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Abstract. This paper deals with the nonlinear control of a three-state continuous-stirred
tank system (CSTR) using the backstepping technique. A nonlinear state transformation
is introduced so that the backstepping technique could be utilized on the transformed sys-
tem. The backstepping controller is first designed for the nominal CSTR system. Then
an augmented backstepping control law is designed for the uncertain CSTR model where
a high gain switching term, based on sliding mode control theory, is utilized to add ro-
bustness to the proposed controller. The proposed controllers are shown to drive the
output trajectories to their respective desired values, hence, ensuring the stability of the
closed-loop system. Finally, several simulation studies are presented to illustrate the ef-
fectiveness of the proposed control laws.
Keywords: Nonlinear systems, CSTR, Backstepping control, Stability

1. Introduction. Continuous-stirred tank rectors (CSTRs) are essential components in
chemical industries, where the tanks are continuously stirred to reach specific outputs.
The different mathematical models derived for CSTRs are generally highly nonlinear
which poses a challenge to the design of controllers for these systems. It is common to
linearize the CSTR system about some operating points in order to simplify the control
design. Several control strategies were proposed for the stabilization and tracking of
CSTRs. Some of these strategies are reviewed below.

In [1], a linearizing state-feedback controller transforms the nonlinear dynamics of a
CSTR into a first order linear model. Then, a predictive functional controller based
on neural networks is used to control the linearized model of the system. The work of
Colantonio et al. [2] uses an input-output feedback linearization controller and a second
order sliding-mode controller for the disturbance rejection of a CSTR system. An adaptive
control approach to the CSTR problem with a neural network model is introduced in
[3]; stability of the closed-loop system is analysed using Lyapunov techniques. In [4], a
model-based predictive control algorithm is presented for a nonlinear time-delay system
with input constraints. The proposed algorithm showed a satisfactory performance when
implemented on a constrained CSTR system. In [5, 6], a model predictive controller is
used for the disturbance rejection in a CSTR model; sufficient conditions for offset-free
control are given. In [7], a control law based on quantitative feedback theory (QFT) is
designed for the temperature control of a CSTR model with exothermic reactions. The
linear controllers are derived based on the linearization of the nonlinear model about
some operating points. In [8], adaptive control of the CSTR is introduced where an
external linear model is used to approximate the process. In [9], output tracking of a
constrained CSTR using LPV description of the nonlinear process along with admissible

7747



7748 S. ALSHAMALI AND M. ZRIBI

set theory is addressed. Backstepping control is a well-known technique that is used for
the control design of systems with special structures [10]. Several types of backstepping
control strategies exist in the literature where it is combined with other control strategies
such as sliding mode control (SMC) and fuzzy control, to improve the overall system
performance. A backstepping control law is derived for the CSTR with uncertainty in
[11]; global uniform boundness results of the closed-loop dynamics are given. In [12], an
adaptive backstepping controller is designed for the temperature control of a CSTR; a
fuzzy estimator is utilized to estimate the unknown terms. An adaptive backstepping
controller for the tracking control of a CSTR is presented in [13]; a transformation of
the original system variables is introduced in order to be able to use the backstepping
technique.
In this work, a backstepping-based control design of a CSTR with non-constant tank

level is proposed. The CSTR model considered is given in [5, 6]. The objective of the
control design is to steer the controlled variables (tank level and mass concentration)
to their desired values. The key step in the design is the introduction of a nonlinear
transformation which changes the dynamics of the system into a form that is suitable for
backstepping design.
The paper is organized as follows. Section 2 of the paper presents the CSTR model

along with the transformation of the model into the new form. Section 3 proposes a
backstepping control design for the nominal (unperturbed) model of the CSTR. A robust
backstepping controller for the uncertain CSTR is proposed in Section 4, where external
disturbances as well as parametric uncertainties are introduced into the model. Simulation
results verifying the effectiveness of the control design are given. Moreover, this controller
is compared with the standard PI controller. Finally, some concluding remarks are given
in Section 5.
Notation: For convenience, the arguments of a function are sometimes omitted in the

analysis when no confusion can arise.

