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ABSTRACT. This paper introduces a new distance metric learning algorithm which uses
pair-wise equivalence (similarity and dissimilarity) constraints to improve the original
distance metric in lower-dimensional input spaces. We restrict ourselves to pseudo-
metrics that are in quadratic forms parameterized by positive semi-definite matrices.
Learning a pseudo distance metric from equivalence constraints is formulated as a qua-
dratic optimization problem, and we also integrate the large margin concept into the
formulation. The proposed method works in both the input space and kernel induced fea-
ture space, and experimental results on several databases show that the learned distance
metric improves the performances of the subsequent classification and clustering algo-
rithms.

Keywords: Distance metric learning, Classification, Clustering, Quadratic program-
ming

1. Introduction. Learning distance metrics is very important for various applications
such as classification, image and video retrieval, and image segmentation [2, 6, 11, 16, 17].
While measuring distances seems to be a simple problem when the data samples are
represented with enough discriminatory features, in many real-world applications data
samples may consist of many irrelevant features for the task being considered. Consider
organizing image galleries in accordance to the personal preferences: For example, one
may want to group the images based on more abstract concepts such as outdoors or
indoors. Similarly, we may want to group face images by race or gender. In most of the
cases we consider here, the data samples have many irrelevant features, and the typical
distance functions employed in these kinds of applications such as the Euclidean distance
or Gaussian kernels do not give satisfactory results. Thus, we need to learn good distance
functions to bridge the gap between the irrelevant data features and the goal of the user
for the specific task at hand.

Learning distance metrics is much easier when the labels associated to the data samples
are available. However, in many applications, there is a lack of labeled data since obtain-
ing labels is a costly procedure as it often requires human effort. On the other hand, in
some applications, side information — given in the form of pairwise equivalence (similar-
ity and dissimilarity) constraints between points — is available without or with less extra
cost. For instance, consider the surveillance application given in [25]: Faces extracted
from successive video frames in roughly the same location can be assumed to represent
the same person, whereas faces extracted in different locations cannot be the same person.
In some applications, side information is the natural form of supervision; e.g., in image
retrieval, there is only the notion of similarities between the query and retrieved images.
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Side information may also come from human feedback in interactive environments of-
ten at a substantially lower cost than explicit labeled data as in semi-supervised image
segmentation applications [6].

Recently, learning distance metrics has been actively studied in machine learning. Some
of the distance metric learning algorithms use class labels [10, 12, 13, 23, 27|, and we will
not consider them here. We will focus only on semi-supervised (or weakly supervised)
distance metric learning algorithms which use equivalence constraints. Existing semi-
supervised distance metric learning methods [3, 8, 16, 18, 24, 26, 28, 30] revise the original
distance metric (commonly chosen as the Euclidean distance) to accommodate the pair-
wise equivalence constraints, and then a clustering algorithm with the learned distance
metric is usually used to partition the data to discover the desired groups within data.
In [28], a full-rank pseudo distance metric is learned by means of convex programming
using equivalence constraints. Relevant Component Analysis [3] was introduced as an
alternative to this method, but it can exploit only similarity constraints. Shalew-Shwartz
et al. [24] proposed a sophisticated online distance metric learning algorithm that uses side
information. The method incorporates the large margin concept, and the distance metric
is modified based on two successive projections involving an eigen-decomposition. Yang
et al. [29] introduced a Bayesian framework for distance metric learning that estimates a
posterior distribution for the distance metric from pair-wise equivalence constraints. Davis
et al. [8] proposed an information-theoretic approach to learn a Mahalanobis distance
function using equivalence constraints. They formulated the metric learning problem as
that of minimizing the differential relative entropy between two multivariate Gaussians
under equivalence constraints on the distance function. Methods that are more closely
related to ours were introduced in [18, 26]. They formulated the problem as a quadratic
optimization scheme and extended their method to the nonlinear case using the kernel
trick. As we discuss later, although they claim that the learned metric is a pseudo-metric,
there is no guarantee that the resulting distance matrix is positive semi-definite. Note
that all semi-supervised distance metric learning algorithms mentioned above attempt
to learn full-rank distance metrics, and thus they are suitable for low-dimensional input
spaces. In high-dimensional spaces, it is better to learn low-rank distance metrics (or low-
dimensional embeddings). To this end, the authors in [1, 7] revise the Locality Preserving
Projections method to exploit side information. Cevikalp and Paredes [6] introduce a
low-rank distance metric learning algorithm that uses equivalence constraints and sigmoid
functions. A similar semi-supervised distance metric learning method based on sigmoid
functions is also introduced in [14]. In [9, 20], a low-rank Mahalanobis distance metric
for high-dimensional spaces is learned based on the log-determinant matrix divergence.
In addition to these methods, there are some hybrid algorithms that unify clustering and
metric learning into a unique framework [5]. A comprehensive survey of semi-supervised
distance metric learning techniques can be found in [30].

