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Abstract. Electric power grid is a widely distributed system, consisting of dispersed
generators interconnected through transmission lines, mounting real and reactive power
compensators, etc. Moreover, with deregulation and growth of the power industry, power
systems elements are forced to operate very near to their maximum capacity and hence,
the system became vulnerable. Therefore, controlled operation of power systems is very
critical and of utmost importance in order to achieve stable power system. Naturally,
this paves ways for implementing fast, efficient and reliable control algorithms. Robust-
ness and efficiency of power system controllers can be improved by using complimentary
paradigms of intelligent systems; neural networks, fuzzy logic and bio-inspired optimiza-
tion algorithms. Difficulties encountered in designing controls for nonlinear, dynamic
and uncertain systems can be easily tackled by using intrinsic observability property of
various intelligent systems. The other advantage of intelligent system is lesser modeling
error, which leads to efficient control loop. Intelligent controllers have been successfully
applied to enhance operation and control of power system. This paper reviews and sum-
marizes implementation of intelligent controllers at the generator end of power systems,
during the past decade. Few proposals are also given for further investigation in the realm
discussed in this paper.
Keywords: Generator control, Excitation system, Power system stabilizers, Transient
stability, Intelligent control, Neural networks, Neurofuzzy, Adaptive critic design, Ensem-
ble-ANN

1. Introduction. Stable operation of highly interconnected, geographically wide power
system craves for matching of total generation with total load demand along with associ-
ated system losses [1]. On one hand, interconnection, restructuring of power system has
brought very economical and quality energy for consumers. Poles apart, deregulation and
with the increase of fast power consumption loads, such as testing plants, nuclear fusion
plants, factories using arc furnace transformer have made the matching very critical. Ad-
ditionally, power systems have become more unpredictable after the implementation of
high speed electronic power controllers. This aggravates the stable operation of power
systems even more. The review of reference [2] has revealed that, yet full advantages
offered by restructuring electric power utility are not availed because of inappropriate
control algorithms. The importance of enhanced operation and control of power system
has increased particularly after recent interconnected blackouts in USA, UK and Europe,
also [3].

Nowadays, power systems are observing shift from vertical integration to horizontal
operation where competitive companies own GENCOs, TRANSCOs and DISCOs. This
transition has resulted in power systems being operated at ever lesser security and stabil-
ity margin and hence, threatening power systems reliability. Additionally, recent control
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actions are not designed for fast propagating disturbances [4] and are needed to be en-
hanced to meet the requirements of highly vulnerable to low-probability-events power
systems of this era. Reference [5] provides excellent understanding about the impact of
deregularization of utility on planning and management of the utility. As power systems
continue to grow in size and complexity, it becomes increasingly important to comprehend
system stability to preclude dynamic collapse and possible blackouts.
Research in power systems is currently being carried out in areas of power system

transient stability [6], power quality [7], data quality [8], power system modeling [9],
power system reliability [10], fast valving [11], reactive power management [12], power
systems economics [13] and integration of renewable sources with national grid [14] are
the areas, to name a few. As the title suggests this research work is concerned with power
system stability.

2. Power System Stability: A Problem. Power system stability is best defined as
the ability of an electric power system to regain a state of operating equilibrium after
being subjected to a physical disturbance, when variables are bounded so that practically
the entire system remains intact [15]. Stability of power system is related to stability of
synchronous generator. The mechanical angle between rotor magnetic field and armature
magnetic flux of a generator is known as the load angle or power angle (δ). Basically power
system stability is a synchronism between rotating field flux and circulating armature flux.
Power system stability is classified into different classes based on the variables involved,
magnitude of disturbance and time duration of disturbance, as illustrated in Figure 1.

Figure 1. Classification of power system stability

Angle stability is the balance between electromagnetic torque and mechanical torque,
whereas voltage stability is akin to match between reactive power generation and con-
sumption. It is hard to draw a clear line of demarcation between these two types of
instabilities, since one leads to another. However, it is well-established that voltage in-
stability is caused by load characteristics, whereas angular instability is generator-rotor-
dynamics phenomenon. Alternatively, for voltage stability, the vulnerable points of the
power systems are generally among load buses, also referred as P-Q bus. Whereas, for
angle stability vulnerable points of a system lie within generator buses, also known as P-V
bus [16]. Ability of power system to maintain steady state frequency following a severe
upset is known as frequency stability. The focus of this paper is transient stability, which
is an important subset of angle stability of power system.
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Transient stability is the ability of a system to remain intact following major distur-
bances. The time period of interest in transient stability studies generally varies within 3
to 5 seconds and may extend to 10-20 seconds for very large systems, following any distur-
bance [15]. In addition, transient stability behavior of power system is best characterized
by generator angle and velocity. The problem of transient stability is divided into two
main categories; evaluation and prediction [16]. Transient stability evaluation focuses on
the time required to isolate faulty section before system becomes instable and it is called
critical clearing time. On the contrary, in transient stability prediction the focus shifts to
whether transient swings will finally converge or otherwise.

Power system transient stability can best be explained by equal area criterion [17],
illustrated in Figure 2.

Figure 2. Variation of active power relative to load angle

The difference of input mechanical torque and electrical torque output acting on the
rotor of synchronous generator is given by,

τA = τM − τEM (1)

where τA is the accelerating torque, τM is the mechanical input torque, τEM is the induced
electromagnetic torque. Area A1 in Figure 2 is the accelerating area because resultant
of Equation (1) is positive in this case. Whereas A2 is called the decelerating area as
accelerating torque is negative in this case.

As stated by the definition of stability, rotor must remain in a state of dynamic equi-
librium for a stable operation. To meet the condition, the magnitude of A1 must be
either equal to or lesser than A2 during any contingency. This can be ensured by either
increasing during-fault-curve or post-fault-curve or isolating faulty section in a very short
time. Isolation of fault comes under the category of power engineering branch known as
power system protection. The former is associated with effective controlling of generators
and/or power flow controllers installed at transmission end. The primary control of a
power system is carried out at generator end, whereas secondary control is through power
flow control at transmission end [18]. Power system stability can be improved by using
dynamic controllers as excitation systems, power system stabilizers and FACTS devices
[19], controlled islanding [20] and HVDC.

