patricide. Who is the person?”

This problem is composed of knowledge (K, “OE is the child of I0. ..., but his/her
grandchild is not a patricide.”) and the query (¢, “Who is the person?”). The answer
(A) is “IO”. This QA Problem can be expressed by the following clause set based on
the meaning-preserving Skolemization, but there are no Skolem functions in this QA
Problem. (There are two or more atoms existing in the left part of the clause P which
also includes the query atom prob (xx), indicating that the clause set processed in our
research includes not only definite clauses, but also indefinite clauses, which represent an
even wider range QA problems).

Knowledge (K):

isChild (OE, I0) <. isChild (PO, 10) <. pat (OE) «+

isChild (TH, PO) «+. isChild (PO, OE) +-. <+ pat (TH).

prob (xx), pat (xb) < isChild (*a, *x) , pat (xa), isChild (xb, xa). ----- Clause P

Query Atom (q): prob (xx)

Answer (A): {(K, q) }=>{10}.

2.2. Bottom-up solution. The bottom-up solution starts by generating all models from
knowledge (K, clause set) in the QA Problem. Then we take the intersection of all models
(K | g € G). Finally, the result of the intersection will be used to compare with the query
atom (¢q) to get the answer of the QA problem. In the process of the bottom-up solution,
because all models cannot be requested at a dash, the knowledge set before becoming a
model is called as the pre-model in our research. The pre-model becomes a model until
it cannot be updated by any clause. In this research, we call the final generated model
the representative model, and these models will be used to solve the QA Problem.

2.2.1. Process of the bottom-up solution. Bottom-up solution starts with known facts and
extends the set of known facts using rules generated from clause set. It derives new facts
from exist facts and clause set. The process of the bottom-up solution can be separated
into the following steps (Figure 1).

Generation of the pre-model (empty set)

Select the pre-model

Update the pre-model by applying clauses in the clause set (K)

Making the representative model

Generating product set from all representative models

. Extracting the instance (answer) of the question atom from the product set

In step C', the flow of processing is different depending on the kind of the applied clause.

TETAw -

e Negative clause (Delete operation)
Clause: «<—P1, P2, ..., Pn. (n>1), where P1, P2, ..., Pn are atoms.

6616 S. HE, K. AKAMA AND B. LI

o The pre-model is deleted when atoms (P1, P2, ..., Pn) exist.

> pre-model: {PP2——Pn}
e Single head clause (Add operation)

Clause: Q1 « P1, P2, ..., Pn. (k =1, n > 1), where Q1, P1, P2, ..., Pn are
atoms.
o The Q1 atom is added to the pre-model after the P1, P2, ..., Pn atoms were

judged to be exist and Q1 atom did not exist in the model.
> pre-model: {P1, P2, ..., Pn}=2>{P1, P2, ..., Pn, Ql}
e Multi-head clause (Fork and Add operation)
Clause: Q1, ..., Qk < P1, ..., Pn. (k, n>1), where Q1, ..., Qk and P1, ..., Pn
are atoms.

o First of all, copy the pre-model k — 1 times. Then, if P1, ..., Pn atoms were
judged to be exist and at least one of the corresponding left part atoms (Q1, ...,
Qk) did not exist in the pre-model, the left one will be added to the corresponding

pre-model.
> pre-model_1: {P1,..., Pn, Q1} ----- original pre-model
pre-model k: {P1, ..., Pn, Qk} ----- new generated pre-model

3. Framework of the Specific Solver Generation. Figure 2 shows the solver gen-
eration framework proposed in our research. Firstly, the clause set is obtained from the
given QA Problem based on the meaning-preserving Skolemization. Actually, not all QA
Problems include Skolem functions. Here, we first introduce how to generate the specific
solver for a QA problem without Skolem functions. And in 3.4, we will specially introduce

A
Generation of the singleton)
ation of the sinel S is the set of pre-models
S—{ {Gatom} } » Gatom is the atom got from ground clauses
D
Making
representative models
E
Generating product sets
of all representative models
a
Extracting the instance of
the question atom
from the product sct : No Clause set
I — —
\<3>—> Fork and Add —
. Yes ’
P4
(End) S = = =
Make a representative

FIGURE 1. Process of the bottom-up solution

GENERATION OF SPECIFIC SOLVERS 6617

Query-Answering
Problem (given)

Be introducedin 3.4

Clause Set Clause Set 1

(withour skolem finction) (with skelem function)

