
International Journal of Innovative
Computing, Information and Control ICIC International c©2013 ISSN 1349-4198
Volume 9, Number 3, March 2013 pp. 915–938

COLLABORATIVE DIAGNOSIS AND COMPENSATION
OF MISBEHAVING NODES IN ACYCLIC CONSENSUS

NETWORKS: ANALYSIS AND ALGORITHMS

Gianfranco Parlangeli

Dipartimento di Ingegneria dell’Innovazione
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Abstract. In this paper the problem of intrusion diagnosis and compensation for a col-
laborative networked system with acyclic communication graph is considered. The main
novel contributions of the paper are two: (a – monitoring set selection) provide necessary
and sufficient conditions for the selection of a subset of monitoring nodes and (b – di-
agnostic and compensation algorithms) provide a diagnostic algorithm to select, exclude
and compensate for a misbehaving node within the network based on a collaboration be-
tween the chosen monitoring nodes. The proposed solution has a collaborative multinode
architecture with precise and easy instructions for each node of the monitoring network.
Computational issues are investigated and the adaptation of the diagnostic algorithm in
the presence of bounded uncertainties is analyzed. Simulations are made in order to val-
idate theoretical results.
Keywords: Fault diagnosis and compensation, Multi-agent systems, Consensus net-
works

1. Introduction. In the last decade a significant thrust of research has been devoted
to the analysis of dynamical systems over graphs and their applications in robotics and
distributed estimation. An important class of problems within this area is the agreement
or consensus problem (see, e.g., [1, 2, 3] and references therein). In view of the Motivations
reported below, the topic of this paper is a research on collaborative strategies between
a selected subset of nodes in order to attain the ability of an automatic reaction to an
intrusion/fault, as stated more formally in the next Objective of the Research and Problem
Statement sections.

1.1. Motivations. An important issue of such systems is the standing assumption that
each agent behaves according to the consensus protocol. This is a venturous assumption
because, if any of the agents injects exogenous values (maliciously or as a consequence of
a fault), then this agent can drive the evolution of the group arbitrarily.

This is a classical problem in Computer Science [4] and it is becoming more and more
popular in many other application areas of multi-agent systems. A fundamental peculiar-
ity of the solution for the classical problem is that a single node performs the intrusion
detection task based on locally collected data only. A direct consequence of this approach
is that a node running a diagnostic algorithm should have sufficient logical redundancy
of its local data to infer the presence of an intruder, and this implies a condition on the
network vertex connectivity [4, 5, 6]. One straight consequence of these results is that,
if the communication network has connectivity less than 3, then any single node cannot
infer from local data the presence of a single misbehaving node in the network. This

915



916 G. PARLANGELI

result has a strong negative impact for low-connectivity networks. Indeed, it proves that
monitoring the network from any single node is useless because any single misbehaving
node can drive a consensus network without being detected.
On the other hand, low-connectivity communication graphs are useful in various ap-

plications. From a practical point of view, as claimed in [7], ‘low-connectivity and full-
coverage WSNs have many real-world applications’. Indeed, such graphs can be associated
to the minimal amount of power consumption for each node in WSN applications or to the
maximal spreading of mobile agents for multi-robot applications. Energy consumption is
one major issue of WSN [8], so these networks are often designed with sparse graphs.

1.2. Literature review. As far as the consensus problem is concerned, the basic prob-
lem is the task of reaching a consensus on a common value of the desired quantity by
performing local computation and exchanging local information [2, 3]. Many important
applications in multi-agent systems or distributed computing can be reduced to a consen-
sus problem, such as network synchronization [9], robot rendez-vous [10] and many others
[11].
The problem of intrusion detection is a classical issue in the area of distributed comput-

ing [4, 12] and in the last years this problem has been considered in the control systems
community [5, 6]. In these papers, a single node makes all the elaboration and takes
the decision on the basis of its own local data, and these results do not apply for low-
connectivity networks. Fault diagnosis and compensation applications in the framework
of multi-agent and distributed systems have been recently studied in [13, 14].
Recently, research on distributed and cooperative IDS is an active research field in the

mobile ad-hoc networks community and it is recognized as a major challenge by several
authors [15, 16, 17]. This research objective is becoming more and more popular also for
Internet (see, e.g., [18, 19]) using peer-to-peer architectures.
We now review some recent results on the importance of low-connectivity networks for

a variety of practical applications. In [20], the importance of sparse network deployments
in multi-agent underwater missions is stressed and this, associated to the unaccessibility
of the environment, calls for the design of ‘disruption-tolerant networks (DTNs)’. The
problem of Maritime Communications System has also been considered in [21]. Low-
connectivity network design is a fundamental problem also in the practical design of
telecommunication networks [22]. In [22], the author focuses on the design of graphs with
node degree less or equal than two. Finally, acyclic graphs have been recently considered
for a study on controllability [23].

1.3. Objective of the research. In view of the important applications of low-connectiv-
ity networks, the main motivation of this paper is a research on collaborative multinode de-
tection systems. The most ambitious objective of this work is to overcome the limitations
of the small amount of redundancy available to every single node of a low-connectivity
network by the use of collaborative multinode diagnostic strategies. This is an important
step toward novel solutions of practical interest for the Intrusion Detection Problem in
modern networks [15, 16, 17].
In this paper we start this investigation considering a special class of 1-connected graphs,

namely acyclic graphs. The main objectives of the paper are two: (a) to deduce necessary
and sufficient conditions to select a subset of nodes in order to collect sufficient information
on system evolution to unambiguously infer the presence of a misbehaving node and (b) to
find a diagnostic algorithm to select and exclude the misbehaving node using the minimal
amount of shared data. Furthermore, a compensation of the effects of the intruder on the
objective function is performed to restore an unbiased consensus value. Some preliminary
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results on point (a) relative to a restricted class of the systems here considered, namely
nearest-neighbor average consensus networks, are presented in [24].

Though the setting of this paper is rather theoretical, one of the most important goals
is to provide guidelines for collaborative IDS design that can be easily (and effectively)
implemented in practice. We discuss on the ease and convenience of its use, especially
focusing on: (a) the distinction between the off-line and on-line computation, and (b)
the difference between local data/computation and data/computation to share between
monitoring nodes (a goal is to minimize the amount of shared data). An additional goal
is to derive algorithms requiring computationally low on-line elaboration because they
should be run by nodes with reduced computational capability in practical applications.

1.4. Notation and preliminaries from graph theory. The paper is organized as
follows. In Section 2, the basics of consensus networks and some definitions are given
in order to set the problem properly. Section 3 is the main section on node selection.
After some technical algebraic results, easy instructions on how to choose a complete set
of monitoring nodes are given. Section 4 is the main section on diagnostic algorithms.
In this section the algorithms for detection and isolation are thoroughly investigated and
a decentralized, directly implementable algorithm is given at the end of each subsection.
Section 5 describes the compensation of the bias induced by the misbehaving node. In
Section 6, some implementation issues are discussed and simulation results are shown.
Section 7 concludes the paper with a brief summary and some considerations on future
research activity on this topic.

In the following, we denote 0d the vector of dimension d with zero components and
0d1×d2 the matrix with d1 rows and d2 columns with zero entries. Given a vector v ∈ Rn,
we denote with (v)` the `-th component of v. In represents the n × n identity matrix,
finally, ei, i ∈ N, denotes the i-th element of the canonical basis, e.g., e1 = [1 0 . . . 0]T .
Vector 1 is the vector (of suitable dimension) with each component equal to 1.

A brief summary of notations and definitions of graph theory follows. The interested
reader can consider books in graph theory for details (e.g., [25, 26]).