3. Power System Stability Enhancement. Flexible AC Transmission System (FACT
S) devices are example of enhancing power systems stability by controlling power flow at
transmission end. They are divided into series, shunt and series-shunt categories accord-
ing to the manner of device connection with the system. The concept behind enhancing
power system stability by series FACTS devices such as Static Series Synchronous Com-
pensator (SSSC) is to increase active power flow during faulty condition consequently
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decreasing area A1 and increasing area A2 [21]. On the other hand, shunt devices as
Static Synchronous Compensator (STATCOM) boost power system transient stability by
injecting reactive power into system to support the system voltage during disturbance
and ultimately leading to decrease of area A1 and increasing area A2 [22]. The most
commonly used FACTS controller is Unified Power Flow Controller (UPFC). It consists
of two branches; one is connected in series and the other is in shunt with the system.
UPFC controller uses notion of both series and shunt FACTS controllers for increasing
power system stability effectively than any other FACTS controllers [19,23].
Controlled Islanding is a technique in which whole power system is divided into sections,

without having any interconnection, to avert major blackouts [15]. Controlled islanding
is the last line of defense in strategy to keep power system stable. Additionally, it is not
proposed as the answer to all instability problems in the system [20]. High Voltage DC
(HVDC) transmission system is potentially a shield against synchronism loss. Nonethe-
less, it poses problem of voltage instability following disturbance, if the system depletes
reactive power reserves [24].
The control actions at generator end to thwart the system instability are either in terms

of excitation system or power system stabilizers or at mechanical end of power plants.
The main cause of transient instability of generator is inability of mechanical torque to
quickly balance out changes in electrical torque [25] and also generator rotor inertia plays
major role. After disturbance the electrical torque can be resolved into two components,
one is synchronizing torque and other is called damping torque given by,

∆TE = KS∆δ +KD∆ω (2)

where δ is load angle also known as torque angle, ω is angular speed and K is constant.
The first term of Equation (2) is synchronizing torque. This torque is dependent on

air gap magnetic flux and magnetic coupling between rotor and armature of synchronous
generator. This component of torque can be enhanced by high initial response Automatic
Voltage Regulator (AVR) and negative field forcing capability of Exciter as well [3,26].
Excitation system comprises of AVR and Exciter. The second component of Equation (2)
is damping torque. It has very profound impact on small signal stability and generator
dynamics during transient state following short circuit fault. Damping torque results from
the phase lag or lead of excitation current [25,26]. The first swing transient instability is
due to lack of sufficient synchronizing torque. Power system can diverge after convergence
of first swing mainly because of insufficient damping torque [16].
Currently, installed excitation systems are very fast responding systems and can imme-

diately take corrective measures following very small oscillations. Nevertheless, from the
time of recognition of desired excitation action to its real fulfillment, there is inevitable
time delay owing to high time constant of field and armature windings. During this time
period, position of oscillating system is bound to change and thus resulting in need of
new excitation adjustment. The overall outcome of this time lag is induction of oscil-
lations at the generator end. Power System Stabilizers (PSS) can effectively be used to
damp out generator electromechanical oscillations by minimizing the phase lead and lag
between synchronously rotating armature flux and rotor. AVR along with PSS are used
to enhance power system stability [15,25].
The focus of this research is transient stability enhancement by using efficient controlling

at generator end, as it is a primary control.

4. Application of Intelligent Systems. The loading of power system varies with time.
Components attached with power system operate over very wide range and the range has
become even wider since restructuring of utility [5]. Proportional-Integrator-Derivative
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(PID), a very well-developed and linear controller has found better place in power sys-
tem control. The deviation of device operating point from equilibrium point has very
detrimental impact on performance of linear controllers. Reference [27] has compared the
variation of PSS parameters with variation in operating point to assess impact on robust-
ness of conventional PSS. It is found that slight change is required to be made when a
synchronous machine operates with positive reactive power and active power. Whereas,
PSS variables need drastic tuning with slight shift in operating domain has been observed
when the synchronous machine operates with negative reactive power. This has paved the
way for nonlinear controller implementation in recent times and has been proved better
over wide range of operating conditions [28,29].

Nonlinear control is theoretically and computationally very complicated. Their perfor-
mance is highly sensitive to modeling error. The degree of complexity grows geometrically
with involvement of uncertainties, increase of unknown variables and inability to access
every state vector intensify the complication [30]. The problem formulation becomes more
complicated upon switching from Single Input Single Output (SISO) to Multi Input Multi
Output (MIMO). Moreover, such methods can improve the performance of dynamic and
nonlinear systems like power systems but they may not yield better results when applied
in real time due to high computation time [31]. Generally, effective robust performance of
closed loop system is proportional inversed with controller response time [32,33]. There-
fore, it can be concluded that classical and nonflexible controllers do not represent good
solutions due to nonlinear, multivariable and uncertain power system containing a wide
array of devices each having different response rate. Additionally, contingencies and load
variations smoothed the way for fast and highly flexible control schemes.

In recent years it has been recognized that it is necessary to incorporate other elements,
such as logic, reasoning and heuristics into algorithmic techniques of conventional adap-
tive and optimal control theory to impart more flexible control systems. The intelligent
control is defined as having the ability of learning, adaptation and operating over a wide
envelope satisfactorily. Three paradigms of Intelligent Systems (IS) have been used in in-
telligent control: Fuzzy Logic, Optimization Algorithms-mostly Genetic Algorithm (GA)
and Artificial Neural Networks (ANN). Fuzzy Logic (FL) is good at making decision and
logic designing, once data is processed and GA performs well in optimization. ANNs
have done well in data processing. Reference [34] has compared not only IS-based adap-
tive control but the conventional adaptive control, called analytical techniques too, and
amalgamation of AI and conventional techniques. It was concluded that the approach
to be used depends upon expertise and confidence of the designer. While, in comparison
to conventional control margin of transient stability limit is increased by using adaptive
control system. This eases the limit of critical clearing time a bit. Nonetheless, by reduc-
ing critical clearing time transient stability limit may increase even more. It is difficult
to compare different techniques used in the realm since every researcher has carried out
analysis at different operating conditions. More recently another research work [35] has
used a combination of two techniques; one is ANN as model identifier and other is pole-
shift adaptive controller, which is an analytic technique. In pole-shift algorithm a scalar
has been adapted continuously and its value basically determines the stability of closed
loop control. It is claimed that this control loop has lowest processing time.

