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Abstract. Stochastic programming is a well-known optimization problem in resource
allocation, optimization decision, etc. In this paper, we first analyze the essential features
of stochastic programming and the deficiencies of the existing methods. To systematically
process the objective function and constraints, we give the principles we should obey in
seeking for the optimal decision, and further we give an axiomatic system for synthesis
effect function. Based on synthesis effect function, we establish a general solution model
(simply denoted as BSE-SGM) for stochastic programming problem, discuss the concavity
of BSE-SGM, and analyze the effectiveness of BSE-SGM by an example. The results
indicate that our method includes the existing stochastic programming methods, which
can integrate the decision consciousness into the solution process effectively.
Keywords: Stochastic programming, Synthesis effect, Uncertainty, Reliability, BSE-
SGM

1. Introduction. Randomness is a widespread uncertainty and unavoidable in many
practice. Processing random information is very important in production management,
artificial intelligence, complex systems optimization, etc. A random variable can be re-
garded as a family of data satisfying some laws, and there no order relation exists; there-
fore, the common programming methods are not suitable for stochastic programming
problem. At present, there are three basic methods for the stochastic programming prob-
lem: 1) Expectation model [1]. Its basic idea is to describe a random variable with its
mathematical expectation, and then convert a stochastic programming into a general one.
2) Chance-constrained model [2]. Its basic idea is to convert stochastic constraints and
objective functions into ordinary ones respectively through some reliability principles. 3)
Dependent-chance programming model [3]. Its basic idea is to regard objective functions
and constraints as events under random environment, and then solve the stochastic pro-
gramming problem by maximizing the probability of related events. These methods have
good theoretical foundations, and also have been applied to many fields successfully. [4]
studied measures program of oilfield by using expectation model, [5] established the ex-
pectation model for random transportation problems, and [6] considered the problem of
producing and transporting a unique product directly from origin to a destination where
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demands are stochastic using expectation model, [7] used it to optimize allocation of har-
monic filters on a distribution network, [8] studied disaster prevention flood emergency
logistics planning problems using chance-constrained programming, [9] proposed a mixed
chance-constrained programming model with randomness and fuzziness, [10] proposed
possibilistic programming problems formed by a set of possibilistic constraint conditions
with possibilistic ideal goals of decision variables, and the two possibility distributions were
considered for reflecting the inherent uncertainty in the decision problems. However, these
methods could not solve the stochastic programming under complicated environment ef-
fectively, and a couple of deficiencies still exist: 1) the expectations cannot effectively
describe and represent random variables for extreme uncertainty, and it is difficult to
ensure the reliability of expectation model; 2) when the stochastic features are complex
(that is, the probability distributions of objective and constraints are often difficult to
describe precisely), the computational complexity of the chance-constrained model and
dependent-chance programming model are too high. In view of the above problems, many
scholars have studied this problem from different aspects; for example, [11-15] constructed
some solution methods through integrating random simulation and some intelligent al-
gorithms (such as genetic algorithm, simulated annealing algorithm, and particle swarm
optimization algorithm). However, random simulation must involve lots of tests, so these
methods are only suitable for small-scale stochastic programming problem, and all have
strong points. Until now, there still no systematic and effective stochastic programming
methods exist.
In this paper, by analyzing the basic features of stochastic programming and the defi-

ciencies of existing methods, we have the following contributions: a) we give the principles
we should obey in processing the objective function and constraints, and then give an ax-
iomatic system for synthesis effect function; b) based on the synthesis effect function, we
establish a general solution model (simply denoted as BSE-SGM); c) we analyze the fea-
tures of our model by an example, and the results indicate that our methods are effective.
In what follows, for the random variable ξ and event A on a probability space (Ω, ß,Pr),

let E(ξ) and D(ξ) be the mathematical expectation and variation of ξ, respectively, and
Pr(A) be the probability of A.

2. Overview of the Stochastic Programming Methods. Stochastic programming
involves in many fields such as production management, resource allocation etc. And the
general mathematical form is{

max f(x, ξ),
s.t. gj(x, ξ) ≤ 0, j = 1, 2, · · · ,m.

(1)

Here, x = (x1, x2, . . . , xn) is the decision vector, ξ = (ξ1, ξ2, . . . , ξn) is the given random
vector on (Ω, ß,Pr), f(x, ξ), gj(x, ξ) are random variable functions, j = 1, 2, · · · ,m.
As there no simple order exist between random variables, and gj(x, ξ) ≤ 0 mostly

could not be completely satisfied, model (1) is just a model in form and cannot be solved
directly. It is necessary to convert (1) into ordinary one by some strategies.
1) Expectation model. We use the mathematical expectation to replace the random

variable approximately, then model (1) can be converted into the following model (2):{
maxE(f(x, ξ)),
s.t. E(gj(x, ξ)) ≤ 0, j = 1, 2, · · · ,m.

(2)

Generally, model (2) is called the Expectation model [1]. When the variation is larger,
the mathematical expectation could not describe the random variable effectively. So we
could not get the optimal solution of the stochastic programming by model (2).
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2)Chance-constrained model. The constraint of the stochastic programming cannot
be often satisfied absolutely. If we use the reliability to deal with the constraints and
objective functions, then model (1) can be converted into the following model (3): max f(x),

s.t. Pr(f(x, ξ) ≥ f(x)) ≥ α,
Pr(gj(x, ξ) ≤ 0) ≥ αj, j = 1, 2, · · · ,m.