A graph G is an ordered pair G = (V , E), where V = {1, 2, . . . n} is the set of vertices
and E = {(i, j)|i is connected to j} represents an edge set. Two vertices i and j such
that (i, j) ∈ E are said to be adjacent or neighbors; the set of neighbors of a node i is
denoted Ni (i.e., Ni = {j ∈ V : (i, j) ∈ E}) and the number of neighbors |Ni| is called
degree of node i and it is also denoted with di; the degree matrix D is a diagonal matrix
whose diagonal entries are each node degree D = diag{di}. An effective algebraic tool
representing the elements of E is the adjacency matrix A whose (boolean) entries are
[A]ij = 1 if (i, j) ∈ E , 0 otherwise.

We introduce some special graphs that will be of interest in the rest of the paper.
A tree is a graph in which any two vertices are connected by exactly one simple path.
The vertices of a tree having degree one are called leaves. A path graph is a special tree
containing only nodes of degree two except for the (two) leaves of degree one. For the
sake of brevity, we will denote a path graph of length n with Pn (and labels 1 and n refer
to the two leaves).

A cycle of a graph is a subset of the edge set that forms a path such that the first node
of the path corresponds to the last. A graph containing no cycles of any length is known
as an acyclic graph, whereas a graph containing at least one cycle is called a cyclic graph.
A connected acyclic graph is a tree, and a disconnected acyclic graph is called a forest.

Considering a tree graph, every two nodes i and j can be connected by exactly one
path; we call the distance between i and j the number of edges that constitute this path
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(independently from the weight associated to each edge) and it is denoted as d(i, j) in the
following.
The eccentricity of a vertex v is the greatest distance between v and any other vertex

ev = maxu∈V d(v, u). It can be thought of how far a node is from the most distant node
in the graph. The radius of a graph is the minimum eccentricity of a graph, and the
diameter of a graph is the maximum eccentricity of the graph, i.e., it is the greatest
distance between any pair of vertices.

2. Collaborative Networked Systems: Dynamic Model. Following the mathemat-
ical set-up described in [2], in this work we consider a group of n discrete-time agents
following the dynamics xi(t + 1) = xi(t) + ui(t). Each agent can communicate with a
subset of other agents (its neighbors). The evolution of the whole group can be effectively
described using a graph G = (V , E) where the vertex set V = {1, . . . , n} is associated to
a labeling of each single agent xi and the edge set E = {(i, j)|i can communicate with j}
describes compactly the communication between agents.
Adopting the notation of [23], each collaborative agent chooses its input according to

a general distributed consensus algorithm:

ui(t) =
∑
j∈Ni

lij(xj(t)− xi(t)). (1)

If each agent behaves according to (1), then the evolution of the group can be compactly
written using an aggregated state x = [x1 x2 . . . xn]

T :

x(t+ 1) = Ax(t), A = (I − L̃) (2)

where L̃ is called the generalized Laplacian (or weighted Laplacian) of the graph G:

(L̃)ij =

{
−lij, if i 6= j∑n

j=1,j 6=i lij, if i = j
(3)

where lij > 0 is a positive weight if (i, j) ∈ E and lij = 0 if (i, j) /∈ E.

The state matrix A = (I − L̃) in (2) is a structured matrix with some interest-
ing properties, e.g., if each row-sum of the non-diagonal weights is less than 1 (i.e.,
maxi(

∑
j 6=i lij) < 1) and if the graph is connected then it is a matrix with a simple

eigenvalue in 1 and all the other eigenvalues are inside the unit circle. In the following we
assume that all weights are chosen according to this rule. A first important consequence
of it is that, if every node fairly chooses its input according to (1), system evolution
asymptotically converges (or, equivalently, reaches a consensus) to a linear function of

the initial state f(x0) =
γTx0

γT1
where γ is the eigenvector of AT corresponding to the

eigenvalue 1 [2].

A specific function of wide interest for its practical applications is f(x0) =

∑n
i=1(x0)i
n

;

the necessary and sufficient condition to achieve a consensus on this value is to choose
weights lij in (1) such that

∑
j 6=i lij =

∑
j 6=i lji for all i, j. We will refer to this framework

as the average consensus.
Consider now the presence of an agent who does not behave according to the control

law (1); this can be modeled by

ui(t) =
∑
j∈Ni

−lij(xi(t)− xj(t)) + ūi(t) (4)

for some nonzero ūi(t). We call such node a misbehaving node.
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The impact of the presence of an intruder even for few instants can be dramatic on the
control objectives. If the intruder action is persistent then consensus cannot be reached,
in any case (even for a single impulse of exogenous injection) the consensus value deviates

from f(x0) =
γTx0

γT1
to

f(x0, ū(·)) =
γTx0 + (γ)j

∑
τs.t.ū(τ)6=0 ū(τ)

γT1
(5)

(f(x0, ū(·))) =
∑n

τ=1(x0)i +
∑

τs.t.ū(τ) 6=0 ū(τ)

n
in the special case of average consensus). An

important straight consequence of (5) is that, even if an intruder is located and excluded,
a bias on the final value of the objective function is persistent.

The objective of this work is to design a multinode algorithm to counteract against
this phenomenon. In the development of the algorithm, we distinguish between local
elaboration, i.e., all the elaboration that each monitoring node can do using its own
data, and global information or shared information. Our goal is to design an effective
diagnostic elaboration using the minimal amount of global information. The technology
for the communication between monitoring nodes is not investigated in the present paper.
This aspect is in fact more pertinent to a specific application. However, the focus of the
paper is to deduce the minimal amount of information to share in order to have a complete
diagnosis.

We assume that a set of nodes Io = {io1 , io2 , . . . , ios} can share information for diag-
nostic purposes. We call this set the set of monitoring nodes. Each monitoring node
can access to its own value at each time instant, y1(t) = xio1

(t) = eTio1x(t), y2(t) =

xio2
(t) = eTio2x(t), . . . ys(t) = xios (t) = eTiosx(t). Thus, from a mathematical point of

view the problem is to infer the presence of some nonzero exogenous ui(t) from data
y1(t), y2(t), . . . , ys(t). More formally, given the structured state space model:

x(t+ 1) = Ax(t) +Buj(t), A = (I − L̃), B = ej (6)

y(t) = Cx(t) C =

e
T
io1
...

eTios

 (7)

decide if the evolution y(t) of the system is driven by a nonzero uj(τ), τ ≤ t based on the
sequence of data y(0), . . . , y(t) without knowing x(0), uj(t) and j (and hence B).

2.1. Diagnosis of a misbehaving node: intrusion detection, isolation, identi-
fication. In this subsection we introduce definitions and concepts of the classical fault
diagnosis literature, ranging from computer science to process automation, to properly
state the problem.

• Intrusion detection is the ability of the diagnostic system to infer from data the
presence of an intruder within the network. Usually the output of a detection system
is a boolean signal σ ∈ {yes, no}. A related important parameter is the intrusion
detection time, td, that is the time period elapsed from the first time the intruder
injects a nonzero input to the detection instant. It expresses how long an intruder
can corrupt data within the network before an alert can be given.

• Intrusion isolation or intruder localization is the capability of revealing the index
of the intruder node. This is a step of great importance in the area of cooperative
multi-agent systems or distributed computing because it allows the exclusion of the
intruder from collaboration.
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• Intrusion identification is the estimation of the non-null values injected by the in-
truder. This step is not strictly necessary in an intrusion diagnostic system (the
isolation of the intruder allows the exclusion of the misbehaving node from the col-
laborative scenario) but it is useful to data correction without restarting the system
or, in general, to counteract against the intrusion effects.