Problem solution with FL becomes complex with increase of involved variables. Apart
from that FL control is more empirical-based [36]. GA, stochastic in nature and insensitive
to initial configuration, has the ability of derivative free global optimization and that
lies in their so called notion of evolution behind their evolution. Overall performance
of GA is fitness function dependant and hence, the function requires expert knowledge.
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Furthermore, GA requires considerable time to converge and its efficiency is variable of
many control parameters.
ANN on the other hand has intense parallel interconnections of simple processors.

Although ANN has poor interpretation, it is one of the most promising control approach
compared to all other approaches available [36]. The promise of fast computation, ability
to map any nonlinear function satisfactorily, fault tolerance and robustness have made
ANN to carryout sophisticated control tasks. The current trend is towards amalgamation
of all three AI paradigms to implant features of each to cover up demerits of other such
as to feed expert knowledge into ANN or optimize free parameters or structure of ANN
[37-39].

5. Artificial Neural Network: Common Architecture Models. Following an ini-
tial period of enthusiasm and activity in realm of ANN, a tarnished period of reluctance
is way behind now. Generally, ANN is seen as analogous to curve fitting polynomials,
in which coefficients of variables and constant in polynomial are linked with weights and
biases of ANN. In fact with classical approximating tools like polynomials, trigonometric
series, splines and orthogonal functions the efficiency up to any extent can be achieved.
Nonetheless, ANN enjoys advantages of lesser noise sensitivity, easy hardware implemen-
tation and use of fewer input features [40]. ANN is now a well-developed field with very
few grey areas being researched and revisited rigorously with positive outcomes. The
advancement in learning algorithms of ANN compelled researchers from different fields to
heed towards ANN implementation. ANNs are really good at distinguishing system states
on basis of input-output. On basis of this property ANN has found variety of applications
in dynamical system control and the property is named observability.
The most commonly used ANN topologies are Multi Layer Perceptron (MLP), Radial

Basis Function (RBF) and Recurrent Neural Network (RNN). This research survey re-
vealed that only three references [41-43] have used dynamic neural network and rest have
used either RBF or MLP. The strength of RNN lies in its massive feedback connections.
Where, MLP and RBF are well proven universal approximators with one hidden layer.
Although, it is believed that addition of hidden layer may give better accuracy. For the
same degree of accuracy MLP requires lesser number of input features than RBF and
thus will yield lesser information processing time. However, this can be compensated
by higher information processing speed of RBF. RBF are local in nature means a given
weight only effects over a part of the input space, therefore it affects output linked with
the part only. Hence, RBF are better used for online training. It is well known, during
adaptation the variance of Gaussians can become very broad and RBF may lose its local
nature. MLP are global in nature meaning that every weight affects total output of the
network. Hence, better for offline training, yet MLP has shown to exhibit local learning
nature when trained with deviation signal (∆χ) [44,45].
An excellent comparison between MLP and RBF network for model identification has

been researched in [46]. In this work both networks have been compared when they have
used deviations of the measured signals from set points as well as when they have been
trained on actual measured signals. The deviation signals are used to provide better
controller sensitivity and also their amplification is easier than actually measured signals.
Poles apart, it is difficult to sense deviation signals since their magnitude is very close
to zero. Moreover deviation signals in real time may severely be distorted with noise
[47]. The results have depicted that MLP has slight upper hand over RBF when trained
with deviation signals and tested on basis of global performance. Here, global means that
network is trained on one operating condition and with those fixed free parameters tested
on other operating region. Alternatively, MLP showed better generalization ability than
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RBF. Whereas RBF performed better than MLP when trained on actual measured signals
and tested on global performance basis. It is important to bear in mind that networks
were trained online and training was stopped on basis of time duration. Reference [48]
is extension of aforementioned reference [46]. The results manifested that performance
of RBF neurocontroller is better than MLP neurocontroller when trained online with
deviation signals. However, MLP contain fourteen hidden layer nodes and RBF has twelve
centers. What’s more the processing speed of RBF is higher [46] and good performance
of closed loop system is inversely proportional to controller response time [32]. MLP may
perform better if response time issue is tackled appropriately.

6. Neuro-Control Systems. Initially control, ANN and information science were gath-
ered under the umbrella of Cybernetics. Afterword, unfortunately, these fields went apart
and did not enjoy the hybridization for better results until [49] proposed application of
ANN in dynamical systems control. The different types of control problems that are en-
countered in practice may be classified into the following groups [40].
1. Nonlinear control problems and nonlinear adaptive control problems.
2. Control systems based on state vectors and control systems based on only input-outputs.
3. Controller parameters chosen off-line and controller parameters chosen online.

In neurocontrol of excitation and power system stabilizers ANN is applied in terms
of nonlinear model reference adaptive control, a branch of analytical nonlinear adaptive
control based on input-output whereas parameters are tuned online as well as offline. The
block diagram of model reference adaptive control is given in Figure 3. Model identifier
is an ANN that mimics generator. The purpose of model identifier is to predict generator
voltage and/or speed at y(t+ 1) instant. This is compared with the desired response fed
by a reference model and therefore, parameters of neurocontroller are updated on basis
of the difference. The training of model identifier is carried out based on error between
generator output variables and model identifier output. There are four different types
of model identification based on linear and nonlinear Auto Regressive Moving Average
(ARMA/NARMA). Few authors have also used ARMA model in nonlinear and dynam-
ical power system control [34,35,50-52]. The overall linearized-nonlinear system can be
represented by ARMA model, if the system is observable through output and Eigen val-
ues of unforced system are different from the zeroes of the transfer function. Out of the
aforesaid four model identifiers, two contain linear combination of time delayed values of
either plant output or controller output, hence are not used, whereas remaining two are
stated by Equations (1) and (2). These equations are for SISO plants and they can easily
be extended for MIMO systems by adding more variables.

yp(t+ 1) = f [yp(t), yp(t− 1), yp(t− 2), · · · , yp(t− n+ 1); · · · (3)

· · ·u(t), u(t− 1), u(t− 2), · · · , u(t−m+ 1)]

yp(t+ 1) = f [yp(t), yp(t− 1), yp(t− 2), · · · , yp(t− n+ 1)] + · · · (4)

· · · g[u(t), u(t− 1), u(t− 2), · · · , u(t−m+ 1)]

where yp(· · · ) is the plant output, u(· · · ) is the controller output.
For global plant identification it is affirmed that (2n + 1) past values of inputs and

outputs are adequate [40]. Later on, authors of [44,48] have clearly mentioned that the
use of time delayed values behind two delayed has not much impact on the performance of
controller. Moreover, few authors have used time-delayed values up to five delayed-values
[51,53]. Furthermore, identification models are classified according to the connection,
alternatively according to inputs fed to identification model. One is called Parallel Identi-
fication Model (PIM) and other is known as Series-Parallel Identification Model (SPIM).
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Figure 3. Block diagram of nonlinear model reference adaptive control