2. The Model of the Tank System. This work considers a continuously stirred tank
reactor, depicted in Figure 1, where an irreversible exothermic reaction A → B takes
place. The reactor utilises an external cooling unit to regulate the temperature. The
CSTR model is adopted from the work in [5], and is given by

ḣ(t) =
F0 − F

πr2
(1)

ċ(t) =
F0(c0 − c)

πr2h
− k0ce

−E/R
T (2)

Ṫ (t) =
F0(T0 − T )

πr2h
+

−∆H

ρCp

k0ce
−E/R

T +
2U

rρ Cp

(Tc − T ) (3)

y(t) = [h(t) c(t)]T (4)

where the level of the tank, h(t), the molar concentration of species A, c(t), and the reactor
temperature, T (t), are the state variables of the reactor system. The control variables are
the outlet flow rate F (t), and the coolant liquid temperature, Tc(t). The output of the
process is y(t). The definitions and the values of the parameters in Equations (1)-(3) are
given in Table 1.
The objective of controlling the CSTR system is to steer the tank level, h(t), and the

molar concentration, c(t), to their desired values.
For convenience, the state vector x(t) and the inputs u1(t) and u2(t) are defined such

that: x(t) = [x1(t) x2(t) x3(t)]
T = [h(t) c(t) T (t)]T , u1(t) = F (t) and u2(t) = Tc(t).
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Figure 1. Schematic of the continuous-stirred tank reactor

Table 1. Parameters of the CSTR system

Parameter Definition of the parameter Nominal value

F0 Volumetric flow rate 0.1 m3/min
T0 Feed Temperature 350 K
c0 Feed concentration 1 kmol/m3

r Radius of the tank 0.219 m
k0 Reaction velocity/frequency factor 7.2× 1010 min−1

E/R Ratio of Arrehenius activation energy to the gas constant 8, 750 K
U Molar hold up 54.92 W/m2.K
ρ Molar density 1000 kg/m3

Cp Heat capacity 0.239 kJ/kg.K
∆H Heat of the reaction −5× 104 kJ/kmol

Therefore, the dynamic model, given by (1)-(4) can be written as

ẋ1(t) = a0 + a1 u1(t) (5)

ẋ2(t) = a2
1

x1(t)
+ a3

x2(t)

x1(t)
+ a4x2(t)e

− a5
x3(t) (6)

ẋ3(t) = a6
1

x1(t)
+ a3

x3(t)

x1(t)
+ a4a7x2(t)e

− a5
x3(t) + a8 x3(t) + a9 u2(t) (7)

y(t) = [x1(t) x2(t)]
T (8)

where the parameters ai (i = 0, . . . , 9) are defined in terms of the original system param-
eters as given in Table 2.

Clearly, the model given by (5)-(8) is highly nonlinear. Therefore, a nonlinear trans-
formation that transforms the system dynamics given in (5)-(8) into a form suitable for
backstepping design, is introduced. To this end, define the transformation:

z(t) = [z1(t) z2(t) z3(t)]
T

such that,

z1(t) = x1(t)

z2(t) = x2(t)

z3(t) = ā4e
− a5

x3(t) (9)
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Table 2. New parameters of the CSTR

Parameter Definition of the parameter

a0
F0

πr2

a1 − 1

πr2

a2
F0c0
πr2

a3 − F0

πr2

a4 −k0

a5
E

R

a6
F0T0

πr2

a7
∆H

ρCp

a8 − 2U

rρCp

a9
2U

rρCp

where ā4 = −a4. It can be easily checked that

ż3 =
ā4a5
x2
3

e
− a5

x3 ẋ3

=
z3 ln

2(z3/ā4)

a5
ẋ3

Taking the time-derivative of z(t) and invoking expression (9), the dynamics of the
CSTR system in terms of the new coordinates can be written as

ż1(t) = a0 + a1 u1(t) (10)

ż2(t) = a2
1

z1
+ a3

z2
z1

− z2z3 (11)

ż3(t) = Γ(z) +
a9z3 ln

2(z3/ā4)

a5
u2(t) (12)

y(t) = [z1(t) z2(t)]
T (13)

where

Γ(z) =
z3 ln

2(z3/ā4)

a5

(
a6
z1

− a3a5
z1 ln(z3/ā4)

− a7z2z3 −
a5a8

ln(z3/ā4)

)
.