7 Support Set) . 2
1 (Characteristic function)

Digitalization
(Support set and Clause set)

X C coding

g — Specific Solver — . S 4

FIGURE 2. Solver generation framework

the method for processing the Skolem functions and adding the Skolem function clauses
to the original clause set to generate the corresponding specific solver. Secondly, to access
the knowledge efficiently, basically in low level procedure, the knowledge range, which
we call as the support set, including all possible ground atoms obtained from the clause
set need to be set in a minimized and limited size. Thirdly, because the final solver is
generated written by C program to pursue the efficient of the computation, the algorithm
about how to convert all atoms and the clause set into C code (digitalization) are needed.
Finally, we execute the specific solver by inputting the query atom (¢), and the answer
(A) of the given QA Problem will be the output.

3.1. Characteristic function and support set. In pre-model’s updating, which is
treated as the most important part in Bottom-up solution, shown in Figure 1, firstly, it is
necessary to generate an S set (S set: {pre-modell, pre-model2, ...}, pre-model: {atoml,
atom2, ...}) in which the element is the pre-model; Secondly, each pre-model in the S
set, will be updated by the clause set, until been changed into the representative model;
Finally, the answer is obtained by using representative models. The data structure of the
model (pre-model or representative model) is enumeration type. In the operation like the
retrieval, the addition, and the deletion, it needs to scan from the first atom of the pre-
model every time. The computation is not efficient. We use the characteristic function as
a way to overcome the efficiency problem.

3.1.1. Characteristic function.

e Definition: a characteristic function is a function defined on a set X (set X is called
the support set in this research) that indicates membership of an element in a subset
A of X, having the value 1 for all elements of A and the value 0 for all elements of
X not in A (A(z) : X — {1,0}; z — A(x)) [14].

e Expression: the characteristic function is assumed to be f, and f~1(1) is a set, and
it has been treated as the pre-model.

e Updating of the pre-model: by applying the characteristic function, when the element
is retrieved among the decided range (X set), the existence information can be shown

6618 S. HE, K. AKAMA AND B. LI

by bit 1/0. Moreover, when the atom is added to the pre-model, it is possible to do
the operation quickly only by converting 0 to 1 by using the characteristic function
(Figure 3).

e Bottom-up solution: based on the definition, in order to achieve the characteristic
function, it is necessary to make the limited range (support set, like X set) firstly,
in which subset A is included (Figure 3). Then, generate one pre-model (Pyqrt), and
update the pre-model by applying clauses. Finally, the set of representative models
is generated (Figure 4), and the intersection result of the set will be taken to obtain
the final answer.

3.1.2. Support set. The support set is a set G which has the “2” relation with all possibly
basic atoms (set g) included in the model derived from the clause set (K') of the QA Prob-
lem. In this research, we define the set X introduced in 3.1.1 (Characteristic function)
as a sample of the support set. By deciding this support set, which contains all possible
atoms, the answer searching range of the QA Problem can be decided limitedly. There-
fore, we can make use of the characteristic function to obtain the representative models

A(x) - characteristic function

A
————————————— Set 7. (All knowledge)
I
|
|
| I
/:/"
I A®x)
|
."-r'"" 0
| I 1 if(xeA) I
: .A(x)=<[:
! 0 if(x& Al
P e e - -
FicUre 3. Characteristic function
X {Ptar} X : support set
l addition operation by clause
X (P
-1
l tork operation by clause P= f (])
X:{Py, Py.., Pu) * P 1s a pre-model
. « /15 the characteristic function
.
l deletion operation bv clause
X: (P, Pa) Pr. Pu: representative models

FIGURE 4. Generation of representative models by characteristic function

GENERATION OF SPECIFIC SOLVERS 6619

efficiently. Moreover, the more the basic atom set (¢) becomes like the support set (G),
the more we can narrow the answer searching range and obtain the answer efficiently.
Figure 5 shows the representative model sets included in the support set (representative
model C support set).

e Generation of the support set: The support set generating process has been divided
into three steps (A, B, C) shown in Figure 6. The Clause set requested from the given
QA Problem (Oedipus) is the input, and the correspondent support set generation
program is the output. In the approximate processing of A, the possible atoms of
the problem are roughly requested. The smaller (more accurate) the support set
is requested, the higher calculation cost for generating the support set is needed.
Based on the approximate idea, we do not achieve the most accurate support set,
but within an approximate range, search a little wider range support set efficiently,
and finally generate the program [15] used to get the support set. The support set
is requested by executing the program.