Problem Statement: Given a networked system described by Equations (6) and
(7) potentially subject to the presence of an intruder, the problem we aim at solving is
threefold:

• (Monitoring node selection) Find conditions to select a suitable set of monitoring
nodes Io = {io1 , io2 , . . . , ios} such that the problem of intrusion detection and isola-
tion has a unique solution for any input uj(t).

• (Fault diagnostic algorithms) Find collaborative operations between the chosen mon-
itoring nodes to effectively perform a complete diagnosis. It is assumed that the
elements of the set of monitoring nodes Io = {io1 , io2 , . . . , ios} can share diagnostic
information between themselves.

• (Fault compensation action) Find a decentralized collaborative fault compensation
strategy from a subset of monitoring nodes to effectively react against the effects of
the fault on system performances.

3. Intrusion Detection System Design: Selection of Monitoring Nodes. In this
section we make a theoretical investigation aimed at obtaining clear guidelines to properly
select the set of monitoring nodes. The goal of this investigation is to find an appropriate
subset of nodes such that the evolution of such nodes consequent to any nonzero input
cannot coincide with any free response of the system. From a theoretical perspective, an
appropriate set of monitoring nodes must satisfy this condition because only under this
condition the presence of an intruder leaves a unambiguous ‘footprint’ (the so called ‘fault
signature’) on the data available for diagnosis. So, only under this condition it is possible
to find algorithms useful to extract diagnostic information from such data. This condition
has been widely exploited for a single-node monitoring in [5, 6]. An effective tool to cope
with the intrusion diagnosis is the strong observability.

Definition 3.1. [27] A strictly proper LTI system Σ = (A,B,C) described by the equa-
tions x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) is strongly observable if y(t) = 0 ∀t > 0
implies x(t) = 0 ∀t > 0.

We now report a statement resuming the main properties of strongly observable systems
(see [5, 27]).

Theorem 3.1. The following statements are equivalent:

• rank


C 0 . . . 0
CA CB 0
...

...
. . .

...
CAn−1 CAn−2B . . . CB

 = n + rank

 CB 0
...

. . .
...

CAn−2B . . . CB

, i.e.,

the column space of the observability matrix is full and linearly independent from the
forced response matrix.

• System Σ = (A,B,C) has no finite invariant zeros, i.e., system matrix

P (z) =

[
zI − A −B

C 0p×m

]
has full rank ∀z ∈ C.

• System Σ = (A,B,C) is strongly observable.
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The proof of the main result of this section is quite involved. A first step toward this
goal is to fix a precise vertex labeling rule:

1. Start labeling from any two leaves of the tree (taking one of them as starting node
and the other as ending node), thus labeling trimly one path (say, P1) of the tree.

2. If there are unlabeled nodes (i.e., if the graph G is larger than the path P1), continue
labeling a second path (say P2) from a starting node adjacent to P1 to an ending
node on any leaf not already labeled. Repeat for all paths (say, P3, . . . , Pp1) that
have one ending point on P1.

3. If there are other unlabeled nodes, then continue labeling according to point (2)
applied to P2, . . . , Pp1 instead of P1. Follow on until all nodes are labeled.

Just for example, consider the graph of the Simulation Results (Figure 3) where we
applied the above procedure. We started labeling from the left, thus we labeled the path
joining two leaves (nodes 1 and 7 in Figure 3) of the tree according to the indications in
point 1. Then, according to point 2, we labeled a second path from node 8 to 11 and
finally a third path from 12 to 15.

The above labeling procedure is useful to exploit the structure of the graphs of interest
in the paper. According to the labeling rule described above, the (polynomial) matrix
zI − A has the structure

zI − A =



P1(z) Λ12 . . . Λ1,p1 0 . . .
Λ21 P2(z) 0 . . . 0 Λ2,p1+1 . . .
...

. . .
Λp1,1 0
0 Λp1+1,2
...

...


, (8)

where each Pi(z) is a tridiagonal polynomial matrix with structure:

Pi(z) =



z − li1,i1 li1+1,i1 0 . . . 0
li1,i1+1 z − li1+1,i1+1 li1+2,i1+1 . . . 0

...
. . . . . .

li1+ni,i1−1+ni

0 li1−1+ni,i1+ni
z − li1+ni,i1+ni


and Λ`k, representing the connection between two adjacent paths P` and Pk, is equal to
Λ`k = l`ke1e

T
jx, jx being the position of the junction node in P`. The presence of vector

e1 is a consequence of the labeling procedure, because the first node of an added path
is always the next label of the last node of the previous path. Finally, notice also that
1
l`k
Λ`k =

1
lk`
ΛT

k` (i.e., Λ`k and ΛT
k` have zero entries in the same positions).

The class of graphs here considered, namely connected acyclic graphs, is easily captured
with this labeling. Indeed, any column block of the upper part has only one nonzero Λ
submatrix and the other blocks of any column are zero (equivalently, each row-block in
the lower part has only one nonzero element).

We split the main result of this section into two for the sake of readability. Here a
technical lemma proves that if a monitoring set includes all the leaves then no undetected
misbehaving node can act inside the network.

Lemma 3.1. Given a distributed collaborative multi-agent system described by Equation
(2), a misbehaving node j is detectable for any input if all the leaves are nodes of the
monitoring set.
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Proof: We study the strong observability of the system assuming without loss of
generality that a misbehaving node j lies along P1. According to Theorem 3.1, we directly
compute system zeros when all the monitoring nodes are the leaves of the communication
graph. Consider

P (z) =


zI − A −ej eTio1

...
eTios

 0p×m


so P (z) has full rank if and only if its columns are linearly independent ∀z ∈ C. According
to the structure of zI−A described in (8) and considering that the columns corresponding
to the 1’s of the output or input matrices are surely linearly independent from the others,
then it is easy to see that rank[P (z)] = 1 + s+ rank[P̃ (z)] ∀z ∈ C where

P̃ (z) =



P1,j−1(z)

0
...
0

lj,j−1

0 Λ̃12 . . . 0

0

lj,j+1

0
...
0

P1,n−j(z) Λ̂12 . . .

Λ̃21 Λ̂21 P2(z)

Λ̃31 Λ̂31 0 P3(z)
...

...
. . .

Ps(z)



,

P1,j−1(z) (respectively Pk(z)) is matrix P1(z) after deletion of the first column (resp.,
the matrix Pk(z) after deletion of its last column), i.e.,

P1,j−1(z) =


l12 0 . . .

z − l22 l23 . . .

l32
. . . . . .

...
0 . . . z − lj−1,j−1

, Pk(z) =


z − lk1,k1 lk1+1,k1 0 . . .
lk1,k1+1 . . .

0
. . .

... z − lini−1

lini


and Λ̂12 Λ̃21 are obtained splitting the Λ12 matrix along the j-th row (notice that only one

between Λ̂12 or Λ̃21 can be nonzero, they can be both the zero matrix if the misbehaving
node j is a junction node).
In order to prove the full rank of matrix P̃ (z), we show that the only linear combination

of its columns producing the zero vector is the zero combination, thus proving their linear
independence.
Consider a vector v partitioned according to the partition of P̃ (z) (i.e., v = [v1 v2 . . .

vs]
T , where the dimension of each vi equals the dimension of each Pi(z)). In order to

impose P̃ (z)v = 0, we start from the last row-block Λ`sv` + Ps(z)vs = 0. Since Λ`sv` =
l`se1e

T
jxv` = (l`s(v`)jx)e1, ` being the labeling of the (unique) path joined to Ps, the
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previous relation can be put into a more compact form:

[
l`se1 Ps(z)

] [(v`)jx
vs

]
=



l`s z − ls,s ls,s+1 0 . . .
0 ls+1,s z − ls+1,s+1 ls+1,s+2 0 . . .