Remark 2.1. Notice that the state x1 = z1 is a non-zero quantity since it represents the
level of the tank.

The system Equations (10)-(12) can be thought of as two sub-systems: sub-system (I)
which consists of Equation (10), and sub-system (II) which consists of Equations (11) and
(12). The two sub-systems will be treated separately. First, a classic feedback control
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design is utilised for the stabilisation of sub-system (I). Then, a backstepping control
design is proposed for sub-system (II).

3. Design of a Backstepping Controller.

3.1. Control design for sub-system (I). This sub-section considers a feedback control
design for Equation (10). Let α1 be a positive scalar, and define the error signal e1 such
that

e1 = z1 − z1d = y1 − y1d = x1 − x1d (14)

where z1d = y1d = x1d is the desired constant value of y1(t) = x1(t).

Proposition 3.1. Sub-system (I) is asymptotically stable under the control law

u1(t) = − 1

a1
(a0 + α1e1) (15)

Proof: Let V1(t) =
1
2
e21 be a Lyapunov function candidate for sub-system (I). Taking

the time-derivative of V1 along the trajectories of (10) and substituting for the control
law (15) gives

V̇1 = e1ė1

= e1(a0 + a1u1)

= −α1e
2
1

Since α1 > 0, then V̇1 is negative definite, and e1 tends to zero as t → ∞. Therefore, it
follows from Equation (14) that y1 → y1d and z1 → z1d as t → ∞. Therefore, x1 converges
to its desired value x1d as t tends to infinity. Thus, the steady-state value of the level of
the tank is achieved.

3.2. Backsteping control design of sub-system (II). In this sub-section, a control
design based on the backstepping methodology is proposed for sub-system (II). Recall
that the dynamics of sub-system (II) are such that

ż2(t) = a2
1

z1
+ a3

z2
z1

− z2z3 (16)

ż3(t) = Γ(z) +
a9z3 ln

2(z3/ā4)

a5
u2(t) (17)

Now, let

u2(t) = − a5

a9z3 ln
2(z3/ā4)

(Γ(z)− ubs(t)) (18)

where ubs(t) is the backstepping controller to be designed. Substituting for the control
law (18) into (17) renders the dynamics of sub-system (II) as follows:

ż2(t) = a2
1

z1
+ a3

z2
z1

− z2z3 (19)

ż3(t) = ubs(t) (20)

Viewing z3 as a virtual input to the ordinary differential equation given by Equation (19),
the control law z3 = φ(z2) is designed to stabilize the dynamics. Define the error signal
e2 such that

e2 = z2 − z2d = y2 − y2d = x2 − x2d (21)
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where z2d = y2d = x2d is the desired value of y2(t). Let α2 be a positive scalar. It can be
shown that the control law

z3 = φ(z2)

=
1

z2

[
a2
z1

+
a3z2
z1

+ α2e2

]
(22)

allows for asymptotic convergence of Equation (19) to its desired value. To show the
convergence of the output y2 to its desired value, let V2(t) = 1

2
e22(t) be a Lyapunov

function candidate. Taking the time derivative of V2(t) along the trajectories of (19), and
substituting for z3 from (22) gives

V̇2 = e2 ė2 = e2ż2

= e2

(
a2
z1

+ a3
z2
z1

− z2z3

)
= e2(−α2 e2)

= −α2e
2
2

Since α2 > 0, then V̇2 < 0, and e2 tends to zero as t → ∞. Therefore, from Equation
(21), it can be shown that y2 tends to y2d as t → ∞. Hence, x2 converges to its desired
value, x2d, as t → ∞ since x2 = z2. Therefore, the species concentration reaches the
steady-state value.
In the final step of the backstepping design, we define the signal q such that

q = z3 − φ(z2) (23)