The Model Identifier portrayed in Figure 3 is SPIM. It takes u(t) and y(t) current and de-
layed values as input and parameters are updated on difference between model and plant
outputs. Generally, SPIM is used in this area, since in spite of two decade of research,
conditions under which the PIM parameters converge even in linear case are not known
yet [49]. What’s more, it is well known that SPIM has better convergence properties than
PIM [54].
Table 1 gives a summary of ANN architecture used in [33,44,51,52,55,56]. The table

shows the architecture of NeuroIdentifier (NI), NeuroController (NC) and ANN training
algorithms. Dynamic backpropagation training algorithm gives fast convergence by using
the previous inputs whereas static backpropagation uses only current values. It is very
clear from the table that every work has used NARMA model for model identification,
where NARMA-3 means that model identification is based on Equation (3). Another point
worthwhile to note is that ANNs have been trained on deviation signals either to avoid
usage of desired response predictor [55] or to avert MLP demerits [44,56]. The results
have been compared with conventional PSS and even machines without PSS. Results
have confirmed that neuro-PSS has performed better than conventional PSS. In the case
of neuro-excitation system results have been compared with conventional controller, i.e.,
Proportional-Integrator-Derivative (PID) or its subset. The difference between research
carried out in [44,56], lies in the number of neurocontrollers used. The results have
portrayed slightly better performance at higher load conditions of scheme consisting of two
neurocontroller. This better performance has been result of lesser computational burden
and different sampling time for mechanical and electrical systems [56]. The sampling
time taken for excitation system and turbine has been 20ms and 100ms respectively, since
being mechanical system turbine has slower response. Reference [33] has researched the
application of MRAC-based neurocontrol to PSS and the architecture detail is given in
Table 1. Another work [30] has used a neurocontroller consisting of a single hidden layer
with single neuron, trained online with modified error correction principle. The controller
has been simulated in multi machine environment. Here free parameters of NC have been
updated not only on basis of difference between previous and current output but it has
taken account of previous difference.
A research work practically implemented on 18-machine environment has also been

carried out in [51]. To authors’ knowledge, this is the only research which has used
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Functional Link Network (FLN). A FLN does not have a hidden layer. Instead it uses
actual inputs and enhanced inputs. Enhanced inputs are nothing but the trigonometric or
polynomial transformation of actual signals. Transformation is done by multiplying every
input by cosine, sine and tangent trigonometric functions or by polynomial functions such
as below.

f(x) = 1.0, f(x) = x, f(x) = 2x2 − 1, f(x) = 4x3 − 3x

Table 1. ANN architectural model summary [33,44,51,52,55,56]

NC NI NC NI
Parameters

Excitation/
Architecture Architecture Training Training PSS

MLP MLP DBP DBP
6-8-1 6-8-1 Online- Online- ∆P PSS
[55] SPIM Training Training &∆ω

NARMA-3
MLP MLP SBP SBP
3-6-1 6-10-1 Online- Online- ∆ω PSS
[33] SPIM Training Training

NARMA-3
One-NC MLP ∆PM , Excitation
MLP 12-14-2 SBP SBP ∆VT and
6-10-2 SPIM Online- Online- & Turbine
[44] NARMA-3 Training Training ∆ω

Two-NC MLP SBP SBP ∆PM , Excitation
MLP 12-14-2 Online- Online- ∆VT and
6-8-1 SPIM Training Training & Turbine
[56] NARMA-3 ∆ω

FLN DBP DBP ∆ω, VT

FLN SPIM Online- Online- PE, δ PSS
[51] ARMA Training Training &

PA

RNN M-BPTT M-BPTT ∆ω, P
RNN SPIM Offline- Offline- & PSS
[52] ARMA Training Training Q

where ∆PM = (PREF −PM ), ∆VT = (VREF −VT ), ∆ω = (ωREF −ωT ), SBP stands for Static

Backpropagation, DBP represents Dynamic Backpropagation and M-BPTT shows Modified

– Backpropagation Through Time.

FLN has been preferred to MLP due to MLP’s higher tendency to local optima trappings
when trained using backpropagation algorithms. Nevertheless, the convergence of FLN
is also not guaranteed as well as its results are very much comparable to conventional
PSS. Another work by [52] has tried MRAC using ARMA-1 model and a modified form
of Backpropagation Through Time (BPTT) to train recurrent ANN to mimic plant and
controller. The modified form of BPTT has been named Recursive Gradient (RG) and
has used optimization of an objective function based on the current and previous state
vector and control inputs. The results have proved that neuro-PSS trained on proposed
algorithm had far better tracking capability than conventional PSS.
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7. Neuro-Fuzzy Systems. ANN and FL are two different paradigms of intelligent sys-
tems. Individually both these paradigms suffer disadvantages [53]. The main concern
with ANN training is the requirement of efficient and sufficient data and unavailability
of algorithms to optimally select ANN structure. On the other side, the performance
of FL controller depends on the operating conditions of systems, although its sensitiv-
ity is lesser than a conventional controller. Additionally, FL requires expert knowledge
explicitly. This is conceived as merit as well as demerit. To harvest full advantage of
ANN capability to fine tune expert information by employing learning techniques and
FL’s ability to incorporate expert knowledge, these two classes of AI have been com-
bined [57]. In controlling generator excitation and PSS, combination of FL and ANN
is applied in different ways. One way to incorporate advantage of both paradigms is to
use Adaptive Neurofuzzy Inference System [50,57,58,59]. The other way is the usage of
ANN like Multi Layer Perceptron (MLP) in which weights are represented by membership
functions, called fuzzy weights, and activation functions are defined with respect to the
t-norm and t-conorm [60]. The synergized neural and fuzzy networks called Generalized
Neuron (GN) [61,64]. The last method of applying both FL and ANN is to synthesize
controller by FL and model identifier using ANN [53,63].
Adaptive Neurofuzzy Inference System (ANFIS) is a more systematic approach relying