0

0
. . .

... z − lsns ,sns−1

lsns ,sns


[
(v`)jx
vs

]
=

0...
0



(9)
and it is easily seen that the matrix on the left is a unimodular square triangular matrix
with all diagonal entries equal to nonzero constant entries, so it is always nonsingular.

Thus the only solution is

[
(v`)jx
vs

]
=

0...
0

 for any z ∈ C.

Going backwards by induction, focusing on a general k-th row-block and considering
that vs, vs−1, . . . , vk+1 are zero vectors of suitable dimensions, one still finds an equation
that is formally equal to (9) (because the Λ matrices on the right of P`(z) multiply zero
coefficients and there is at most one nonzero Λ on the left of P`(z) as a consequence of
the acyclic structure of the graph).

Last equation to consider is

P1,j−1(z)

0
...
0

lj,j−1

[
v1
v2

]
=

0...
0

 and following the above ar-

gumentations it is easily seen that the matrix on the left is a unimodular square triangular
matrix with all diagonal entries equal to nonzero constants, so it is always nonsingular.
Thus the only set of column combinators of P̃ (z) to have the zero vector is the zero

combination, this implying that the system (A, ej,

 eTio1
...

eTios

) has no finite zeros for any

j ∈ {1, . . . , n}.
Finally, we prove that this condition is also necessary, thus proving the equivalence

(necessary and sufficient) condition in the statement.

Theorem 3.2. A system running a distributed cooperative control described by Equations
(1)-(3) subject to the presence of a misbehaving node (4) and with a set of monitoring
nodes Io = {io1 , io2 , . . . , ios} has no finite invariant zeros if and only if all the leaves of
the communication graph are nodes of the monitoring set.

Proof: According to Lemma 3.1 if all the leaves are monitoring nodes, then the system
has no finite zeros. We now show that if a leaf node (say, i1) is not a monitoring node
then there are finite zeros.

Suppose without loss of generality that i1 is a leaf on a path, say P1, of the tree and
it is not a monitoring node. Take now the intruder node equal to the a monitoring node
on P1 (j = io1) if there are a monitoring nodes on P1, a junction node of P1 otherwise.
Following the same lines of the proof of Lemma 3.1, the s columns corresponding to the
1’s of the last rows are linearly independent.

rank(P (z)) = s+ 1 + rank

([
P1(z) 0
0 P2(z)

])
,
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where P1(z) =


z − l11 l12 . . . 0
l21 z − l22 0
... lj−2,j−1

0 lj−1,j−2 z − lj−1,j−1

 and P2(z) is a suitable polyno-

mial matrix.
Now, matrix P1(z) ∈ R[z](j−1)×(j−1) has the form of P1(z) = zI−P1, P1 a real constant

square matrix, and so it is rank deficient for all z∗ ∈ C such that det[P1(z
∗)] = 0, i.e., for

all the eigenvalues matrix P1. This implies that at least j − 1 invariant zeros are present,
thus proving the statement.

Remark 3.1. Notice that, even if the result of Theorem 3.2 is rather technical, its con-
sequences have a strong practical importance. It basically states that a subset of nodes
collects sufficiently rich data on system evolution to infer the presence of an intruder if
and only if it contains all the leaves of the graph.

4. Design of the Diagnostic Algorithms. In this section the basics of the proposed
diagnostic algorithm are posed. First notice that an equivalent tool to describe the dy-
namic relation between the intruder and each monitoring node is the an Auto Regressive
Moving Average (ARMA) model:

AR(y`(t)) = MAj(u(t)) where (10)

AR(y`(t)) = y`(t) + a1y`(t− 1) + · · ·+ any`(t− n)

MAj(u(t)) = b1u(t− δ`j) + b2u(t− δ`j − 1) + . . .

where the delay between a nonzero input and the corresponding output δ`j only depends
on the distance between the two nodes δ`j = d(`, j)+1 while weights in (1) li,j are related
with the coefficients ai, bi.
There is a strict connection between the ARMA model (10) and the state space model

(6). By example, coefficients ai, bi in (10) are the same of the coefficients of the polyno-
mials of the transfer function. Finally, notice that the structure of the AR(·) elaboration
(i.e., its coefficients) does not depend on the specific input or output node and that the
AR(·) elaboration requires n data, so it can be computed at t ≥ n.
We briefly summarize the notation of the time events of interest in this paper.
We denote with tf , td, ti, tR respectively the fault instant (i.e., the very first time a

node injects a nonzero exogenous value), detection time, isolation (location) time and
reconfiguration time.

4.1. Algorithm for the detection of an anomaly. In this subsection we give a careful
insight on system behavior and we exploit the intruder signature on the evolution of
the monitoring nodes. The signal available to each monitoring node ioi ∈ I0 equals
yoi(t) = CoiA

tx0 + CoiA
t−tfeju(tf ) + . . ., so a first important step is to filter out the free

evolution from yoi(t).

Proposition 4.1. The autoregressive elaboration AR(y`(t)) of the data collected from any
output node is zero if data are coherent with an evolution without intruders.

Proof: Consider the evolution of the system with no intruders, x(t) = Atx0. Data
collected from any output node ` ∈ I0 can be written y` = C`x(t) = C`A

tx0. Then

AR(y`(t)) = y`(t+ n) + a1y`(t+ n− 1) + . . .+ an−1y`(t+ 1) + any`(t) =

= C`A
t+nx0 + a1C`A

t+n−1x0 + . . .+ an−1C`A
t+1x0 + anC`A

tx0 =

= C`A
t(An + a1A

n−1 + . . .+ an−1A
1 + anIn)x0 = 0 ∀x0 ∈ Rn
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where the matrix in the parentheses is the zero matrix according to the Cayley-Hamilton
theorem [28].

The above result is interesting because it shows that the AR(·) elaboration is useful to
filter out the free evolution of the system without a large amount of computation. It only
requires a linear combination of the collected data.

Remark 4.1. Notice that the AR(·) elaboration requires n data, so this elaboration on
local data can be performed for t ≥ n, otherwise more collaboration between the monitoring
nodes is required (see Section 5.3). The latter analysis is not of interest here because the
only difference of results is about the maximal detection time (see Remark 4.3) but it
requires more shared data between monitoring nodes so, from the author’s point of view,
this choice has more drawbacks than benefits. A detailed description and comment on this
aspect is reported in Section 5.3.

If condition AR(y`(t)) = 0 is verified at any t ≥ n, it is likely that no intruder is
present, but a deeper investigation is useful to have an insight on this diagnostic tool.

Some results now follow on the opposite question: if AR(y(·)) = 0 then is it sure that
no intruder is present in the network? And: how often have we to test AR(y(·)) = 0 to
be sure that no intruders are present?

The importance of this investigation is both theoretical and practical. On the one hand,
this aspect received a scant attention in the distributed systems literature but it emerged
and it is widely analyzed and debated in the recent literature [5, 6]. On the other hand,
from a practical point of view, the importance is related to the question on how often the
algorithm should be run by each agent to avoid the worst malicious behavior.

Lemma 4.1. Let Σ = (A,B,C) be a state space representation of a SISO dynamic system
with m finite zeros. It is always possible to find a nonzero input causing a forced output
coherent with a free evolution and vanishing in the first n− 1 time instants.