Set Including
______ — = = All Knowledge

— - .
- S - s,

O Representative Model Sets !
in Support Set

(> Model Sets '

Intersection Result of \
' Representative Model Sets ’
(the same result by all models)

Instance of
Question Atom (¢)

|

Answer of QA problem ()

-

Program

(rule based) vat '@ ut

FIGURE 6. Process of generating the support set

6620 S. HE, K. AKAMA AND B. LI

A) Approximate process
Clause set in the Oedipus problem (Input):

(isChild oe i0) <. (isChild po io) <—. (isChild po oe) <«
(isChild th po) <. (pat oe) «. + (pat th).
(prob xx), (pat *b) < (isChild *a *x), (pat *a), (isChild xb *a).

New generated clauses (Output):

(isChildl oe) <—. (isChild2 io) «-. (isChildl po) <—. (isChild2 oe) <«
(isChildl th) <-. (isChild2 po) <. (pat oe) <. + (pat th).

(prob xx) <« (isChild1 *a), (isChild2 xx), (pat *a), (isChild1 xb), (isChild2 xa).
(pat *b) <— (isChildl xa), (isChild2 *x), (pat *a), (isChild1 b), (isChild2 xa).

B) Generation of the approximate clauses: Input of step B) is the output of step
A).

Output (rule based program,):

(whole *isChild1l xisChild2 xpat sprob xx1 *x2 xx3 xx4), {(addelem *isChild1 (oe) on
*isChild1new) } — (whole *isChild1new %isChild2 xpat «prob sx1 *x2 %x3 %x4).

(whole *isChild1 xisChild2 spat *prob xx1 *x2 %x3 xx4), {(inter (xpat *isChild2 xisChild1)
«mid1), (inter (*isChild2) *mid2), (inter (*isChild1) *mid3), (cons xmid1l), (cons *mid2),
(cons *mid3), (addelem xpat xmid3 on *patnew)}— (whole *isChild1 xisChild2 xpatnew
*prob *x1 *x2 xx3 xx4).

C) Generation of the support set by executing the rule based program got
in step B): By applying rules, each predicate set (isChild1, isChild2, pat, prob) that
constituted the support set has been expanded (Figure 7).

W 1}|_| Lio o= [:-"-_] |:_-".-|-'- B

execut ion 1

1sChildl 1sChild2 pat prob

FIGURE 7. Generating of each predicate set

The support set is composed by combining these predicate sets, and the support set of
the Oedipus problem is shown as follows.
{(isChild oe i0), (isChild oe oe), (isChild oe po), (isChild po io), (isChild po oe), (isChild
po po), (isChild th io), (isChild th oe), (isChild th po), (pat oe), (pat po), (pat th), (prob
i0), (prob oe), (prob po)}

3.2. Digitalization of support set and the clause set. As introduced in the research
purpose, we want to generate the specific solver (C program) for each QA Problem, it is
necessary to make the mechanism about how to convert clauses into the corresponding C
program. In order to transfer clauses to C program, the algorithm about how to convert
the atom, the basic element consisting of the clause, into the index number of the bit
array (idea of the characteristic function) used in C program is very essential.

GENERATION OF SPECIFIC SOLVERS 6621

== s = s e s e s = s e -1
- Support Sef af the Cedipus Probilem -
i

! 1 I |
fsCluld (o2 po th) (ve po 100} -
1]
. (pat (oe po thiy) \\ .
I v \ I

Suppoﬂ Set . (prol fos po 1o = ((oe polio) it
.QII_"‘U 1 | ——— Tm—=— -
|l = — |
) I Svenbaol Ser -
(oe pooao thy '
- (n | 2 3 "
\.—.——' ’ e s = s o s —

Srep 2

new Suppoit Sel
(sorted by symbol set)

Example of the new Support Ser .

al b2 al Il
f(predl) al I TN {pl".'(l“[lr.i coi Jaeo . {predn [;.2] [|._—] T

consecutive number

FicUrE 8. Digitalization of the support set

3.2.1. Digitalization of support set. First of all, for all atoms included in the support set,
the symbol set that includes all the symbol values which substitute the argument are
requested. Then, the order of symbols in the symbol set will be decided, and each symbol
is converted into the natural number. Finally, all atoms in the support set are sorted in
alphabetical order of the argument by the order of the symbol set (Figure 8).