In this paper, we also focus on lower-dimensional input spaces and try to learn a
pseudo distance metric parameterized by positive semi-definite matrices. To this end,
we formulate the distance metric learning problem as a quadratic optimization problem
as in [18, 26]. However, our proposed method differs from those quadratic optimization
based methods in two ways. Firstly, we incorporate the large margin concept in the
method which is ignored in the other quadratic learning schemes. Secondly, there are
less user-chosen parameters in our method. This offers savings during training and makes
the method more appealing for the users who are not experienced in using such learning
algorithms.

2. Method.
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2.1. Problem setting. Let x; € IR?, i = 1,...,n, denote the samples in the training
set. We are given a set of equivalence constraints in the form of similar and dissimilar
pairs. Let S be the set of similar sample pairs

S = {(x;,x;)|x; and x; belong to the same class}
and let D be the set of dissimilar sample pairs
D = {(x;,x;)|x; and x; belong to different classes} .

Assuming consistency of the constraints, the constraint sets can be augmented by using
transitivity and entailment properties as in [4].

Our objective is to find a pseudo-metric that satisfies the equivalence constraints and
at the same time reflects the true underlying relationships imposed by such constraints.
We focus on pseudo-metrics of the form

da(xi,%;) = [[xi = %;[a = \/(Xz’ — %)) TA (G — x;), (1)
where A > 0 is a symmetric positive semi-definite matrix. In this case there exists a
rectangular projection matrix W of size ¢ x d (¢ < d) satisfying A = W W such that
2 2
[Ixi = %[5 = [[Wxi — Wx;[". (2)
From this point of view, the distance between two points under metric A can be inter-

preted as linear projection of samples by W followed by the Euclidean distance in the
projected space.

2.2. Learning distance metric by quadratic programming. Assume that the learn-
ed distance matrix is A. Let us ignore the positive semi-definiteness constraint for the
moment. Intuitively, the learned distance metric must pull similar sample pairs closer and
push the dissimilar sample pairs apart. Additionally, it should generalize the unseen data
well. To this end, we define the margin b, which is defined to be the minimum separation
between all pairs of similar and dissimilar samples. That is

da (xp, %;) — di(xi,xj) >b, (xx,x;) €D and (x;,%;) € S.

Without loss of generality, we can scale A and b by any positive constant. We therefore
set b to be equal to 2 and search for a distance matrix A which has small Frobenius
norm. However, if we have m similar and n dissimilar sample pairs, the number of total
constraints will be mn, which may be a large number to handle. Therefore, we introduce
a threshold 7 > 1 and replace the constraints with

da (xi,%;) < v =1, (xi,x;) € S,

(3)

A3 (%, %) > 7 +1, (x5,%;) € D.