Proof: The proof is constructive and an explicit input is built along the proof. A SISO
linear system can be described by the ARMA model (10), so AR(y(t)) = 0 holds if and
only if MA(u(t)) = 0. The latter equation is an homogeneous difference equation with
general solution

u(t) =
∑̀
i=1

µi−1∑
ν=1

ci,ν

(
t

ν

)
(ρi)

t−ν (11)

Choose now coefficients ci,ν in (11) such that u(0) = u(1) = . . . = u(m− 1) = 0 where
m = n − δ`j. Considering the causality from input to output and the output delay δ`j
in (10), this input forces a zero output in the first n − 1 steps and the output signal is
coherent with a free evolution because the input is a linear combination of system zeros.

Proposition 4.2. The monitoring algorithm AR(y`(t)) = 0, ` ∈ I0 is coherent with the
same set of initial conditions if and only if it is performed ∀t ≥ n.

Proof: The proof is performed via direct inspection. We first show that it is effective
if it is performed at each time step, then we show a counterexample if the monitoring test
AR(y`(t)) = 0, ` ∈ I0, is not applied in some time instants. Take a t̄ and assume that no
intruder has been present earlier, i.e., u(t̄− δ`j) = u(t̄− δ`j − 1) = . . . = 0.

At time t̄ + 1 the condition AR(y(t̄ + 1)) = 0 implies MA(u(t̄ + 1)) = 0 and, in turn,
0 = b1u(t̄− δ`j +1)+ b2u(t̄− δ`j)+ . . . = b1u(t̄− δ`j +1) ⇔ u(t̄− δ`j +1) = 0. Recursively,
using the same arguments, if AR(y(t̃)) = 0 is checked at every time t̃ ≥ t̄ then necessarily
u(t̃− δ`j) = 0 is satisfied.

Consider now the case that the test is performed at every time but at time t̄. Choosing
an input according to Lemma 4.1 starting from t̄ − δ`j, the evolution of the monitoring



926 G. PARLANGELI

nodes is coherent with a starting from evolution with some initial conditions x̃0 until time
t̄− 1 and with some others x̂0 from t̄+ 1. In this specific evolution, AR(y`(t)) = 0 holds
at each time t but t̄.

Remark 4.2 (FD Algorithm). Assume that each monitoring node has the capability to
give one binary information at one time instant. Each monitoring node ` has to share td`,
the first time the condition AR`(y(t)) = 0 is not satisfied, with the others. The detection
time of a non-collaborative behavior is detected at time td = min`∈I0 t`.

Remark 4.3 (Maximum detection time). Using the above detection logic, the detection
time of a misbehaving agent j is equal to minio∈I0 d(io, j). Maximum detection time, i.e.,
the greatest time interval an intruder can act within the network before an alert can be
given, is maxj∈V {minio∈I0 d(io, j)} and it is equal to the radius of the graph G if no fault
happens for t < n, or equal to n if a fault happens at t < n.
Notice that the radius of a graph is the theoretical lower bound of detection time (i.e.,

the best achievable). Indeed, before that time no one of the output data is influenced by
the exogenous signal so there is no possibility to infer the presence of a misbehaving node
before.

4.2. Localization of the misbehaving node. As soon as an anomalous behavior of the
system is detected, the major objective of a diagnostic device is the intrusion localization
to exclude the misbehaving node from collaboration.
The intrusion localization module is triggered by the detection module and it is based

on the set of time stamps of the detection signal from each monitoring node. Define
(locally computable) signals εi(t) = AR(yi(t)), i ∈ I0, and the associated quantities
tdi = mint≥0{t s.t. εi(t) 6= 0}.
We start from an easy basic result on the path graph.

Proposition 4.3. Let Pn be a path graph with n nodes and monitoring set Io = {1, n}.
The localization is solvable if and only if td1 and tdn are known and the estimation of the
intruder location is

î =
td1 − tdn + n+ 1

2
(12)

Proof: First notice from (10) that each tdi satisfies tdi = tf + d(i, j) + 1, where j
the position of the intruder. In a path graph the two distances are d(1, j) = j − 1 and
d(n, j) = n− j. Therefore, we obtain

td1 = tf + (j − 1) + 1; tdn = tf + n− j + 1.

These are two linearly independent relations in the unknowns tf and j, thus the solution
always exists as soon as td1 and tdn are known and its computation leads to (12).
In the general case of tree graphs, things are more involved. The following lemma is

useful to focus the correct localizability condition. Next, the main proposition of this
section explains how to catch this condition from data.

Lemma 4.2 (Localization condition). The intrusion isolation is solvable if and only if
there exist two monitoring nodes whose connection path includes the intruder node.

Proof: Denote with tf the fault instant, td1, td2 the detection instants of two monitoring
nodes io1, io2 and label with j a misbehaving node. Then, td1 = tf + d(j, io1) and td2 =
tf + d(j, io2). If node j does not lie along the path between io1 and io2 then there exists a
(junction) node ` such that d(j, io1) = d(j, `) + d(`, io1) and d(j, io2) = d(j, `) + d(`, io2).
Combining the two relations:

td1 = tf + d(j, `) + d(`, io1), td2 = tf + d(j, `) + d(`, io2).



COLLABORATIVE IDS FOR ACYCLIC CONSENSUS NETWORKS 927

It is easy to see that it is not possible to separate the unknown tf from d(j, `) (or,
equivalently, the two relations connecting the two unknowns to data are linearly depen-
dent) and this implies that the isolation problem cannot be solved with the knowledge of
td1 and td2.

On the other hand, if node j surely lies along the path between io1 and io2 then the
arguments in the proof of (4.3) hold and the localization problem is always possible,
leading to the solution (12).

Proposition 4.4. An intruder located at a node ` with degree δ can be unambiguously
isolated if and only if there are at least δ different tdi available from the set of monitoring
nodes, each one of these coming from one connected part of G − {`}.

Proof: To prove that a node, say node ‘κ’, of degree δ cannot be localized using less
than δ different tdi , i = 1, . . . , δ consider, without loss of generality, the special case of
δ = 3. Define the set of nodes Vio,k = {v ∈ V| the path joining v and io passes through k};
according to Lemma 4.2, a node k is localizable if and only if

∩
io∈I0 Vio,k = {k}. Now, if

only two tdi are available, say td1 and td2 , and remembering that κ has degree δ = 3, there
is at least one node adjacent to node κ belonging both to Vio1 ,k

and Vio2 ,k
. It follows that

Vio1 ,k
∩ Vio2 ,k

has at least two elements and so κ is not localizable. Conversely, if there is
at least one tdi available from one connected part of G − {κ}, then for any node v ∈ V it
is possible to find a ioi such that d(v, ioi) < d(κ, ioi). This implies that

∩
io∈I0 Vio,k = {k}

and, in turn, that node κ is localizable.
The above proposition gives the tools to build a suitable algorithm for the localization

of a misbehaving node.

4.3. Localization algorithm. Suppose that each monitoring node i ∈ I0 can share its
local tdi = mint≥0{t s.t. AR(yi(t)) 6= 0} with the other monitoring nodes.

1. When the first detection instant td1 happens, an anomaly of the system evolution is
detected.

2. When the second detection instant td2 is available, each monitoring node computes
Equation (12) applied to the path joining the two monitoring nodes that produced td1
and td2 . If the localized node is a node of degree two then the algorithm stops because
the localized node is the misbehaving node (Localization condition of Proposition
4.4 is satisfied). If not, the algorithm follows on.

3. When the next detection instant, td3 , is known, then each monitoring node computes
Equation (12) for all couples (td1 , td2), (td1 , td3) and (td2 , td3).

4. If the localization algorithm of at least (δ−1) couples give a localized node of degree
δ then the algorithm stops because the localized node is the misbehaving node. If
not the algorithm follows on waiting the next detection time, iterating points (3)
and testing condition (4) of this algorithm.