Symbol Set:

(oe poio th) — (01 2 3)

Input (support set):

{(isChild oe i0), (isChild oe oe), (isChild oe po), (isChild po io), (isChild po oe), (isChild
po po), (isChild th io), (isChild th oe), (isChild th po), (pat oe), (pat po), (pat th), (prob
i0), (prob oe), (prob po)}

Output (digitalized support set):

{(isChild 0 0), (isChild 0 1), (isChild 0 2), (isChild 1 0), (isChild 1 1), (isChild 1 2),
(isChild 3 0), (isChild 3 1), (isChild 3 2), (pat 0), (pat 1), (pat 3), (prob 0), (prob 1),

(prob 2)}

3.2.2. Digitalization of clause set. Because we will finally convert each clause into the
corresponding C program (if statement /for loops), it is necessary to make the algorithm
about how to convert the atom into the address of the bit array. Here, the atom-address
calculating function, used to make all basic atoms in the support set correspond to the
address of the bit array, is made. Consequently, it is possible to access the address which
corresponds to the atom quickly in the pre-model updating process.

In the digitalized support set, the argument of atoms with a consecutive value is brought
together. Then, the address function corresponding to these atoms is generated. It

6622 S. HE, K. AKAMA AND B. LI

/ New Support Set I Symbol Set
tlpred Fargl Farg2). ...} fal.a2. a3, ... bl.b2 b3, _} Symbol
! ~
Clonsecutive
- 10,12, 2.n3, .}
a1 b1 t‘[‘l‘ »-.nln2nd g Natural Number
Value Set | a2 | X | b2

N

'pred fargl radil Farg? radix2), .0
Note = radixl and radm2
¥ 1 1 l, are cardmal mmtformation
0 corresponding to each
Tpreay + | 1 # | = 4m0. ml, . m8§} argument
2 Address

--n--n--n-- Bit Arvay

[m0] [ml] [m2] [m3] [m4] [m3] [m6] [m7] [mS]

{pred al bl) {pred al b3} (pred aZb2) (pred a3 bl) {pred a3 b3}
ipred al b2} (pred aZbly (pred aZbi) (pred a3 b2}

Ficure 9. Digitalization of clause set

generates completely different address function for discontinuous argument value in spite
of having the same predicate (Figure 9).

The address “PAdr(sl,...,sn)” of all basic atoms “Pred(sl,...,sn)” (There are n argu-
ments) can be decided by the introduced algorithm. It is requested from the predicate
number “I(pred)”, and the relative address “Rel(sl,. .. sn)” of the predicate “Pred”, based
on the following formula.

PAdr(sl,...,sn) = I(pred) + Rel(sl,...,sn) (1)

Relative address “Rel(sl,...,sn)” is requested from the 1st argument value “Sym(s)”
and its cardinal “R(pred,s)” of the last argument by the following formula.

Rel(sl,...,sn) = Sym(sl)«R(pred,sl) +- - -+ Sym(sn)*R(pred,sn) (2)

2

Cardinal “R(p,i)” is requested by using symbol number “Sy,,(p, k)”. For instance,
based on the support set how many symbols can substitute the back arguments.

H Ssym (p7 k

k=i+1

By applying the generated address function, atoms in the support set can be converted
into address of the bit-array (Figure 9).

(13 *x) (10 =b) «— (0 =a *x)} (10 =a) (0 *b *a))

=x = *a
(oe po 10) (oe po: th) (oe po)
w 1 2 0 1: 3 (0 1)

FiGUre 10. Example of limitation of clauses

GENERATION OF SPECIFIC SOLVERS 6623

Here, as an example, the intersection calculation of the value set of each atom’s argu-
ment in a clause is done. The result is shown in Figure 10.

As shown in Figure 10, because the value set corresponding to the variable (xb) is
not a consecutive value, the clause with condition is generated based on the value set
corresponding to the argument (limitation of clauses). The condition part of ground
clauses is empty. The following part is a digitalized clause result of the Oedipus problem.

e Original clause:
(prob xx), (pat xb) < (isChild *a xx), (pat *a), (isChild xb xa).
e Digitalize clause:

{(*x02) (xb 0 1) (xa 0 1)} ((13 *x) (10 *b) <= (0 *a xx) (10 *a) (0 xb *a))
{(*x02) (xb 3) (xa 0 1)} ((13 xx) (10 xb) «— (0 *a *x) (10 xa) (0 xb xa))

3.3. C code generation. The generated solver in this research is composed by three
parts, which are main function definition, bit-array declaration and if statement /for loops.
We input the query atom (g), and the solver will output the corresponding answer (A).
The generation of if statement/for loops is requested by using the digitalize clause gener-
ated in 3.2.2. In this research, the expression of the updating clause is composed by the
applying conditions part and the applying processes part. The expression of the clause is
basically shown as the following structure.

if (applying conditions) {applying process; ...}

If atoms at the right side of the clause are contained in the pre-model, while atoms
at the left side of the clause are not contained in the pre-model, the applying conditions
become available. In the following parts, we will introduce the method about how to
convert, various kinds of clause into if statement or for loops of C program.