If we let ¥ = v — 1 and introduce slack variables for the sample pairs violating margin
constraints, we obtain the following quadratic programming problem

1 9 Cy Cp
min SIAIG+ = Y0 G+ > &

(xi,x;)€S (xk,x1)ED
s.t. di(xiaxj) <y+&;, (xi,%x;) €S8, (4)
di(xkaxl) Z’-}/_'_Q_gkl; (Xk;Xl) S D)
Y, &ijy§kt > 0

where ng and np are the numbers of pairs in S and D respectively, Cs, C'p are non-
negative user-chosen adjustable parameters, and &;;, & are positive slack variables. Here
||Al|2 represents the Frobenius norm of matrix A. Note that the similar sample pairs



7020 H. CEVIKALP

which are far from each other contribute more to the loss function than the ones which
are closer. In a similar manner, the dissimilar sample pairs which are closer to each other
contribute more to the loss function than the ones which are further from each other.
In fact if the square of distances between the dissimilar sample pairs are larger than the
threshold (7’ + 1 or equivalently v+ 2), those dissimilar sample pairs do not contribute to
the loss function at all. Therefore, just as in the Support Vector Machine’s hinge loss, our
objective function is triggered by the dissimilar sample pairs in the vicinity of decision
boundaries that participate the inter-class decision boundaries. In contrast, there is not
such a systematical selection mechanism that respects the margin concept in the methods
of [18, 26]. They just aim to pull all similar sample pairs together and to maximize
the distance differences between the learned and original distance metrics for dissimilar
sample pairs.
To derive the dual, we consider the Lagrangian

1 C C
LA &y amp) =5lAl+ % DT &+ 2 3 &

(xi,x5)€S D (xk,%7)ED
+ Y {— %) TA — x;) — v — &)
(xi,x;)€S (5)
+ Y o {—(e—x)TA(E—x) +7+2— &}
(xk,%7)ED
- Z Ni&ij — Z Mkt — Y
(xi,Xj)ES (xk'7xl)eD

where «;;, ag, 1ij, M, # > 0. The Lagrangian L has to be maximized with respect to «,
n, p and minimized with respect to A, £, 7. The optimality conditions yield

oL
a—A =0— A= Z akl(xk — XZ)(Xk — Xl)T — Z aij(xi — Xj)(xi — Xj)T,
(xx,x1)€D (xi,x5)€S
oL CS CS
:0—>O[Z":—— Z-)OSCYZS—, XZ',X‘GS,
0;; T s Tij 7= e ( ;)
oL C C
=0 ay= -2 = 0<ay < -2, (xp,x) €D,
&k np np
oL
%:0% Z Qg — Z aij:u—> Z A — Z OéijZO.

(x,x;)ED (xi,x5)€S (x,x;)ED (xi,x5)€S
Thus, the dual of the optimization problem becomes

min % Z(xi,x]-)ES Z(xm,xn)es aijam”[(xi o Xj)T(Xm o X”)]2

+ % Z(xk,xl)ED Z(xp,xq)eD aklaPQ[(Xk o XZ)T(XIIJ o Xl])]
o Z(Xi7X]‘)ES Z(xk_,xl)ED az]akl[(xz o X])T(Xk - Xl)]2 o 2 Z(Xk;xl)eD kL

. c C
subject to Z(ka)eD g — Z(xi,x]-)eS ;> 0,0 < @ < 2 and 0 < ai < &2

nD'

2

(6)

This is a quadratic programming problem with n = ng + np variables (which is in-
dependent of input dimensionality d) as in [18]. Therefore, training time complexity of
the method is O(n?). As a result, the proposed method is more efficient than most of
the semi-supervised distance metric learning algorithms that require O(n3) complexity
per iteration. Note that the Hessian matrix of this quadratic programming problem is
not necessarily positive semi-definite because of the last minus quadratic term. However,
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we can always reconstruct the Hessian matrix by using the positive eigenvalues and cor-
responding eigenvectors to ensure the positive semi-definiteness. In this case a global
minimum exists. From the Karush-Kuhn-Tucker conditions, we get

=7 0<ai]~<CS/n5,
di (xi,x;)$ <7y ay =0, (xi,x;) €5 (7)
> a;; =Cg/ng.