Using (23), the system of Equations (19) and (20) can now be written as

ż2(t) = a2
1

z1
+ a3

z2
z1

− z2φ(z2)− z2q (24)

q̇(t) = v (25)

where v = ubs(t) − φ̇(z2). To design the controller v, we will consider the Lyapunov
function candidate V3 = V2 +

1
2
q2. The time-derivative of V3 along the trajectories of (24)

and (25) is such that

V̇3 =
∂V2

∂e2
ė2 + qq̇

=
∂V2

∂e2

[
a2

1

z1
+ a3

z2
z1

− z2φ(z2)

]
− ∂V2

∂e2
z2q + qv

The choice of v such that v = ∂V2

∂e2
z2 − α3q, where α3 is a positive scalar, results in V̇3

being negative definite such that

V̇3 ≤ −α2e
2
2 − α3q

2.

Therefore, it can be concluded that e2 and q converge to zero as t tends to infinity.
Finally, the backstepping control law can be written as

ubs(t) = φ̇(z2) + v

=
∂φ(z2)

∂z2

[
a2

1

z1
+ a3

z2
z1

− z2z3

]
+

∂V2

∂e2
z2 − α3q

= ξ(z2)

[
a2

1

z1
+ a3

z2
z1

− z2z3

]
+ z2e2 − α3(z3 − φ(z2))
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where

ξ(z2) =
∂φ(z2)

∂z2
= − a2

z1z22
+

α2z2d
z22

.

The previous development leads us to the following proposition.

Proposition 3.2. Sub-system (II) is asymptotically stable under the following control law

ubs(t) = ξ(z2)

[
a2

1

z1
+ a3

z2
z1

− z2z3

]
+ z2e2 − α3(z3 − φ(z2)) (26)

with

ξ(z2) = − a2
z1z22

+
α2z2d
z22

(27)

φ(z2) =
1

z2

[
a2
z1

+
a3z2
z1

+ α2e2

]
(28)

3.3. Simulation studies. A simulation study of the proposed backstepping controller is
presented in this sub-section. Consider the CSTR model given by (1)-(4) and re-defined
in (5)-(8), where the system parameters are given in Tables 1 and 2. The open-loop
steady-state values for the state and input variables, respectively, are given such that
hss = 0.659 m, css = 0.877 kmol/m3, Tss = 324.5 K, Fss = 0.1 m3/min and Tcss = 300 K
[5]. Therefore, the desired values of the states are taken such that hd = 0.659, cd = 0.877
and Td = 324.5. The initial conditions of the tank level, h(t), and the molar concentration,
c(t), are chosen to be 10% off the steady-state conditions. The controller parameters are
chosen to be α1 = 3, α2 = 1 and α3 = 5.

The performance of the system given by (1)-(4) under the control law (15), (18) and
(26)-(28) is simulated using the Matlab/Simulink software. The simulation results are
presented in Figures 2 and 3. Figure 2 shows the evolution versus time of the CSTR output
trajectories [h(t) and c(t)] to their corresponding steady-state values. It can be seen that
the tank level h(t), and the molar concentration c(t) converge to their desired values.
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Figure 2. The tank level h(t), and the molar concentration c(t)
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Figure 3. The CSTR inputs u1 (F ) and u2 (Tc), and the backstepping
control action ubs(t)

Figure 3 depicts the state feedback control action, u1(t), the control input u2(t), and the
backstepping control action ubs(t). The outlet flow rate control action F shows almost a
steady action. The coolant liquid temperature control action Tc converges smoothly to its
steady-state value, 300 K. Finally, the backstepping control law decreases from its initial
value, and reaches the value of zero in finite time. Therefore, it can be concluded that the
designed backstepping controller for the CSTR model shows a satisfactory performance,
and hence it works well.