3.3.1. Generating “if statement” from ground clauses. The transmission from a ground
clause to an “if loops” in C program is shown as follows (Figure 11).

ho : Basic atom of head part (*ms)->model][] : The bit-array that shows the present pre-model
bn : Basic atom of body part |address ofhi] : The address of the bit array corresponding to i
(*ms} : The pomier to the pre-model

. Atom-address C program
Clause : : .
converting function (ifffor]_[]Ops)
ho< bl,b2,. b (n>1) if ({((*ms)->model[address of h0]) &&
(*ms)->model[address of bl | &&

B0 »cr bm bl WM (*ms)->model[address of b2] &&
[0 « « « [mlm+!m+2} « -« [n] s
olt1l1lililbil | {(*ms) >model[address of ba]) {
i (*ms)->model[address of h(] = 1;

T goto loop;

L }

FIGURE 11. From ground clauses to “if loops”

6624 S. HE, K. AKAMA AND B. LI

3.3.2. Generating “for loops” from not ground clause. A clause that contains variables
will first substitute all variables for possible symbols, and then generate new ground
clauses. The patterns of the symbol those can substitute the variable increase while the
size of the QA problem grows. Therefore, the size of the generated C program will grow,
and sometimes it will be impossible to compile. In this research, because the value set
corresponding to the variable of each atom in the clause is obtained based on the support
set, and been changed into natural numbers (starting from 0) based on the symbol set,
the consecutive value will be expressed by one “for loops” (Figure 12).

((prob *x) (pat *bh) <-— (1sChild *a *x) (pat *a) (1sChild *h *a))

5 it ‘-" \\ - -
\ - ., . L e Support Set
el N } | - i
\ - N | 1l
A oy e " -);h — " oy " (=Chald h'[}lj PO THY (OF PO 1O
(pat A0OE PO THR
v
(iar (ZE PO IO
]

‘ ‘ ‘ [ntersection
(I["F Py IO (OE PO:TH) (OE P .:.‘)
: Svinbol Set

b (OF PO 10 TH)

i1 3)

o Variable List ———y
—Pl:(*x O2)y(* 0 Ih(*a 0 H:I ((prob *x) (pal *b} <= (1sCluld *a *x) (pat *a) (13Child *b *a))
| |
—'l < 0 2)(%b 3)(*a 0 1)) I ((prob *x) (pat *b} ~- (1sChild *a *x) (pat *a) (isChild *b *a))
S ry

FiGurE 12. From not ground clauses to “for loops”

As shown in Figure 12, each clause will be finally transformed into one or more clauses
with variable list. First of all, the value set corresponding to the variable of each atom
in the clause is obtained based on the support set. Secondly, intersection results of these
value sets are requested, and based on the symbol set obtained from the support set
the intersection result will be changed into a natural number (starting from 0). Finally,
clauses with variable list are generated. These clauses will be finally converted to for
loops. Figure 13 shows C programs corresponding to the updating clauses obtained in
Figure 12.

3.4. Process for the QA problem with Skolem functions. In this clause, we will
introduce the method about how to decide the value set used to assign to the Skolem
functions included in the clause set, which is acquired from the knowledge (K') based on
the meaning-preserving Skolemization. Then, add these Skolem function clauses to the
original clause set. Finally, the way for generating the specific solver of the given QA
problem is the same as the one without Skolem functions.

3.4.1. Deciding value set for the Skolem functions. In Figure 14, the clause set (Cy, Killer
problem [16]) including Skolem functions (xfI, *f2) is obtained based on the theory of
meaning-preserving Skolemization. Here, we propose an approach by providing the value
set for the Skolem functions which will be used in the specific solver generation.