=v+2 0<Ozkl<CD/TLD,
dZA(Xk,Xl) 2 Y + 2 Al = 0, (Xk;Xl) € D (8)
S’Y+2 Oékl:CD/TLD.

Thus, to find the value of v, we take all sample pairs with 0 < «;; < Cg/ng and 0 <
ar < Cp/np, compute corresponding d4 (x;,x;) and dj (xx,x;) — 2 and average them.

It should be noted that the resulting distance matrix A is not necessarily a positive
semi-definite matrix. One way to circumvent this problem is to work on the primal
problem (4), which leads to a gradient descent algorithm, and then to ensure the positive-
definiteness during the iterations as in [22]. However, the kernelization of this approach
is not straightforward. A more simple solution is to solve the dual problem (6) and make
sure that A is a positive semi-definite matrix at the end. In this approach, we first check
if the returned distance matrix is positive semi-definite. If the resulting distance matrix
is not positive semi-definite, we apply eigen-decomposition to A and reconstruct it using
positive eigenvalues and corresponding eigenvectors, A = ), Meugu, = UAUT where
Ar’s are the positive eigenvalues, u’s are the corresponding eigenvectors, A is a diagonal
matrix including positive eigenvalues A\, as diagonal entries, and U is the matrix whose
columns are the corresponding eigenvectors u,. In this case, we can use any existing
quadratic programming software without any modifications, and extension of the method
to the nonlinear case is much easier as described later. Thus, we used this approach in
this study.

Sometimes we may be interested in lower-dimensional embeddings induced by the
pseudo-distance metric rather than the distance metric itself. As we mentioned earlier,
the distance between two samples under positive semi-definite matrix A can be inter-
preted as linear projection of the samples by W followed by the Euclidean distance in the
projected space. Computing embeddings (linear projections) of samples x; by using Wx;
offers several advantages. For example, projections onto 2 or 3-dimensional space allow
us visualization of data, so we can devise an interactive constraints selection tool and
verify the effects of our selections visually. Also, we can run existing algorithms such as
k-means clustering on embedded samples without any modifications. Projection matrix
W induced by positive semi definite matrix A can be found as W = AY2UT.

2.3. Extension to the nonlinear case. Here we consider the case where the data
samples are mapped into a higher-dimensional feature space, and the distance metric is
sought in this new feature space. This is accomplished by using the kernel trick. Notice
that the objective function of (6) can be written in terms of the dot products of the
sample pairs. Thus, we replace all (x;,x;) = x, x; with the kernel function k(x;,x;) =
(p(x:), (%)) = b(x:)Td(x;) where ¢ : R — J is the mapping function from the input
space to the feature space &. Once we compute the optimal « coefficients, the distance
between two samples ¢(x,) and ¢(x;) in the mapped space under the distance metric A
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can be computed as
da(9(xa), 9(x1)) = ($(xa) = B(x0)) " A((x0) — D))
- ¢(Xa)TA¢(Xa) - 2¢(Xa)TA¢(Xb) + ¢(Xb)TA¢(Xb) (9)

= %A(Xaa Xa) - 2%A(Xa7 Xb) + %A(Xba Xb)

where
ka(Xa, Xp) =0(x4) " Ad(xs)
= Z Qg {[k(Xa, Xk) - k(Xa, Xl)] [k(Xk, Xb) - k(xlv Xb)]}
(xk,x1)€ED
— D k(e xi) = k(% %)) [F(xi,%5) = k(x;,%5)]}-
(xi,x5)€S

However, there is no guarantee that the resulting distance matrix A is positive-definite.
Thus, we have to reconstruct it by using positive eigenvalues and corresponding eigenvec-
tors as in linear case. But note that it is impossible to reach directly to matrix A for the
nonlinear case. This has to be done by formulating the eigen-decomposition problem in
terms of dot products of samples.