4. Design of a Robust Backsteping Controller. In the previous section, a backstep-
ping design for the CSTR was considered assuming the knowledge of the exact values
of the parameters and assuming no external disturbances acting on the system. In this
section, a modified CSTR dynamics are considered; where additional terms that represent
external disturbances and uncertainties in the parameters of the system are incorporated
into the original model of the system. As a consequence, a robust controller ensuring
closed-loop stability is necessary. A new backstepping design, utilizing high frequency
terms similar to those used in the well-known sliding mode control (SMC) scheme, is
proposed.

4.1. The model of the CSTR system with external disturbances. Consider the
following CSTR model:

ẋ1(t) = a0 + a1u1(t) + d1 (29)

ẋ2(t) = a2
1

x1(t)
+ a3

x2(t)

x1(t)
+ a4x2(t)e

− a5
x3(t) + d2 (30)

ẋ3(t) = a6
1

x1(t)
+ a3

x3(t)

x1(t)
+ a4a7x2(t)e

− a5
x3(t) + a8 x3(t) + a9 u2(t) + d3 (31)

y(t) = [x1(t) x2(t)]
T (32)
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where the terms d1, d2 and d3 are disturbances on the tank’s height, the inlet’s concentra-
tion, and the inlet’s temperature equations, respectively. The uncertainties are assumed
to be unknown but with known maximum bounds such that 0 ≤ |d1| ≤ d̄1, 0 ≤ |d2| ≤ d̄2
and 0 ≤ |d3| ≤ d̄3, where d̄1, d̄2 and d̄3 are positive known upper bounds on d1, d2 and d3,
respectively. Applying the transformation given by (9), the dynamic model of the CSTR
in terms of the transformed variables is given by

ż1(t) = a0 + a1u1(t) + d1 (33)

ż2(t) = a2
1

z1
+ a3

z2
z1

− z2z3 + d2 (34)

ż3(t) = Γ(z) + d3
ln2(z3/ā4)

a5
z3 +

a9z3 ln
2(z3/ā4)

a5
u2(t) (35)

y(t) = [z1(t) z2(t)]
T (36)

where

Γ(z) =
z3 ln

2(z3/ā4)

a5

(
a6
z1

− a3a5
z1 ln(z3/ā4)

− a7z2z3 −
a5a8

ln(z3/ā4)

)
Now, let

u2(t) = − a5

a9z3 ln
2(z3/ā4)

(Γ(z)− ubs(t))

where ubs(t) is the backstepping controller to be designed. Then, Equation (35) becomes

ż3(t) = ubs(t) + d3
z3 ln

2(z3/ā4)

a5
(37)

4.2. Design of the controller. Let α1, α2, W1, W2, ζ1, ζ2, ζ3, ζ4 and ζ5 be positive
scalars. Also, let sign(σ) denote the signum function such that

sign(σ) =

 1 if σ > 0
0 if σ = 0
−1 if σ < 0

Proposition 4.1. The following control laws

u1(t) = − 1

a1
(a0 + α1e1 +W1sign(e1)) (38)

u2(t) = − a5

a9z3 ln
2(z3/ā4)

(Γ(z)− ubs(t)) (39)

ubs(t) = ξ(z2)

[
a2

1

z1
+ a3

z2
z1

+ d̂2 − z2z3

]
+ z2e2 −W4(z3 − φ(z2))−W3sign(q) (40)

with

W1 = d̄1 + ζ1 (41)

W2 = d̄2 + ζ2 (42)

W3 = d̄3
ln2(z3/ā4)

a5
|φ(z2)|+ ζ3 (43)

W4 = d̄3
ln2(z3/ā4)

a5
+ ζ4 (44)
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φ(z2) =
1

z2

[
a2
z1

+
a3z2
z1

+ α2e2 +W2sign(e2)

]
(45)

ξ(z2) =
∂φ(z2)

∂z2
(46)

when applied to the system Equations (33)-(35) results in the asymptotic stability of the
closed loop system.