less on expert knowledge. It can serve as a basis to construct a set of fuzzy If-Then rules
with suitable membership functions for generating sets of input-output pairs. It, basically,
consists of fuzzy and defuzzy, knowledge base and decision making unit. It can incorpo-
rate various types of fuzzy membership functions inference. Unlimited approximation
power of ANFIS is claimed yet it is linked with constructing ANFIS properly [64]. The
architecture of ANFIS is shown in Figure 4. The ANN topology should be feedforward.
Links between nodes do not carry any weights and represent the signal flow direction
solely. The first layer represents membership function and fourth layer is for consequent
parameters. Output of each node in second layer is firing strength of rule and third layer
normalize firing strengths. Function of fifth layer is to sum all inputs and its output is
control signal, u(t). ANFIS can be trained on different learning algorithms, but a hybrid
learning algorithm based on least square error and gradient descent has been proposed
and claimed to be fast. For further detail interested readers are referred to [64].
Reference [50] has used indirect adaptive control system methodology to update the

first layer parameters of ANFIS online. The strength of the proposed controller has been
depicted on multi machine system. The results have shown that the proposed controller
has performed better in terms of overshoot, undershoot as well as damping. The work
presented in [57] is based on indirect adaptation of input link weights (Link Connections)

where x1(t) and x2(t) are inputs, u(t) is control output and boxes are representing scaling

factors.

Figure 4. ANFIS architecture
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of ANFIS as shown in Figure 4. The optimal selection or adaptation of many parameters
becomes computationally expensive. Since input link weights have major effect on overall
performance, hence adaptation of these weights has been proposed. However, results
have not shown much difference between conventional and proposed PSS. In addition,
fine tuning of controller output may be problematic since connection link weights have
affect on all other parameters of ANFIS.

The research work proposed in [58] has used evolutionary algorithm and ANFIS. The
control algorithm is based on self-tuning and offline-trained. PSS has been tuned at five
different operating points on two different objective functions using genetic algorithm.
One objective function has minimized Integral Time Absolute Index (ITAE) having speed
deviation as variable (GA-ITAE-PSS). The other objective function has included more
system dynamics and is carried out using pole placement based on Eigen Values (GA-
Eigen-value-PSS). Data have been generated by operating conventional PSS at five dif-
ferent loads on generator to train ANFIS. The objective of ANFIS has been generation
of PSS parameters after sensing the generator operating load. From the results it can
be concluded that by integrating system dynamics information into objective functions
optimized by bio-inspired optimization algorithms, the system’s performance is enhanced.
However, it is essential to bear in mind that performance of GA deteriorates if the fitness
function contains correlated parameters. The work proposed in [59] is based on model
free estimation. Data have been generated by optimally tuning PSS at three different
operating points. ANFIS has been trained on generated data to replace conventional
PSS. The data have shown comparable results with conventional PSS. Yet ANFIS-PSS
has lesser steady state error at higher loading condition following fault introduction.

A three layer Fuzzy Perceptron (FP) with two inputs, six hidden layer neurons and
one output has been demonstrated in [60]. The inputs are magnitude and angle of speed
deviation signal. In FP weights in between input and hidden layers are the If-part of
Gaussian membership function, whereas hidden to output layer weights are represented
by Then-part of the membership function. Thus weights have been initialized and fur-
ther tuning of weights has been carried out using GA. The given results have illustrated
the critically damped performance of proposed controller at lighter load when the system
subjected to mechanical disturbance. Still post short circuit performance is comparable
to conventional controller. Indirect adaptive control based scheme to adapt three vari-
able of fuzzy based controller with ANN identifier has been used and called Neurofuzzy
system [53]. The reason behind using FL as controller is to incorporate human knowl-
edge whereas ANN identifier does not need. Fuzzy controller process information of the
system dynamics based on angle and magnitude of angular speed (ω) whereas identifier
is GN-based NARMA-3 Model. The testing of proposed system has been carried out on
computer simulation and physical laboratory system. The results have portrayed that
proposed controller has lesser overshoot.

GN is nothing but a summation of the fuzzified sigmoidal and gaussian aggregation
functions. Research work simulated as well as implemented on single machine to infinite
bus and multi machine environment has been proposed in [61,62]. GN-based controller
generates control signal without any input from model-identifier and the results are com-
pared with MLP. The results have shown that GN-based controller had better damping
performance than MLP. It has been claimed that GN required lesser number of neurons,
training data and training time compared with MLP consisted of 7-7-1 neurons while GN
contained only one neuron with only one layer. On the other hand, training of MLP has
terminated on epoch basis to achieve generalization of training data patterns when it is
well known that epoch termination, most of the time, has resulted in poor generalization.
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Table 2. Neuro-Fuzzy controller architecture summary [50,57,58,59]

Fuzzylogic
NI NI Training ANFIS Membership Parameters Excitation

Functions PSS
MLP RLS Sugeno-Type Deviation

ARMA-3 Online G-Descent Gaussian Signals PSS
SPIM Training 49 Rules [P&ω]
[50]
MLP BP Sugeno-Type Deviation

NARMA-3 Online G-Descent Triangular Signals PSS
SPIM Training 49 Rules [ω&α]
[57]

Deviation
[58] – Sugeno-Type Gaussian Signals PSS

– H-Learning [ω]

MLP MLP
6-13-1 MLP 12-14-2 HDP ∆ω,∆VT& Excitation &
[59] 9-10-2 SPIM ∆PM Turbine

NARMAX-3

where ∆PM = (PREF − PM ), ∆VT = (VREF − VT ), ∆ω = (ωREF − ωT ), RLS stands for

Recursive Least Square, BP Backpropagation, H-Learning represents Hybrid Learning and

G-Descent shows Gradient Descent.

Early stopping criterion should be carefully considered as it plays very important role to
guarantee generalization of ANN.
The fuzzy inference system suffers problem in the case when adding or removing any

variable where the whole rule-base need to be changed. Whereas in hierarchical-fuzzy
systems the case is totally different and also the number of rules do not increase exponen-
tially with addition of any new variable [63]. The aforementioned reference has designed
a hierarchical-fuzzy-based controller and operating condition of the system has been de-
cided by a three layer MLP trained with a backpropagation algorithm. The performance
of proposed controller has been analyzed using computer simulation and the results have
shown that the controller has good oscillations suppression capability.