Now let &g = [p(x1,1) — ¢(X12), .-, D(Xng1) — ¢(Xng2)] be the matrix including the
ordered difference vectors of similar sample pairs from S in the mapped space, &, =
[d(x11) — A(x12)s -y @(Xnp1) — @(Xnp2)] be the matrix including the ordered difference
vectors of dissimilar sample pairs in the mapped space, a§ be the vector including optimal
coefficients corresponding to similar sample pairs returned by the quadratic optimization
algorithm, and a7, be the vector including optimal coefficients corresponding to dissimilar

(07

sample pairs. If we define ®4;; = (QDS @D) and a = ( 70*;3 ) , the resulting distance matrix

A can be written as
A = 0400, (10)

where 2 € IR"™" is a diagonal matrix including oz € IR" as its diagonal entries. Our goal
is to find eigenvalues A > 0 and corresponding eigenvectors u satisfying

Au = Au. (11)
All eigenvectors u corresponding to positive eigenvalues lie in the span of column vectors
of ®yif, i.e., u = Py pv. Thus, if we multiply (11) with <1>de from left, we obtain
)\<I>dzfu = <I>dif<I>dZ~fQ<I>difu
A@difédifv = @;—ifd)difQ(I);f(I)difv

(12)
)\Kdifv == KdifQKdifV

AV = (QKdif)V = v = Rdifv.

Now let \; denote a positive eigenvalue of I~{di 7 and vy, is the corresponding eigenvector.
We have to normalize v;, to satisfy the equation u, uj, = v,;rKdika = 1. Assume that v,
is the normalized eigenvector. Then, the positive semi-definite matrix A can be written
as A =3, Me®uif Vi (Paisvie) T = (Paif V)A (P V)T, where A is the diagonal matrix in-
cluding \;’s as diagonal entries and V is the matrix whose columns include corresponding
eigenvectors vi. As a result, the distance between two samples ¢(x,) and ¢(x;) under

the pseudo distance metric A can be computed using (9) by replacing ka (X4, X,) with

ka (%4, 1) ZM o) Paif Vi) (Vg Dgipp(xs))- (13)
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The rectangular embedding matrix induced by A is W = A2V T® ., thus embeddings
of samples ¢(x;) can be computed as follows:

Wo(x;) = APVT(D 6(x;)) = A2V TKES (14)

where ki = (D, .0(x;)) = [k(x;1,%:) — k(X;2,%;)] is a n x 1 vector of x; against the
similar and dissimilar sample pairs x;; and x; .

3. Experiments. We performed experiments' on two synthetic databases, several real-
world databases chosen from UCI repository (http://www.ics.uci.edu/~mlearn/MLRepo
sitory.html) and ETH-80 [19] database. We compared the distance metric obtained by the
proposed method, Quadratic Programming based Distance Metric Learning (QPDML),
to the Euclidean distance metric and the distance metrics learned by the Relevant Com-
ponent Analysis (RCA) [3] and the method of [26]. It should be noted that the proposed
method and the quadratic distance metric learning method of [26] do not necessarily yield
to positive semi-definite matrices. Therefore, we reconstructed the resulting distance ma-
trix for both methods by using only positive eigenvalues and corresponding eigenvectors
as described earlier. For the nonlinear case, we used polynomial kernels with degree 2
and the Gaussian kernels.

In order to assess the performance of the distance metrics, we evaluated both the
clustering and classification performances. For classification, we used 1-nearest neighbor
classification rule with the learned distance metrics. The k-means and spectral clustering
are used as clustering algorithms (we report the one yielding the best result), and the
pair-wise F-measure is used to evaluate the clustering results based on the underlying
classes. The pairwise F-measure is the harmonic mean of the pairwise precision and recall
measures which are widely used in information retrieval. We compute precision and recall
over pairs of samples and consider for the pairs whether they are assigned to the same
cluster by clustering algorithms and whether they contain the same class label. Let A
denote the set of sample pairs assigned to the same cluster, and let B denote the set of
sample pairs that contain the same class label. With |A| denoting the cardinality of A
(and similar for other sets), the measures are defined as:

|AN B Recall — |AN B P 2 X Precision x Recall
A 7 et = |B| THeastEe = b ecision + Recall