Proof: Let V4(t) =
1
2
e21 be a Lyapunov function candidate where e1 = z1 − z1d. Taking

the time-derivative of V4 along the trajectories of (33) and substituting for the control
law (38) gives

V̇4 = e1(−α1e1 −W1sign(e1) + d1)

≤ −e21 −W1|e1|+ d̄1|e1|
= −α1e

2
1 − ζ1|e1|

where the gain (41) has been utilised. Since α1 > 0 and ζ1 > 0, then V̇4 is negative
definite, hence, e1 tends to zero as t → ∞.
Proceeding in a similar fashion as that of the previous section, the virtual control law

for Equation (34) is chosen to be

z3 = φ(z2) =
1

z2

[
a2
z1

+
a3z2
z1

+ α2e2 +W2sign(e2)

]
(47)

To show that this virtual controller stabilizes (34), let V5 = 1
2
e22, where e2 = z2 − z2d.

Taking the time-derivative of V5 along the trajectories of (34) and substituting for the
virtual control law (47) gives

V̇5 = e2(−α2e2 −W2sign(e2) + d2)

≤ −α2e
2
2 −W2|e2|+ d̄2|e2|

which after using (42) gives

V̇5 ≤ −α2e
2
2 − ζ2|e2|.

For the final step of the backstepping design, let

q = z3 − φ(z2) (48)

The system Equations (34) and (37) can now be written as

ż2(t) = a2
1

z1
+ a3

z2
z1

+ d2 − z2φ(z2)− qz2 (49)

q̇(t) = v + d3
ln2(z3/ā4)

a5
z3 (50)

where v = ubs(t)− φ̇(z2). Now, consider the Lyapunov function candidate V6 = V5 +
1
2
q2.

Then the time-derivative of V6 along the trajectories of (49) and (50) is such

V̇6 =
∂V5

∂e2
ė2 + qq̇

= e2

[
a2

1

z1
+ a3

z2
z1

+ d2 − z2φ(z2)

]
− qz2e2 + q

(
v + d3

ln2(z3/ā4)

a5
z3

)
(51)

Let

v = e2z2 −W4q −W3sign(q) (52)
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where W3 and W4 are given by (43) and (44), respectively. Substituting Equation (52)
into (51) and invoking expressions (43) and (44) gives

V̇6 ≤ −α2e
2
2 − ζ3q

2 − ζ3|q|

Hence, V̇6 is negative definite. Therefore, e2 and q converge to zero as t → ∞. Finally,
the backstepping control law, ubs(t), is expressed as

ubs(t) = φ̇(z2) + v

= ξ(z2)

[
a2

1

z1
+ a3

z2
z1

+ d̂2 − z2z3

]
+ z2e2 −W4(z3 − φ(z2))−W3sign(q)

where ξ(z2) is given by (46).

Remark 4.1. Notice that due to the discontinuous nature of the signum function, a
continuous approximation of this function is used. In this case, the signum function
sign(e2) is replaced by the hyperbolic tangent, tanh

(
e2
ε

)
, where ε is a small number.

Remark 4.2. Due to the fact that the actual disturbance d2 is unknown, in the expression
for ubs(t), the value of d2 is substituted for by d̂2. In the simulations, the two extreme

values of d̂2, namely, d̂2 = 0 and d̂2 = d̄2 are used.

4.3. Simulation results. Consider the CSTR model (29)-(32) where the external sig-
nals and their corresponding amplitude and duration are given in Table 3. The initial
conditions are chosen to be h(0) = 0.7249, c(0) = 0.7893 and T (0) = 324.50. The desired
values of the tank level and the molar concentration are 0.6590 and 0.8770, respectively.
The controller gains are chosen to be α1 = 1, α2 = 1, ζ1 = 0.75, ζ2 = 0.15, ζ3 = 0.15,
ζ4 = 1.5. The maximum values of the external disturbances are d̄1z = 0.3, d̄2z = 0.2 and
d̄3z = 3. In the simulation, the values zero and d̄2z were used for the term d̂2 given in
Equation (40). The difference in the simulations was insignificant. Finally, the approxi-
mation of the signum function used in the simulation is tanh(q/ε) where ε = 0.02. The
simulation results are presented in Figure 4.