8. Adaptive Critic Design. Optimal control deals with the problem of finding a con-
trol law for a system such that a certain optimality criterion is reached. The control
problem includes an objective function J(.), which includes the system’s state and control
variables. An optimal control is a set of differential equations describing the path of the
control variables those minimize the objective function J(.), cost-to-go function. The op-
timal control can be derived using dynamic programming. Dynamic programming is an
exhaustive mathematical approach to handle optimistic and stochastic search to find opti-
mal control trajectories. This backward search is based on rejecting all sub-optimal paths
and retaining even slightly potential paths until reaching the finish point. The Hamilton-
Jacobi-Bellman (HJB) equation, a partial differential equation, is a result of the dynamic
programming theory. This has been pioneered by Richard Bellman and coworkers. ANN
is not the only method to solve HJB equation for optimality [65,66].
In neural adaptive control, online adaptation of ANN free parameters is carried out. The

continuous online training during operation is very risky in highly nonlinear and dynamical
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systems like power systems. The continuous online training with brute force like gradient
descent algorithm can lead to instability under transient condition and make even linear
systems unstable [65,66]. Additionally, the adaptive control law is implemented on basis of
Model Reference Adaptive Control (MRAC). Due to the ignorance of connection between
current system state and controller parameters by MRAC may lead to oscillatory response
of system [52]. Generally, the time response of close loop control system has major
impact on overall control performance [62], hence it is questionable that ANN consisting
of many free parameters will converge fast enough to achieve better performance. Besides,
requirement of high computational time for online adaptation can limit the maximum
bandwidth in relatively short time close loop control systems [66]. These problems lead
to find an optimal control trajectory based on Adaptive Critic Design.

Adaptive Critic Design (ACD) is suitable to learn in noisy, nonlinear and dynamic
environment, and does not require continuous online training after commissioning of plant.
HJB gives the solution to find optimal control in offline satisfying a partial differential
equation. ACD techniques provide an effective method to construct an optimal and robust
feedback controller by exploiting backpropagation for calculating all derivatives of target
quantity in order to optimize the heuristic cost-to-go approximation [65]. ACD consists
of three ANNs; one is Model or Identifier to estimate plant output one step ahead, second
network is named Action or Actor network to minimize J(.) in immediate future thereby
optimizing the overall cost-to-go and third is known as Critic to adapt free parameters
of Model and Action networks. Alternatively, action network represents the mapping
between the state and control variables whereas critic represents the mapping between
state and costate variables. Critic learns the desired performance index for a function
associated with an objective function. ACDs can work independent of Model Network,
yet in field of this paper, no researcher has used Model free ACDs.

There are three types of ACDs; Heuristic Dynamic Programming (HDP) which opti-
mizes J(.), Dynamic Heuristic Programming (DHP) that optimizes derivative of J(.) and
Global Dual Heuristic Programming (GDHP) which optimizes J (.) in addition to deriv-
ative of J(.). GDHP is very complex to implement as it requires optimization of actual
and derivative of J (.) and is supposed to give better results [67], but it is not exploited
in this area of research. Whereas HDP and DHP both are employed and a comparison
has been carried out in [67]. The results have demonstrated critically damped tracking
capability of HDP whereas DHP had better rise time with slight overshoot. Nevertheless,
both have same settling time. Working has also been compared by introducing fault in the
system and from seeing outcomes it is clear that results with DHP are slightly better than
HDP. Architectural details of ACDs are given in Table 3. Another interesting comparison
between HDP implemented on RBF and HDP implemented on MLP has been researched
in [65]. The results has exhibited that MLP-HDP has superior efficiency compared to
conventional controller and has inferior to RBF-HDP in terms of tracking and damping
both. The ANN architecture details are given in Table 3. DHP-based ACD has been
implemented to replace conventional automatic voltage regulator and governor of turbine
in multi-machine environment practically [66].

An interesting work has been researched in [68] by simulating the effect of indirect adap-
tive neurocontrol and HDP-based ACD neuro-control of PSS. The results have reported
that performance of both control algorithms based on indirect adaptive neurocontrol and
HDP are better than conventional PSS whereas behavior of HDP is minutely better in
comparison to indirect adaptive neurocontrol. Another research work [69] has shown that
performance of DHP-based excitation system optimal neurocontroller is even superior to
synchronous generator equipped with conventional excitation mounting conventional PSS.
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Table 3. ACD architectural models of reference [65-72]

Critic Action Model
DHP/HDP Parameters

PSS/WAC
Architecture Architecture Architecture Excitation

MLP MLP
6-13-1 MLP 12-14-2 HDP ∆ω,∆VT Excitation &
[65] 9-10-2 SPIM &∆PM Turbine

NARMAX-3
RBF RBF
6-9 -1 RBF 12-12-2 HDP ∆ω, ∆VT Excitation &
[65] 9-6-2 SPIM &∆PM Turbine

NARMAX-3
MLP MLP
6-10-2 MLP 12-14-2 DHP ∆ω,∆VT Excitation &
[66] 9-10-2 SPIM &∆PM Turbine

NARMAX-3
MLP MLP
6-13-1 MLP 12-14-2 HDP ∆ω,∆VT Excitation &
[67] 9-10-2 SPIM &∆PM Turbine

NARMAX-3
MLP MLP
6-10-2 MLP 12-14-2 DHP ∆ω,∆VT Excitation &
[67] 9-10-2 SPIM &∆PM Turbine

NARMAX-3
MLP MLP
3-6-1 MLP 6-10-1 HDP ∆ω PSS
[68] 9-10-2 SPIM

NARMAX-3
RBF RBF
6-6-1 RBF 12-12-2 DHP ∆ω,∆VT Excitation &
[69] 6-6-2 SPIM &∆PM Turbine

NARMAX-3
MLP
4-6-6-1 – – DHP-SNAC ∆ω PSS
[70] – –

MLP
7-10-1 FLN RBF HDP ∆ω WAC
[71] 52-4

MLP MLP
6-10-2 MLP 13-15-2 HDP ∆ω WAC
[72] 9-12-2 SPIM

NARMAX-3

A research work proposed in reference [70] consists of simplified DHP-based critic neu-
rocontrol and is named Single Network Adaptive Critic (SNAC). The difference between
dual network adaptive critic (DNAC) and SNAC is elimination of action network. In
latter type critic maps between state variable and, one step ahead, costate variable thus
eliminating need of action network for generating control signal. It is claimed that SNAC
retains all powerful properties of DHP with less complex training. The effectiveness of
SNAC has been analyzed on slip-speed basis and results have illustrated that conventional
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lead-lag as well as linear-quadratic based PSS have been outperformed as operating point
moved from linearized position.