3.1. Experiments on synthetic databases. The first synthetic database includes 10-
dimensional data samples belonging to two classes. The first dimension is the distinctive
feature, where the first class is normally distributed as N(3,1) and the second class as
N(—3,1). The remaining dimensions are irrelevant features distributed as N(0,16). Since
the data are linearly separable, we only tested linear distance learning methods for this
database. We created 100 samples for each class and used 50 samples per class for choosing
equivalence constraints and the remaining samples are used for testing. We used only 100
(60 similarity and 40 dissimilarity) equivalence constraints. Classification and clustering
accuracies are given in Table 1 and Table 2, respectively. Results are averages over 50 runs.
Since the first synthetic data has identical covariance distribution for both classes, RCA
performs the best as expected. Our proposed method comes the second outperforming
method of [26] with a slight edge. Figure 1 illustrates 2-dimensional embeddings of test
samples learned by the proposed method and method of [26]. Our proposed method
clearly finds better low-dimensional embeddings where the samples are more separable
compared with the method of [26]. In Figure 2, we plot affinity (similarity) matrices
obtained using different distance metrics. The heat kernel function exp(—d(x;, x;)?/t) is

Precision =

'For software see http://www?2.ogu.edu.tr/~mlcv/softwares.html.
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used to measure the similarity between two samples x; and x;, and brighter pixels show
that the corresponding sample pairs are more similar. Again, similarity matrix learned
by the proposed method is the most similar one to the ideal case.

TABLE 1. Classification accuracies on synthetic databases

Data | Kernel | Euclidean Metric| RCA | Tsang and Kwok [26] | QPDML
Ist Synt. | Linear 81.1 £4.0 98.9+0.9 93.8 +4.2 94.1 +4.2
R N
TABLE 2. Clustering accuracies on synthetic databases
Data | Kernel | Euclidean Metric | RCA | Tsang and Kwok [26] | QPDML
1st Synt. | Linear 58.2 £8.1 96.4 +£1.2 87.4+11.2 88.6 £11.8
R B
0.15 =
01~ ]
0.05+ - i g
-0.05- #. ’ 4
01f
015- _
032 018 01 005 0 005 0.1 015
(a)
30 T T
20l |
10 « ¢ : 4
ok i R
10l ? e
20- |
a0- i
“% 20 K 0 10 20 30
(b)

FIGURE 1. 2-dimensional embeddings formed using the most significant
eigenvectors for the first synthetic database: (a) proposed method, (b)
method of [26] (figure is best viewed in color)
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(a)

FIGURE 2. Visualization of affinity (similarity) matrices obtained using dif-
ferent distance metrics: (a) ideal case, (b) Euclidean metric in the original
input space, (c¢) distance metric learned by the proposed method, (d) dis-
tance metric learned by the method of [26]

4 .
2 + f*' 4
e *
0!
o
2| .
5 2 0 2 4

Ficurke 3. XOR data

For the second synthetic database, we used 2-dimensional samples drawn from two-
component mixture models which are typically used in XOR problem. Figure 3 illustrates
the data. Classes are not linearly separable, thus we tested kernel methods with the
polynomial kernel with degree 2 and the Gaussian kernel. We used only 40 (20 similarity
and 20 dissimilarity) constraints. Classification and clustering accuracies are given in
Table 1 and Table 2, respectively. The results are again averages over 50 runs as in the
previous case. For this database RCA does not work well since the data has nonlinear
distribution. The best classification accuracy is obtained by both the proposed method
and the Euclidean metric, whereas our proposed method is the best performer in terms of
clustering accuracy. Note that the clustering performance of the Euclidean metric is very
low. In general, all metric learning methods show an improvement over the Euclidean
metric. The 2-dimensional embeddings of test samples learned by the tested methods are
given in Figure 4, and the affinity matrices of the tested samples are plotted in Figure
5. The low-dimensional embeddings and affinity matrices are similar for both tested
distance metric learning methods using quadratic programming. The lower-dimensional
embeddings of the test samples obtained using the polynomial kernel are more separable
than the ones obtained using the Gaussian kernel. Also affinity matrices obtained using
the polynomial kernel are more similar to the ideal one, which shows that the polynomial
kernel is a better choice than the Gaussian kernel for this problem.