For the Skolem functions, we do not only need to consider constants that have been
already included in the given knowledge [5], but also have to assume some constants
information which is not included in the given knowledge to set the value for Skolem

GENERATION OF SPECIFIC SOLVERS 6625

A.{(*x02) (xb 0 1) (*a 0 1)}
B. {(*x 0 2) (b 3) (xa 0 1)}

((prob =x) (pat *b) <— (isChild *a *x) (pat *a) (isChild *b =a))
((prob *x) (pat *b) < (isChild *a *x) (pat *a) (isChild *b *a))

for(xx = 0; *x < 3; *x++) { for (xx = 0; *x < 3; *x ++) {

for(xb = 0; =b < 2; *b++) { A | for (xb =3; b < 4; xb++) { B

for (*a=0; *a <2; =a++) { for (xa = 0; *a <2; xa++) {

if (!((*ms)->model[address of (prob *x))&& if (!((*ms)->model[address of (prob *x)]) &&
I((*ms)->model[address of (pat *b)]&& I((*ms)->model[address of (pat *b)]) &&
(*ms)->model[address of (isChild *a *x)]&& (*ms)->model[address of (isChild *a *x)] &&
(*ms)->model[address of (pat *a)]&& (*ms)->model[address of (pat *a)] &&
(*ms)->model[address of (isChild *b =a)]) { (*ms)->model[address of (isChild *b *a)]) {
ins(ms, address of (prob *x)); ins(ms, address of (prob *x));
(*ms)->model[address of (pat *b)] = 1; (*ms)->model[address of (pat +b)] = 1;
goto loop; goto loop;

1333 1333

Ficure 13. Consolidating expression of update rules by “for loops”

/* live(=, DBM) about =x acquired according to »f1 */
C1: live(», DBM) < func(+f1, =).

C2: kill(=, Agatha) € func(+f1, #x).

C3: < live(=, DBM), neq(#x, Agatha), neq(»x, Butler), neq(#x, Charles).
C4: hate(»x, »y) € kill{ %, »y).

C5: & kill(#x, #y), richer(#x, =y).

C6: € hate(Charles, »x), hate(Agatha,).

C7: hate(Agatha, =x) < live(=, DBM), neq(=, Butler)
C8: richer(*x, Agatha), hate(Butler, #) < live(*x, DBM).
C9: hate(Butler, »x) < hate(Agatha, #x).

C10: live(», DBM) < live(»y, DBM), func(+f2, », *x).
C11: € live(#x, DBM), hate(#x, »y), func(+2, #x, »y).
C12: live(Agatha, DBM) &,

C13: live(Butler, DBM) &,

C14: live(Charles, DBM) <.

C15: prob(=) & kill(#x, Agatha).

FIGURE 14. Clause set of Killer problem

functions. Because we do not know if there is any knowledge existing outside the given
QA Problem but related to the problem. Therefore, as an example, in Killer problem, we
do not only gather the constants { Agatha, Butler, Charles, DBM} that already exist in
given knowledge, but also assume some other constants (in a limited range), like { Peter,
Paul}, which we cannot judge them right or wrong before computation. Therefore, the
Skolem function func(xf1, xx) and func(xf2, xx, *y) will be set as the following clauses.
Cri: func(xf1, Agatha), func(xf1, Butler), func(xf1, Charles), func(xf1, DBM), func(xf1,
Peter), func(xf1, Paul) «.

Cror: func(xf2 (Agatha, Butler, Charles, DBM, Peter, Paul) (Agatha, Butler, Charles,
DBM, Peter, Paul)) <.

These clauses show the range of {Agatha, Butler, Charles, DBM, Peter, Paul} for
the Skolem function *f1, and {(Agatha (Agatha, Butler, Charles, DBM, Peter, Paul)),
(Butler (Agatha, Butler, Charles, DBM, Peter, Paul)), (Charles (Agatha, Butler, Charles,
DBM, Peter, Paul)), (DBM(Agatha, Butler, Charles, DBM, Peter, Paul)), (Peter(Agatha,
Butler, Charles, DBM, Peter, Paul)), (Paul (Agatha, Butler, Charles, DBM, Peter,
Paul))} for the Skolem function x*f2.

6626 S. HE, K. AKAMA AND B. LI

3.4.2. Making efficient use of the Skolem function setting clauses. Because the clause set
of the Skolem functions (xf1, %f2) is a disjunction relationship, the sum of the possible
union for generating the model in the Bottom-up computation (about 67) and the con-
sumption of memory will be extremely large. Therefore, in this research, we propose a
“Probability Way”, by which we do not compute all the possible function values to gen-
erate the model, but randomly choose one element from each Skolem function setting
clauses in one execution (basically 1000 times). In this way, we think the final answer will
be converged stably. Figure 15 shows the randomly setting clauses for Skolem function.