9. Wide Area Control. Stability and security is very critical during this period of
restructuring. Customarily, optimization of distributed control agents like PSS, excitation
systems, FACTS and etc installed at specific points in power system is based on local
constraints. However, a matter of contention is the interaction between these controlled
devices installed close together that leads to adverse effects causing inappropriate control
efforts by different controllers and may result instability [42,71]. This problem arises
because each controller attempts to be good local controller and has no information of
the system’s control objective [71]. The insufficient coordination among local agents of
different areas may develop oscillatory response such as inter-area oscillations [42]. There
are three types of oscillations Inter-unit, Local-mode and Inter-area oscillations [25] and
description is given below.

Inter-unit oscillations typically involve two or more synchronous machines swinging
with frequency of 1.5-3.0 Hz against each other at a power plant or nearby pants.

Local-mode oscillations mostly engage one or more synchronous machines at a power
station oscillating with frequency 0.7-2.0 Hz against a comparatively large power system
or load center. This becomes troublesome particularly when areas are connected with
high reactance transmission system.

Frequency of Inter-area oscillations is around 0.5 Hz and conventionally entail many
machines of a power plant fluctuate against another part of the system.

These limits have raised the need for wide area control (WAC). The immensely im-
portant objective of WAC is reduction of undesirable interaction between local agents.
Therefore, aim is to respond system disturbances with the least amount of control strives.
Nevertheless, the striking contention with WAC is communication efficiency, communica-
tion lag or delay and strong probability of missing information of sensors being remotely
located. The usual delay attached with communication links and sensor measurements
is around 50ms to 1s [41]. [41,71] have proposed robust WAC to static and dynamic
communication lag. Dynamic communication lag is the delayed data with few missing
sensors information.

Four generator of similar rating within two-area eleven-bus power system model have
been considered in the following researches. One generator in each area is equipped with
PSS but all four generators are equipped with similar rating excitation system. WAC
provided auxiliary signals to generators mounted with PSS. Research work [71] is a typical
example of using multiple ANN topologies in one system and has considered infinite-bus
instead of a generator in area-2. ACD-based controller is used to provide nonlinear optimal
control at different operating points of the system. The MLP with hyperbolic tangent
neurons has been chosen to model critic network and polynomial-based Functional Link
Network (FLN) for the action network. In addition, RBF is used for model predictor
and has taken inputs from missing sensor restoration block (MSR). MSR has extracted
and compensated missing information out of available data and is nothing but an Auto-
encoder network. Auto-encoder is not more than an MLP with hidden neurons lesser
than inputs and have strong capability to reconstruct input set from reduced data set
[73]. The results have suggested not much difference between local agent control and
WAC outcome. Success of this research lies in mapping missing data and compensating
maximum communication delay of even more than 1.0 sec.

Reference [41] employs continuous online training of single simultaneous recurrent net-
work (SRN). The SRN has feedback without any delay and it is the difference between
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Table 4. Transient energy (T.E.) differences

Generator
Uncompensated

PSS
PSS&WAC PSS&WAC PSS&WAC

T.E.(MJ) 0.5s delay 1s delay 1.5s delay
G1 51.47 26.86 19.77 19.44 22.00
G2 64.85 30.33 26.20 22.51 24.89

SRN and conventional recurrent network. From the results it is clear that WAC per-
formance without addition of PSS signal has not much better response. Nonetheless,
performance of WAC in combination with PSS is superior then local agents. The tran-
sient stability is greatly dependent upon the stored transient energy during fault. This
research work has calculated the difference between transient energies obtained in each
case and it has depicted pretty better picture of WAC success, shown in Table 4. Another
reference [72] has implemented HDP-based ACD neurocontrol for WAC and again results
have demonstrated that WAC along with local agent (PSS) has given better performance
than only either local or uncompensated system. The ANN architectural detail is given
in Table 3.

10. Proposed Techniques.

10.1. Ensemble of ANN. The above discussion shows that efforts have been made by
a number of researchers to enhance transient stability of power system and have achieved
tremendous improvement either by applying indirect adaptive control or by adaptive critic
design based neurocontrol or neuro-fuzzy control. The works can be classified into two
classes; either online adaptation of weights or offline optimization of a predefined objective
function. It is very vivid from the scenario that no author in purely ANN-based control
has utilized well-generalized neurocontroller. A well-generalized neurocontroller learns
training patterns appropriately. The advantage of generalization is model free estimation
of control signal, does not require continuous online training and keeps the control loop
simpler. This is the well established fact that simpler control loop results more reliable
and more robust control. Moreover, it is one of many requirements for successful running
of power system.
There are two types of generalization, one is local generalization and other is known

as non-local generalization. Local generalization can be achieved by any type of training.
However, the non-local generalization cannot be achieved by using any training stopping
criterion. Alternatively it is difficult to achieve. The extent of generalizing training
patterns is highly sensitive to training stopping criteria of ANN. There are various criteria
resulting in non-local generalization and have been successfully applied in field of digital
signal processing, e.g., use of validation set besides use of training and testing sets to train
ANN. Moreover, in ANN literature, it is reported that ensemble learning methodology
has generated better generalized ANN and has always outperformed single best ANN [74].
An Ensemble of ANNs can be used to achieve non-local generalization capability.
The authors have carried out preliminary work on application of ensemble-neurocontroll-

er for synchronous generator excitation system performance enhancement. Single machine
infinite bus system has been considered to investigate application of well-generalized neu-
rocontroller. The excitation model AC4A has been considered here and is as per IEEE
2005 recommendation [75]. The power system model considered in this work is as shown
in Figure 5. The parameters of generator are given in Table 5. X ′

d is the subtransient
direct axis reactance, X ′

q is the subtransient quadtratur axis reactance, T is time constant,
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(′′) indicates transient and K is a constant. The conventional controller used to control
excitation system was proportional and integrator (PI) controller.