3.2. Experiments on UCI repository databases. Here we tested our proposed meth-
od on four databases (Iris, Ionosphere, Wine, and Wisconsin Diagnostic Breast Cancer
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TABLE 3. Low-dimensional databases selected from UCI repository

‘ Databases ‘ Number of Classes ‘ Data Set Size ‘ Dimensionality ‘

Tonosphere 2 351 34
Iris 3 150 4
Wine 3 178 13
WDBC 2 569 30
10} sl
6
4 .
5_
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FIGURE 4. 2-dimensional embeddings formed using the most significant
eigenvectors on the second synthetic database: (a) proposed method for
polynomial kernel, (b) Tsang and Kwok’s method [26] for polynomial kernel,
(¢) proposed method for the Gaussian kernel, (d) Tsang and Kwok’s method
[26] for the Gaussian kernel

— WDBC) chosen from UCI Repository. The key parameters of these datasets are sum-
marized in Table 3. For all datasets, we used the half of the samples for choosing 150
pair-wise equivalence constraints, and the remaining data samples are used for testing.
Classification and clustering accuracies are given in Table 4 and Table 5, respectively.
Results are averages over 20 runs.

Our proposed method with the Gaussian kernel achieves the best classification accu-
racies for all databases as shown in Table 4. In terms of clustering accuracy, RCA wins
for the Iris database whereas the proposed method again achieves the best results for the
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remaining three databases. Overall, the experiments show that the proposed method is
the best performer among all tested methods.

FIGURE 5. Visualization of affinity (similarity) matrices obtained using dif-
ferent distance metrics on the second synthetic database: (a) ideal case, (b)
Euclidean metric in the original input space, (c) distance metric learned by
the proposed method using polynomial kernel, (d) distance metric learned
by the method of [26] using polynomial kernel, (e) distance metric learned
by the proposed method using the Gaussian kernel, (f) distance metric
learned by the method of [26] using the Gaussian kernel

TABLE 4. Classification accuracies (%) for UCI databases

Data | Kernel | Euclidean Metric| RCA | Tsang and Kwok [26]| QPDML
Linear 95.75 + 2.6 93.56 + 3.2 95.00 £+ 3.1
Iris Polynomial 95.83 +£ 2.5 - 91.00 £+ 2.7 92.66 + 3.4
Gaussian — 96.16 + 3.0 96.67 £ 2.7
Linear 89.77 £ 2.7 86.59 &+ 2.6 88.87 £ 2.7
Tonosphere | Polynomial 87.23 £ 1.9 - 86.30 £ 2.1 88.91 £ 2.5
Gaussian - 92.87 £ 2.3 93.23+1.9
Linear 95.21 + 2.5 95.71 £2.0 95.91 £2.0
Wine Polynomial 93.15+ 1.9 - 95.48 £ 2.0 96.59 4+ 2.2
Gaussian - 95.15+ 1.9 96.75 + 2.2
Linear 89.08 £ 2.7 93.56 + 1.1 95.03 £ 1.0
WDBC Polynomial 94.26 = 1.4 - 94.26 £ 1.1 94.16 £ 0.9
Gaussian - 94.27 £ 0.9 95.28 + 0.9
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TABLE 5. Clustering accuracies (%) for UCI databases