Remark 4.4 (Maximum localization time). Partition the set of monitoring nodes into
groups belonging to the connected subgraphs of G − {`}, say I0 = I01 ∪ I02 ∪ · · · ∪ I0δ . In
view of the above Proposition 4.4, the minimal localization time for a node κ of degree

δ is ti = maxl∈{1,...,δ}

{
min`∈I0l d(`, k)

}
. A lower bound of the maximal localization time

for an acyclic graph coincides with the one achievable with algorithm 4.3 and it is the
diameter of the graph G.

5. Fault Compensation. As soon as the detection and localization of an anomaly is
performed and a misbehaving node is found in the system, appropriate counteractions
can be taken. For the systems considered in this paper, counteractions against the drift
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of the collective objective function caused by the intruder (see, e.g., Equation (5)) are
desirable in order to restore an unbiased group evolution.
Detection of a misbehaving node does not directly imply the exclusion of this node

from collaboration. In fact when a misbehaving node is detected, the diagnostic system
should check whether its behavior is intermittent or persistent. If the fault is intermittent
(e.g., if an agent fails only at one instant), the monitoring nodes are able to compensate
for the fault effects without a reconfiguration of the network.
In view of finding an easy yet effective compensation algorithm, we consider again

the structure of data available to each monitoring node. System output for a ` ∈ I0 is
influenced by the fault according to:

y`(t) =C`A
tx0 + C`A

t−tf−1eju(tf ) + C`A
t−tf−2eju(tf + 1) + . . .+ C`A

j−1eju(t− j)

+ C`A
j−2eju(t− j + 1) + . . .+ C`Aeju(t− 2) + C`eju(t− 1).

A first, important consideration is on the zero values within the coefficients C`A
lej.

Now, each coefficient C`A
lej coincides with the forced response of the system for an im-

pulse injected by node j at time t̄ measured by node ` at time t̄+ l+1. As a consequence
of the structure of the communication between agents, it is evident from direct compu-
tation of Equations (6) and (7) that an impulse at node j has an effect on node ` only if
l ≥ d(`, j) communication rounds elapsed, so C`A

lej = 0 if l < d(`, j).
This shows that each monitoring node io ∈ I0 can infer some knowledge on the intruder

signal {u(τ)}|τ∈{tf ,...,t−d(io,j)−1} , but also that there is no way to know the other values of
the intruder {u(τ)}|τ∈{t−d(io,j),...,t}.
We now look for an algorithm as simple as possible to estimate {u(·)} without estimating

the whole initial condition x0. Still a useful tool is the output of the algorithm AR(y(t))
because it filters out the initial condition and it has simple connections with the intruder
injections.
The collection of ε`(t) = AR(y`(t)), ` ∈ I0 are influenced by the external input ac-

cording to ε`(td) = AR(y`(td)) = b1u(tf ); ε`(td + 1) = b1u(tf + 1) + b2u(tf ), . . . . So an
estimation û(t) of the external input can be inferred by any monitoring node ` ∈ I0 using
the sequence {ε}t≥tf once the intruder has been isolated using the recursive algorithm on
local data:

û(tf ) =
1

b1
ε`(td)

û(tf + 1) =
1

b1
[ε`(td + 1)− b2û(tf )] (13)

...

This set of equations is useful to achieve an estimation of the input at time instants tf ,
tf + 2, . . ., t − d(io, j) − 1 using only the local information available to each monitoring
node io.
The above estimation of the exogenous input values can be also useful for a decision

on the reconfiguration of the network. Notice that, even if the system is reconfigured and
the misbehaving node is excluded from collaboration at the reconfiguration time tR, the
estimation should continue until the unknowns u(tR − `), u(tR − `+1), . . ., u(tR − 1) are
somehow estimated. A solution to this problem is given later.
We close this section with some remarks. First, the simple elaboration using only local

data in Equation (13) is useful to achieve a bias compensation from any of the monitoring
nodes. Details of this operation are given in the next subsection.
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Second, it is also useful to derive a proper rule to decide if the misbehaving node must be
excluded from the collaboration or not. By example, using relations (13), it is easy to infer
if the misbehavior is intermittent or persistent. If the fault is intermittent it is possible to
have an unbiased convergence using only the compensation from one monitoring node (as
described later in this section). A reconfiguration of the communication graph is needed
in case of a persistent fault. Indeed, a persistent correction of a persistent fault is not
effective because the evolution of each state moves away from the asymptotic consensus
value and the agents do not reach any asymptotic value.

Network reconfiguration schemes. Network reconfiguration is made after intrusion
localization to exclude the action of the misbehaving node from system evolution. The
simplest reconfiguration can be performed reassigning a zero value to the coefficients lj`,
` ∈ Nj of the neighbors of the misbehaving node in (1) (case (3) of Figure 1).

This basic kind of reconfiguration has the drawback of the disconnection of the net-
work, condition that can be avoided if the nodes can enlarge their neighborhood with
an additional amount of power consumption (case (1) of Figure 1), or if the monitoring
nodes use their monitoring network (case (2) of Figure 1). From now on we assume that
reconfiguration of case (1) of Figure 1 is possible. Considering for simplicity the case of
misbehaving node of degree 2 as in Figure 1 case (1), the state matrix of the reconfigured
system turns to:

Apostj =


Aj−2

0T αj−1 1− αj−1 − β1 0 β1 0T

0T ∗ ∗ ∗ ∗ 0T

0T β2 0 1− αj+1 − β2 αj+1 0T

An−j+1

 (14)

where Aj−2, An−j+1 are the same rows of the matrix A in (2), β1 and β2 are the (new)
weights between nodes j − i and j + 1 (the stars in the middle line are eventual values
corresponding to the intruder behavior. Such values are related only to the eventual
evolution of the intruder which no longer influences the rest of the group).

Figure 1. Reconfiguration schemes
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5.1. Compensation after reconfiguration. Once a persistent misbehaving node has
been localized, a reconfiguration of the communication graph is done to exclude the in-
truder action on the evolution of the other agents and to recover a proper unbiased system
evolution. In the following, we assume that it is possible to reconfigure the communica-
tion network according to the first picture in Figure 1, but most of the following results
and/or considerations hold also in general.
Our purpose of this section is to find a counteraction to the drift of the objective

function caused by the intruder before its localization.
Notice that, as discussed earlier, this step is necessary to make the system evolution

tend to the unbiased desired value without a restart of the system; in fact few sam-
ples of exogenous inputs or even a single impulse can compromise mission goal (5) if no
counteractions are taken.
After the reconfiguration, system evolution is described by a new set of equations

(Equation (2) with state matrix given by (14) for a misbehaving node localized at label
j). Now, we focus on the j−1 unknowns that are still to be identified to make an effective
fault compensation. Data available to a monitoring node at t ≥ tR after reconfiguration
are tied to the exogenous input according to:

y(t) = CAt−tR
post x(tR) = CAt−tR

post A
tRx0 + CAt−tR

post

tR−1∑
i=0

AtR−i−1eju(i)

At a first glance, the AR(·) elaboration is no more effective to filter out the initial
condition from the elaboration of the output signal for a t = tR + υ, 0 < υ < n; in fact

AR(y(t)) = y(tR + υ) + a1y(tR + υ − 1) + · · ·+ aυy(tR) + aυ−1y(tR − 1) + . . .