Cpy: func(#f1, Agatha), func{+f1, Butler}, func(#1, Charles), func{+f1, DBM), func(+f1, Peter), func(+1, Paul}
Cpr- func(+#2, Agatha, Agatha), func(+2, Agatha, Butler), func{+fZ, Agatha, Charles), func(+2, Agatha, DBM),
func{+#2, Agatha, Peter), func{ #2, Agatha, Paul) ~

Cy func(#2Z, Butler, Agatha), func(+f2, Butler, Butler), func(+2, Butler, Charles), func(+2, Builer, DBM),
func{ +f2, Butler, Peler), func(2, Butler, Paul) <

Cpzy func(+f2, Charles, Agatha), func(+fZ, Charles, Butler), func(+f2, Charles, Charles), func(#Z, Charles, DBM),
Junc{+#2, Charles, Peter), func{ #2, Charles, Paul) «.

Cpzy- func(+f2, DBM, Agatha), func(#Z, DBM, Butler), func(+2, DBM, Charies), func{+f2, DBM, DBM), func(+2,
DBM, Peter), func{ #2, DBM, Paul)

Coy func(+fZ, Peter, Agatha}, func(+f2, Peter, Butler), func(+Z, Peter, Charles), func(+Z, Peter, DBM), func(+2,
Peter, Peter), func(#2, Peter, Paul) -

Cpe func(+fZ, Paul, Agatha), func(+2, Paul, Butler), func(+f2, Paul, Charles), func(+Z, Paul, DBM), func(+Z,
Paul, Peter), func{ +f2, Paul, Paul}

Ficure 15. Randomly setting clauses for Skolem functions

The Skolem function setting clauses will be the following ones (Csf) this time.
func(xf1, Butler)«. func(xf2, Agatha, Charles)«+. func(xf2, Butler, Peter)«.
func(xf2, Charles, Butler)«. func(xf2, DBM, DBM)+. func(xf2, Peter, Agatha)<+.
func(xf2, Paul, Paul)«+.

Therefore, the whole clause set of Killer problem this time will be: C 4 C,y.

4. Experiment. In this section, we do experiments using four problems (e.g., Killer [16],
mayDoThesis [3], TaxCut [16], SteamRoller [17]). In Table 1, the experiment results have
been shown. The “Number of clauses” means the number of original clauses without
Skolem function setting clauses. The “Number of Skolem Function” shows the number of
Skolem functions required by using the knowledge (K) based on the meaning-preserving
Skolemization. We have also taken the generating time of support set and specific solver,
and the execution time of the solver as the criteria. The “Number of RM” demonstrates
the number of representative models generated in 1000 times’ solver execution (randomly
setting Skolem function clauses each time).

From the experiment results, we can find out that the total time of the specific solver
proposed in this research is absolutely shorter than the way proposed in the previous
research (about 1/1000). Also, as the size of the given QA Problem becomes bigger
(TaxCut < Killer < mayDoThesis < SteamRoller), the generating time of support set and
specific solver, and also the execution time become longer. Furthermore, in SteamRoller
problem, the number of Skolem Function is eight, even more than the others, and the
related consuming time is extremely longer than the others. Here, the “Execution Time”
of the generated specific solver as shown in Table 1 is the total time of 1000 times’ solver
execution. By 1000 times of execution for each QA Problem, the “Number of RM” has also
been shown in Table 1. Figure 16 shows the converging conditions of each QA Problem
by making the intersection of all generated RM (representative model). We can find out
the convergence curve of all RMs almost changing into the straight line in the final, which
means the target answer range (the black range shown in Figure 5) is obtained.