Data Kernel | Euclidean Metric]| RCA | Tsang and Kwok [26]| QPDML
Linear 90.52 £ 7.1 86.23 £ 10.7 88.67 £ 11.3
Iris Polynomial 82.22 + 8.1 - 83.58 + 3.9 85.93 £5.8
Gaussian - 89.74+ 7.7 88.50 + 8.1
Linear 70.91 £4.0 60.70 £ 4.1 74.02 £6.7
Tonosphere | Polynomial 60.12 £1.8 - 61.81 £11.3 68.32 £ 8.6
Gaussian - 72.17+5.6 80.37+ 7.7
Linear 86.13 £5.0 84.87 £ 3.0 86.41 £+ 3.5
Wine Polynomial 82.67 £ 7.2 - 84.70 £ 3.4 86.62 4.0
Gaussian - 84.90 + 4.7 86.83 + 4.0
Linear 81.51 £2.4 87.13 £ 1.3 89.44 + 2.2
WDBC Polynomial 86.09 + 2.3 — 84.93 +1.1 84.58 £1.1
Gaussian - 87.13 £ 1.3 90.11 +1.3
TABLE 6. Classification accuracies (%) for ETH database
| Kernel | Euclidean Metric | RCA | Tsang and Kwok [26] | QPDML |
Linear 99.51 +£ 0.5 99.39 + 0.6 99.39 + 0.6
Polynomial 99.39 + 0.6 - 98.91+1.3 99.024+1.1
Gaussian - 99.39 + 0.6 99.39 + 0.6
TABLE 7. Clustering accuracies (%) for ETH database
| Kernel | Euclidean Metric | RCA | Tsang and Kwok [26] | QPDML |
Linear 98.06 + 3.2 94.21 +4.5 96.36 + 3.7
Polynomial 90.10 + 4.6 - 87.28 +9.9 87.61 4+ 10.1
Gaussian - 97.30 £4.3 97.72 £ 3.8

3.3. Experiments on ETH database. To assess the performance of our method, we
have performed experiments on ETH-80 [19] database to discover object groups. We used
only four categories from the ETH-80: Apple, Car, Cow and Cup. Each category contains
images of 10 to 14 objects under different viewpoints, against a flat blue background. We
used a ‘bag of features’ representation for the images as they are too diverse to allow
simple geometric alignment of their objects. In this approach, patches are sampled from
the image at many different positions and scales, either densely, randomly or based on
the output of some kind of salient region detector. In our case we select patches following
a dense grid. Then each patch is represented by a 128-dimensional SIFT descriptor [21].
Following this process, all descriptors extracted from images are quantized in a discrete
set of so-called ‘visual keywords’ forming a vocabulary. To build image representation,
each extracted descriptor is compared with the visual keywords and associated to the
closest keyword. Based on these assignments, we build histograms which are used as
image feature vectors. The size of the histograms is chosen to be equal to 500. The
dimensionality is too high thus we first reduced the dimensionality to 10 by using Locality
Preserving Projection method [15]. We used 200 equivalence constraints to learn the
distance metrics. Classification and clustering accuracies are given in Table 6 and Table
7, respectively, and results are obtained using 5-fold cross validation. Both the best
classification and clustering accuracies are obtained by RCA. All remaining methods yield
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the same second best classification accuracy. However, in terms of clustering accuracy,
our proposed method comes the second best performer.

4. Summary and Conclusion. In this paper we proposed a new pseudo-distance met-
ric learning method that uses pair-wise equivalence constraints. The metric learning
problem is formulated as a quadratic optimization problem as in [26], but we encourage
maximizing local margins in the process as well. Our proposed method can work over an
implicit nonlinear feature space by using the kernel trick, and the number of user-chosen
parameters is less compared with the method of [26] (User has to fix two parameters
in our proposed method whereas three parameters must be set in the method of [26]).
We also showed how to find the lower dimensional embeddings induced by the learned
pseudo-distance metrics. Experimental results show that the proposed method increases
performance of subsequent clustering and classification algorithms in many cases, and it
usually outperforms the method of [26].
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