= C
(
Aυ

postA
tR + a1A

υ−1
postA

tR + . . .+ aυ+1ApostA
tR + aυA

tR + aυ−1A
tR−1 · · ·+

+ anA
tR−n+υ

)
x0 + C(Aυ

postA
tR−tf + a1A

υ−1
postA

tR−tf + . . .)eju(0) + . . .

and, since Apost and A do not commute, the matrix inside round brackets is no longer
the empty matrix for the value of υ of interest 0 < υ < n. Notice that, if υ ≥ n, then
the AR(y) cancels out both the initial condition x0 and all the values of interest u(τ),
τ ∈ [tr − d(io, j), tr].
A possibility to solve the identification problem is to find other coefficients αi(υ), i =

1, . . . , n to make a different autoregressive elaboration ARα(υ)(y(t)) to force the matrix
CAυ

postA
tr + α1(υ)CAυ−1

postA
tr + . . . + αn(υ)CAtr−n+υ to be the zero matrix, but it would

be computationally huge (it should be performed at each time step and on-line after the
isolation has been solved because the state matrix after reconfiguration Apostj depends on
the located node j).
We now make a thorough analysis of the above equations with the aim of solving the

above filtering procedure.
First notice that, in view of structure of the system matrix after reconfiguration (14), the

following result holds. The proof is omitted because it is directly verifiable by inspection.

Lemma 5.1. Consider matrices A in Equation (2) and Apostj in (14). Considering a
vector v ∈ Rn such that (v)` = 0 for ` ∈ Nj, then

vTA = vTApostj

holds.

We are now ready to deduce a simple yet useful result for simplifying Equation (15)
and hence the input estimation procedure.

Proposition 5.1. CioA
υ = CioA

υ
post`

if υ ≤ d(io, `)− 1.



COLLABORATIVE IDS FOR ACYCLIC CONSENSUS NETWORKS 931

Proof: The proof is conducted by direct inspection. Row vectors CioA
υ and CioA

υ
post`

can be computed component by component CioA
υeκ and CioA

υ
post`

eκ, κ = 1, . . . , n respec-
tively. CioA

υeκ can be also seen as the impulse response from node κ sensed by node io
at time υ + 1, so CioA

υeκ = 0 = CioA
υ
post`

eκ for any υ and κ such that υ ≤ d(io, κ) − 1.
On the other hand, if the condition CioA

υeκ 6= 0 is satisfied, then node k necessarily
satisfies d(io, κ) < υ − 1 and, since the interval of interest is υ ≤ d(io, `) − 1, then
d(io, κ) < d(io, `)− 2. The latter relation means that the nodes κ satisfying CioA

υeκ 6= 0
within the time interval of interest are not neighbors of ` (since they are distant from
node io less of two than node `). Define the row vectors vτ = CioA

τ , 0 ≤ τ ≤ d(io, `)− 2.
In view of the above considerations, any vτ satisfies Lemma 5.1 conditions. Applying
recursively the results of Lemma 5.1:

v0A
υ
post`

eκ = v1A
υ−1
post`

eκ = · · · = vτA
υ−τ
post`

eκ = . . . = vυeκ = v0A
υeκ

for any υ ≤ d(io, `)− 1.
So basically we proved that CioA

υeκ = CioA
υ
post`

eκ if υ ≤ d(io, `) − 1 and for any
κ ∈ {1, . . . , n}, thus we proved the statement.

Remark 5.1. The impact of the result in Proposition 5.1 on the estimation of the ex-
ogenous input after system reconfiguration is important: it is possible to apply the easy
recursive rule in (13) to make the estimation of the intruder also after system reconfigu-
ration.

Notice that the steps of identification of the exogenous signal require an elaboration of
local information only, so the identification itself does not need any collaboration between
the monitoring nodes.

5.2. Compensation of drift on the objective function. Once the identification of
the exogenous signal is performed, the monitoring nodes can counteract the drift caused
by the intruder.

First of all assume that the weights are chosen such that γ is also eigenvector of the
eigenvalue in 1 of Apostj (e.g., as far as the average consensus is concerned, this can be
easily obtained by choosing β1 = β2).

Consider that a node, say the first monitoring node, injects an impulse of amplitude ν;
system evolution shows a drift relative to the convergence value equal to:

γTx(t) = γTx(tr) + γTeio1ν =
γTx0 + (γ)j

∑
i<tr

ū(i) + (γ)io1ν

γT1

where the last equality holds according to relation (5). As a result, after the identification
step, any monitoring node (say, the first one io1) can correct the bias introduced by

the intruder on the objective function choosing ν = − (γ)j
(γ)io1

∑
i<tr

û(i), û(i) computed

according to the estimation procedure (13).

5.3. Discussion on the proposed algorithm: computational issues, conditions
for the applicability, peculiarities with respect to the state of the art. In this
section, we briefly discuss about the main features of the proposed algorithm. First, we
briefly summarize the steps for the correct implementation of the results in the paper
with focus on the difference between on-line and off-line computation, elaboration of local
data or shared data and computational complexity of each on-line elaboration.

• Preliminary steps. As a preliminary step, as soon as protocol (1) is chosen, coeffi-
cients of the AR(·) elaboration (10) are computed. It is an off-line computation and
it can be performed before the system evolution starts. All the monitoring nodes
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must apply the same elaboration to the sequence of local data, so it can be easily
performed only once by an external computer and plugged into the memory of the
agents.

• Election of the monitoring nodes. According to Theorem 3.2, each node of degree
one is elected as a monitoring node.

• Monitoring the network. Each monitoring node ` computes the scalar sequence
ε`(t) = AR(y`(t)). This elaboration is performed by each monitoring node using
local information. According to results of Lemma 4.1 and Proposition 4.2, this
elaboration should be performed on-line and at each time step. The computational
effort of the elaboration is low (n multiplications between scalars and n − 1 sums)
and it is proportional to the number of agents (so its complexity is Θ(n)).

• Fault detection. As soon as a monitoring node computes a nonzero value of ε`(t)
(or, in practice, a value exceeding suitable threshold; see the example for a thorough
discussion on the practical implementation of AR(y`(t)) = 0), it broadcasts an alert
to the network, thus communicating tdi to the network nodes. As soon as at least
one node has given the alert, an anomalous behavior of the network is promptly
detected (according to Propositions 4.1 and 4.2).

• Fault localization. Localization of the misbehaving node is performed as soon as
the shared data tdi are available according to the algorithm 4.3 (which summarizes
the results of Propositions 4.3 and 4.4). the algorithm 4.3 can be performed by any
node of the network, so it is plausible that in many applications every node of the
network can localize the misbehaving node.

• Fault identification. According to Equation (13), any monitoring node can estimate
the exogenous injection of the misbehaving node. Also this operation requires com-
putation of complexity Θ(n). The network is reconfigured if the fault is persistent.
According to Proposition 5.1, the reconfiguration of the network does not change
the structure of the estimation algorithm (i.e., its coefficients).

• Fault compensation. As far as the estimation stops, it is possible to drive the evolu-
tion to an unbiased value of consensus according to results in Section 5.1.

Conditions for the applicability of the proposed diagnostic algorithm. Here we thor-
oughly investigate the scope of the proposed algorithms, so we discuss in detail the con-
ditions for the applicability of each main result.
A first condition is to deal with acyclic graphs. Results based on this condition are

Lemma 3.1 and Theorem 3.2 which lead to the simple conceptual/logical architecture of
the diagnostic system. The choice of this class of graph has been widely motivated in the
introduction, basically because most studies available in the literature have considered
the single node case in a highly connected network but many applications show that low
connectivity networks are useful. It is worth noting that other results of the paper still
hold without this hypothesis.
A second standing assumption is that agents run a consensus protocol. This is tightly

tied to the possibility of inferring the presence of an anomaly comparing the actual evolu-
tion to a nominal evolution. In general, the less conservative assumption is that all nodes
should agree to a known protocol, but we made this choice in view of the important
applications of consensus networks in many different engineering applications.
Finally, the assumption of a single misbehaving node is posed for the ease of localization

within a 1-connected network, where there is no logical redundancy so the localization
problem for many misbehaving nodes requires additional information between monitors.
It is worth noting that the actual assumption is that the misbehaving nodes have a rate
no greater than 1/D, D being the diameter of the Graph. Indeed, according to Remark
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4.4, D is the localization time in the worst case and if different faults happen with a rate
lower than 1/D then the algorithm can be applied recursively.