Figure 4 depicts the output trajectories of the perturbed CSTR model. The proposed
backstepping controller is shown to steer the outputs to their corresponding desired values.
It can be seen that the tank level h(t) exhibits a fast convergence towards its desired value.
The trajectory of the molar concentration c(t) displays little oscillations before converging
to its desired value. Also, notice the effect of the disturbance d2 applied at 4 ≤ t ≤ 5 on
the response of c(t).

4.4. Comparison with a PI controller. The performance of the proposed robust slid-
ing mode controller is compared to a PI controller. Consider the CSTR system (33)-(36),
and the error signals e1 = z1 − z1d, e2 = z2 − z2d and e3 = z3 − z3d. The error dynamics

Table 3. External disturbance signals

Disturbance Amplitude Duration
d1 0.05 [2 3]
d2 0.1 [4 5]
d3 2 [2.5 3.5]
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Figure 4. The tank level h(t), and the molar concentration c(t) (with disturbances)

are given by

ė1(t) = a0 + a1 u1(t) + d1 (53)

ė2(t) = a2
1

e1 + z1d
+ a3

e2
e1 + z1d

− (e2 + z2d)(e3 + z3d) + d2 (54)

ė3(t) = Γ(e) +
ln2((e3 + z3d)/ā4)

a5
(e3 + z3d)[d3 + a9 u2(t)] (55)

Notice that Equation (53) and (55) can be written as

ė1(t) = f1 + g1u1(t)

ė3(t) = f3 + g3u2(t)

where f1, f3, g1 and g3 can be easily determined from (53) and (55). Let the PI controller
be such that

u1pi(t) = − 1

g1

(
f1 + k1pe1 + k1i

∫
e1

)
u2pi(t) = − 1

g3

(
f3 + k3pe3 + k3i

∫
e3

)
where k1p, k1i, k3p and k3i are the proportional and integral gains for u1pi(t) and u2pi(t),
respectively. Figure 5 shows the performance of the PI controller for the nominal case
(i.e., di = 0). Figure 6 shows the performance of the system when the PI controller is
used for the perturbed system. The controller gains are chosen as k1p = 3, k1i = 2,
k3p = 0.9 and k3i = 0.08. In Figure 5, the tank level response shows a fast convergence
to the desired value, however, the evolution of the concentration level takes a long time
before reaching the steady-state value. Figure 6 depicts the case where the disturbances
given in Table 3 are acting on the system. The tank level shows a sluggish performance
before reaching the steady-state value. The concentration level converges slowly to the
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Figure 5. The tank level h(t), and the molar concentration c(t) when the
PI controller is used (nominal system)
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Figure 6. The tank level h(t), and the molar concentration c(t) when the
PI controller is used (perturbed system)

desired value. It is, therefore, concluded that the proposed robust SMC outperforms the
PI-controller in terms of performance of the closed-loop system.

5. Conclusions. Nonlinear controllers based on the backstepping methodology are pro-
posed for the stabilization of a three-state CSTR system. An important step in the design
is the introduction of a nonlinear transformation that puts the CSTR dynamics into a
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form that is suitable for backstepping control design. At first, a control scheme is pro-
posed for the nominal model of the CSTR system. The design approach treats the model
as two sub-systems: a tank level sub-system and a molar concentration sub-system. The
tank level sub-system is controlled via a feedback control law, while the molar concentra-
tion sub-system is controlled through a backstopping control law. Then, a backstopping
controller is designed for the perturbed system. A switching term is incorporated into the
backstepping control law to ensure the closed-loop stability and improve the robustness.
It is shown that the proposed controllers drive the output trajectories to their correspond-
ing desired values. Simulation results have shown the effectiveness of the proposed control
schemes. Moreover, the performance of the proposed controller is compared with the per-
formance of the standard PI controller. The simulation results show that the proposed
controller outperforms the PI controller.
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