GENERATION OF SPECIFIC SOLVERS 6627

TABLE 1. Experiment results

Number Generating Generating i
Nimber . . o . .= | Execution Nuimnber
QA Problems 4 of Skelem | time of Support time of ; i Answer
of clauses z . B Time (ms) of RM
Funetion Set (ms) Salver (ms)

Killer
This
. 15 2 2556 207 410 4 prob (Agatha)
Previous
h[7] 15 2 0 0 3630320 1 prob (Agatha)
mayDoThesis
» . 19 1 2884 237 513 1000 mayDoThesis (paul) john mary)
Previous :)
R h[7] 19 1 V] 0 5485840 1 mayDoThesis (paul) (john mary)
TaxCut
This
. 7 2 814 86 335 746 TaxCut(Peter)
Previous
h[7] 7 2 0 0 2730356 1 TaxCut(Peter)
SteamBRoller
This
i " 26 8 11533 588 893 417 prob (Fox)
Previous
R b [7] 26 8 0 0 11315350 1 prob (Fox)
Answer range
r
RM converging conditions
mayDoTRegis
Kitler
SteamRoller
Converging times

F1GURE 16. Converging conditions of each QA problem

5. Conclusions. In this paper, we proposed a new technology about how to generate
an efficient and specific solver (C program) corresponding to a given QA Problem. There
were three steps in the whole generation process shown as follows.

e Step 1. We generated the support set which could be considered as the limited answer
searching range. It is the most essential part in the solver generation.

o Step 2: We digitalized the generated support set into the index number of the cor-
responding bit-array, and then digitalized the clause set.

e Step 3: A specific solver was generated by using the results of Steps 1 and 2.

6628 S. HE, K. AKAMA AND B. LI

Moreover, we proposed the way for initializing the Skolem functions and the efficient
way for processing them.

In future work, we will make efforts to simplify the clause set obtained from each given
QA Problem in the very beginning by unfold transformation. This may contribute to the
reduction of the usage of memory in generating the support set and also the size of the
generated specific solver (C program).

REFERENCES

[1] T. Berners-Lee, J. Hendler and O. Lassila, The semantic web, Scientific American Magazine, 2008.

[2] S. Tessaris, Questions and Answers: Reasoning and Querying in Description Logic, Ph.D. Thesis,
The University of Manchester, 2001.

[3] F. M. Donini et al., Al-log: Integrating datalog and description logics, Journal of Intelligent Infor-
mation Systems, vol.16, no.2, pp.227-252, 1998.

[4] A. Y. Levy and M. C. Rousset, Combining horn rules and description logic in Carin, Artificial
Intelligence, vol.104, no.1-2, pp.165-209, 1998.

[5] K. Akama and E. Nantajeewarawat, Meaning-preserving Skolemization on logical structure, Proc.
of the 9th International Conference on Intelligent Technologies, pp.123-132, 2008.

[6] K. Akama and E. Nantajeewarawat, Meaning-preserving Skolemization, International Conference
on Knowledge Engineering and Ontology Development, Paris, France, 2011.

[7] Z. Cheng, K. Akama and T. Tsuchida, Solving “all-solution” problems by ET-based generation of
programs, International Journal of Innovative Computing, Information and Control, vol.5, no.12(A),
pp.4583-4595, 20009.

[8] E. M. Voorhees and D. M. Tice, Building a question answering test collection, Proc. of the 23rd An-
nual International ACM SIGIR Conference on Research and Development in Information Retrieval,
Athens, Greece, pp.200-207, 2000.

[9] T. Mori, M. Nozawa and Y. Asada, Multi-document summarization using a question-answering
engine, The Jth NTCIR Workshop, Tokyo, Japan, 2004.

[10] Y. Yang, P. Jiang, S. Tsuchiya and F. Ren, Effect of using pragmatics information on question an-
swering system of analects of Confucius, International Journal of Innovative Computing, Information
and Control, vol.5, no.5, pp.1201-1212, 2009.

[11] S. Staab and R. Studer, Handbook on Ontologies, Springer, 2004.

[12] B. Motik, U. Sattler and R. Studer, Query answering for OWL-DL with rules, Journal of Web
Semantics, vol.3, pp.41-60, 2005.

[13] F. Baader, D. Calvanese et al., The Description Logic Handbook, Cambridge University Press, 2001.

[14] http://en.wikipedia.org/wiki/Characteristic_function.

[15] K. Akama, E. Nantajeewarawat and H. Koike, Program generation in the equivalent transforma-
tion computation model using the squeeze method, Proc. of PSI2006, LNCS4378, Springer-Verlag,
Heidelberg, Berlin, pp.41-54, 2007.

[16] K. Akama, Hypothesis searching hypose, ICS, IPSJ, vol.1986, no.73, pp.89-101, 1986.

[17] M. E. Stickel, Schubert’s steamroller problem: Formulation and solution, Journal of Automated
Reasoning, vol.2, no.1, pp.89-101, 1986.