A final comment is given on the choice of using only the AR(·) elaboration, thus moni-
toring the network for t ≥ n. According to Remark 4.1, this is just a choice of the author
for the sake of simplicity of the algorithm, mainly to limit the shared information to the
tdi signals. In fact, a refinement of the algorithm requires that, from t ≥ 0, at time t̄ each
monitoring node should progressively infer the state of the t̄-neighbor nodes and exchange
this information to the other monitoring nodes. If there is a misbehaving node these data
are not coherent and it is possible to infer the presence and the location of a misbehaving
node within at most D time steps, D the diameter of the graph, with techniques similar
to those described in [5].

Peculiarities with respect to the state of the art. We now describe the main peculiarities
of the proposed algorithm with respect to the other results available in the literature. In
view of the large amount of documents of this topic, we explicitly consider comparisons
with two recent publications [5, 6] where the methodologies are similar to those here
proposed and results can be clearly compared. Notice that the features of the proposed
algorithm here described are useful to compare the performances of it with any other
algorithm.

A first important peculiarity is about response promptness of the algorithm with respect
to a fault. In [6] three detection filters are proposed. The first is a dynamical system
of dimension equal to the number of agents, the second requires a number n of residual
generators that each node needs to design, the third is a local detector for clusters with
low interactions. Using the first and third kind of filter there is no finite time convergence
of the decision filter. In the first case, the filter response has an infinite-time transient
response decaying to zero, so the presence of a misbehaving node can be inferred only if it
exceeds the transient response (notice that a bound on the initial conditions is necessary
for this step) and moreover the authors claim that there may exist exponentially decaying
inputs that may remain undetected. Analogous considerations hold for the third filter,
where the interactions between clusters may alter the correct detection. In [5], the authors
propose an algorithm to batch process data, so their algorithm would promptly identify
an anomalous behavior in the network only if the batch is built and run near the time
instant tf +D, D being the diameter of the graph.

A second important peculiarity is about low complexity and ease of computation of
the algorithm, which is Θ(n) for each monitoring node. The first and second filters in
[6] are Θ(n2) and Θ(n3) respectively. The algorithm in [5] is based on n simultaneous
estimation of state and misbehaving input, considering each node as a misbehaving input.
The complexity of the algorithm is approximately Θ(n4) (it depends on the method for
the inversion of a (n+∆)× (n+∆) matrix, with ∆ > 1).

A final feature of the algorithm to consider is recursivity. It is a valuable property to
achieve a good response promptness when algorithms have guaranteed finite-time con-
vergence. Algorithms in [6] are recursive, the elaboration in [5] is an algorithm to batch
process data.

6. A Practical Example. In this section we report some simulation results on a prac-
tical example where the proposed diagnostic algorithm is applied to two consensus-based
applications for a multi-agent system.

In order to evaluate the Radon pollution of an area, a team of mobile robots is designed
with the mission of estimating the average value of Radon and compute the deviation of
each local measure with respect to the average. To achieve this goal each agent takes a
local measure and then they run the consensus algorithm (1) with unitary weight lij = 1.
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Moreover, from time to time, the agents have to reach a common point to make a
battery recharging all together. This is also performed by a consensus-based algorithm
(the so called ‘rendez-vous’ of the robots).
The first group of figures refers to the case of an fault/intrusion within the group during

the rendez-vous. The red node is the faulty one, and in the simulations a constant input
is forced to the faulty node from time t = 350 on. It is worth noting that, if no intrusion
detection module is available, the whole group is conducted outside the area of interest.
Last picture shows the same evolution when the proposed algorithm runs. It is evident
that the faulty node is promptly excluded from collaboration.
Finally, we apply the algorithm proposed in the paper to the distributed computation

of the average of Radon. In order to test the diagnostic algorithm in a more realistic
scenario, we consider the presence of uncertainties both in the state updating rule and
in the measurements; we added a random variable with uniform distribution in [−η, η]
(η = 1 in the simulations). The idea is that bounded uncertainties can model a variety
of phenomena that can concur to give slight deviations from the ideal model (6) and (7)
(e.g., quantization error in elaboration and transmission, small deviations from 1 when
assigning the input).

x(t+ 1) = Ax(t) +


w̄1(t)
w̄2(t)
...

w̄n(t)

 (15)

ym` (t) = ynom` (t) + η`(t), where ynom` (t) = C`x(t) (16)

η`(t) and each w̄(t)i a stochastic variable with uniform distribution in [−η, η] (in the
simulations we take η = 1). Here we adapt the diagnostic algorithm to this scenario by
properly selecting a threshold Mε:

td` = min{t : |AR(y`(t)) ≥ Mε Mε = M1 +M2}

where M1 and M2 account for, respectively, a bound for the diagnostic elaboration of the
model uncertainty and the measurement uncertainty.
In order to find a reasonable value for M1, consider that w̄j(t) at each node contribute

to the AR(y`(t)) elaboration according to AR(y`(t)) = MAj(wj(t)), j = 1, . . . , n. By the
superposition principle, if no misbehaving node is present, then each monitoring node
computes AR(y`(t)) =

∑n
i=1MAi(wi(t)). Since |AR(y`(t))| = |

∑n
i=1MAi(wi(t))| ≤∑n

i=1 |MAi(wi(t))| ≤ nη
∑m

i=1 |bi|, we choose M1 = nη
∑m

i=1 |bi|. As regard for the
measurement uncertainty, notice that the AR(·) elaboration is linear, so AR(ym` (t)) =
AR(ynom` (t)) + AR(η`(t)), and since |AR(η`(t))| ≤ nη

∑n
i=1 |ai| then it is reasonable to

choose M2 = nη
∑n

i=1 |ai|.
We made simulations that validate the theoretical results described along the paper. In

the simulation here reported, a constant fault equal to 40 is forced on node 5 from time
40. Notice that the blue bold line represents the average of the initial conditions, so it is
the asymptotic value to which every state component should converge.
Results are shown in Figure 3, where on the left the evolution with a diagnosis without

compensation is shown, and finally on the right, the diagnosis is followed by the compen-
sation from node 1. Specifically, it is clear that, if a fault turns the input of an agent to
a constant value, the evolution of the whole group is compromised if no counteractions
are taken. A further consequence of the presence of a misbehaving node (even if it was
present only for few instants) is a drift of the asymptotic value of the group, that can be
effectively be compensated by the action of the monitoring network.



COLLABORATIVE IDS FOR ACYCLIC CONSENSUS NETWORKS 935

Figure 2. Simulation results: robot rendez-vous
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Figure 3. Simulation results: average consensus
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7. Conclusions. In this paper the problem of the compensation for the action of a mis-
behaving node in a networked system with acyclic communication graph subject to the
presence of an eventual fault/intrusion is considered. A thorough analysis of a diagnos-
tic tool is investigated and a simple multinode strategy is proposed. The solution has
the architecture of a collaborative multinode with precise and easy instructions for each
node of the monitoring network. Implementing issues are investigated, considering the
adaptation of the diagnostic algorithm in the presence of bounded uncertainties.
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