Figure 5. Single-generator infinite-bus model

Table 5. Synchronous generator parameters

Xd 1.83 Xq 1.7 RStator 0.003
X ′

d 0.24 X ′
q 0.43 Inertia 3.6

X ′′
d 0.20 X ′′

q 0.26 Hz 50
T ′
d 0.3s T ′′

d 0.04s T ′′
q 0.03s

Simulation of the model has been carried out on Matlab/Simulink with 13.8 KV, 300
MW, 50 Hz generator. PI-controller (Conv) has been tuned at load (0.051+ j0.024)Ω. A
Multi Layer Perceptron (MLP) is the most commonly used feedforward network and has
been used in this research work. The MLP has been trained on terminal voltage deviation
from reference voltage, i.e., ANN Input = VREF − VT . Data generation for training of
MLP has been tried at different sampling rates. The minimum error is obtained at 200 Hz.
In this work, generated data have been divided into three sets; training, validation and
testing in 4:2:4 ratios. To produce well-generalized MLP, validation criterion has been used
to stop MLP training. Training of MLP has been carried out by using well-known learning
algorithm, i.e., Levenberg-Marquardt error backpropagation (LM). Four MLPs, having
lesser mean-square-error, have been selected to ensemble. Number of MLPs in ensemble
has been chosen heuristically. These four MLPs have 7, 9, 10 and 12 hidden-layer neurons.
However, least error is achieved at hidden layer size of nine neurons and it is named best
MLP. MLPs with different hidden-layer size are selected not only because of lesser error
but this also fulfills diversity requirement among neural networks for better performance of
ensemble-MLP. The output of ensemble-MLP is average of all MLPs output and thus has
increased predicting capability of MLP. The ensemble-neurocontroller replaces PI-AVR
part of generator excitation system.

Figures 6 and 7 show the performance comparison of conventional controller (Conv),
best-MLP named neurocontroller (NC) and ensemble-MLP called ensemble-neurocontroll-
er (Ensemble-NC). The comparison has been carried out on basis of generator terminal-
voltage and generator load-angle attending steady-state value after fault simulation. The
performance of NC is superior to Conv but inferior to Ensemble-NC. This justifies the-
oretical explanation about better performance of ensemble neural network. This proves
the fact that higher generalization capability results better performance.

Similar analysis has been carried out at higher load condition to analyze non-linear
performance of the controllers. In Figures 8 and 9, non-linear capability of the controllers
is depicted. At higher load of (0.007+j0.004)Ω, 90ms fault has been simulated at generator
terminals. Both figures vividly show dominance of Ensemble-NC over NC as well as
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Figure 6. Terminal voltage; 60ms fault at (0.051 + j0.024)Ω load

Conv. The perfomance of Conv has detoriorated more as the system moved away from
its controller-tuned position. The figures show that generator, when mounting Conv has
become unstable at higher load conditions. Nonetheless, both types of neurocontrollers
have kept the system stable still. Performance of Ensemble-NC is even better than NC,
it has attended steady-state value earlier to NC.
As this work is preliminary, selecting the number of ANNs and also selection of every

ANN has been done heuristically. There are systematic approaches available to select
the number of ANN in constructing an ensemble and which ANN is to be included in
ensemble-ANNs. Additionally, diversity among ANNs in an ensemble plays an important
role in increasing efficiency. There are different approaches available to produce diverse
neural networks. Random-weights-initialization is most inferior among all and has been
used in this research. Training of ANNs using different algorithms, changing architecture
of ANNs, training of individual networks on different data sets and use of bio-inspired
optimization algorithms are other commonly used methods to produce diverse ANNs to
ensemble. Hence, authors are optimistic about even better results of their future work.

10.2. ANN initialization. The convergence time taken by ANN greatly relies on the
initial weights and biases of ANN. If weight initialization does not support the global
optimum point on the error surface then the ANN will take longer time to converge and
even it is hard to deny that ANN would diverge. The literature review suggested that
every researcher has used small-random weight initialization. On the other hand, ANN
literature suggested different systematic algorithms to initialize ANN with guaranteed
convergence. Application of these algorithms not only increases the rate of convergence
but also eliminates the risk of divergence. [76] has proposed a technique for initialization
of weights and has claimed that the technique considerably reduces training burden of
neural networks. A systematic weight initialization is particularly suitable for online
training to reduce online training burden and to avert divergence during commissioning
phase of plant.

10.3. Bio-inspired optimization algorithms. The study has revealed that optimiza-
tion of either PSS parameters or ANN weights or FL membership functions is carried out
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Figure 7. Load angle behavior; 60ms fault at (0.051 + j0.024)Ω load

Figure 8. Terminal voltage; 90ms fault at (0.007 + j0.004)Ω load

using genetic algorithm, in this field of research. However, it is now well-developed that ge-
netic algorithm is an inferior element of evolutionary optimization algorithms. Differential
Evolution (DE), an element of evolutionary optimization algorithm class has performed
better than GA in a number of optimization problems. Additionally swarm intelligence,
a class of optimization algorithm using intelligence of different natural swarms to solve
various problems, has outperformed evolution-based optimization algorithms. Therefore,
authors are very positive of better performance if swarm optimization algorithms are
used instead of genetic algorithm for optimization of the parameters. Authors propose
application of Artificial Bee Colony (ABC) [77], a member of swarm intelligence-based
optimization algorithm. ABC has proved it dominance over a number of bio-inspired
optimization algorithms on various problems and would yield better results in the field.
The ABC has lesser control variables to tune for better efficiency as compare to any other
optimization algorithms.
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Figure 9. Load angle behavior; 90ms fault at (0.007 + j0.004)Ω load

10.4. Dynamic ANN. Another striking fact to be noted is that the discussed field has
not yet fully utilized the benefits of dynamic ANN. The field of dynamic ANN is more
developed nowadays in comparison to the last few decades. There are training algorithms
and simpler topologies for these ANNs, retaining all power-full features of conventional
dynamic ANN but require minimal effort to train. The typical example of successful story
of dynamical ANN can be found in [42]. The reference has compared dynamic ANN with
static ANN and proved that dynamic ANN has capability to perform better than static
ANN.

11. Conclusion. MLP trained on deviation signal performs better than RBF. However,
when training is carried out using actual signals, RBF’s performance is better than MLP.
The performance of bio-inspired optimization algorithms depends highly upon fitness
function knowledge. Incorporation of the system dynamics into the fitness function of
bio-inspired optimization algorithms enhances the quality of output. Dynamic heuris-
tic programming ACD has a tendency to produce better results than heuristic dynamic
programming ACD. ACD-based neurocontrol performs better than indirect adaptive neu-
rocontrol. The performance of power system is enhanced by using local-agents and wide-
area-control simultaneously. Wide-area-control alone does not enhance power system per-
formance. The preliminary results have revealed ensemble-neurocontroller has performed
better than conventional controller, reduces computational burden and have simpler con-
trol loop.
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