(3)

Generally, model (3) is called the chance-constrained model [2]. Here, αj, α ∈ [0, 1] are
the reliabilities that the decision should satisfy. Compared with model (2), this model
can control the quality of the decision beforehand, but it still cannot realize the solution
if the distribution of f(x, ξ) and gj(x, ξ) are complex or difficult to describe.

3) Dependent-chance programming model. Please see the following examples,
a natural gas company has three gas stations (the maximum supplies are ξ1, ξ2, ξ3,
respectively, and they all exist uncertainty). The three stations supply gas for four living
quarters (the demands are c1, c2, c3, c4, respectively). If the ith station supply xij unit
gas for the jth living quarter, then Σ3

i=1xij = cj is a random event, that is, fj(x) =
Pr{Σ3

i=1xij = cj} is a chance function, and it can be abstractly described as fj(x) =
Pr{hj(x, ξ) ≤ 0}. Then we can get model (4): max f(x) = Pr{Σ3

i=1xij = cj, j = 1, 2, 3, 4},
s.t. Σ4

j=1xij ≤ ξi, i = 1, 2, 3,
xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4.

(4)

For the above problems, [3] proposed dependent-chance programming, that is{
maxPr(hk(x, ξ)) ≤ 0, k = 1, 2, · · · , q,
s.t. gj(x, ξ) ≤ 0, j = 1, 2, · · · , p. (5)

Here, x = (x1, x2, · · · , xn) ∈ Rn is decision variable, ξ = (ξ1, ξ2, · · · , ξn) is a given random
variable vector in (Ω, ß,Pr), hk(x, ξ) is a chance function, gj(x, ξ) is a chance constraint.

Stochastic programming is an uncertain decision problem, the results cannot gener-
ally satisfy the related constraints absolutely. Therefore, it is more suitable synthetically
considering the constraint satisfaction and the size of objective. To establish a general
solution model under this idea, we can synthesize the objective and constraint satisfaction
through some strategies (called the synthesis effect function), then discuss the program-
ming based on the synthesis effect value. Following will give the axiomatic system for
multi-attribute random synthesis effect functions.

3. The Axiomatic System for Synthesis Effect Function. In the following, we
mainly discuss the synthesis strategy of objective and the constraints satisfaction of the
maximization stochastic programming problem with single objective (real function) and
multi-constraints. According to the essential features of the optimal decision, we should
obey the following principles in seeking for the decision scheme of stochastic programming.

Principle 1 If the satisfaction degree of constraints is same, the greater the objective
is, the better the effect is;

Principle 2 If the objective is same, the greater the satisfaction degree of constraints
is, the better the effect is;

Principle 3 If the constraints are absolutely satisfied, the decision only depends on
the objective;

Principle 4 If some constraints are absolutely dissatisfied, we cannot make a decision.
If we abstractly regard the synthesis strategy of objective and satisfaction degree of

constraints as a function S(u, v) = S(u, v1, v2, · · · , vm) (here, u is the objective with the
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conversion interval Θ; vi is the satisfaction degree of the ith constraint with the conversion
interval [0, 1], that is, S(u, v) is a map on Θ × [0, 1]m → (−∞,+∞)), then the above
principles can be equivalent to the following four conditions:
Condition 1 For any given u ∈ Θ, S(u, v) is monotone non-decreasing in each vi;
Condition 2 For any given v = (v1, v2, · · · , vm) ∈ [0, 1]m, S(u, v) is monotone non-

decreasing in u;
Condition 3 S(u, 1, 1, · · · , 1) is strictly monotone increasing;
Condition 4 When Πm

j=1vj = 0, S(u1, v1, v2, · · · , vm) = S(u2, v1, v2, · · · , vm) for any
u1, u2 ∈ Θ.
Obviously, for uncertain decision problem, Principles 1-3 must be obeyed, while Prin-

ciple 4 can be loosed. For convenience, we call S(u, v) satisfying Conditions 1-3 synthesis
effect function on Θ, and S(u, v) satisfying Conditions 1-4 uniform synthesis effect func-
tion on Θ.

Remark 3.1. For multi-objective decision, the above four principles must be also obeyed,
so we can similarly establish the axiomatic system for its synthesis effect function.

According to the above definition, we have the following conclusions:
1) For any given a < b ∈ (−∞,+∞), S(u, v1, v2, · · · , vm) = (u− a)(b− a)−1 ∧ v1 ∧ v2 ∧

· · · ∧ vm is a uniform synthesis effect function on [a, b]. Here, ∧ is min operation of real
numbers.
2) For any given k ∈ (0,+∞), c ∈ [0,+∞), αj ∈ (0,+∞), S(u, v1, v2, · · · , vm) =

k(u+ c)Πm
j=1v

αj

j is a uniform synthesis effect function on [0,+∞).

3) For any given α ∈ (0,∞), βj ∈ [1,∞), S1(u, v1, v2, · · · , vm) = uαΠm
j=1v

βj

j is a uniform

synthesis effect function on [0,+∞); S2(u, v1, v2, · · · , vm) = exp(αu)Πm
j=1v

βj

j is a uniform
synthesis effect function on (−∞,+∞).
4) For any given α ∈ (0,∞), λj ∈ (0, 1], S1(u, v1, v2, · · · , vm) = uΠm

j=1δ(vj − λj) is a
uniform synthesis effect function on [0,+∞); S2(u, v1, v2, · · · , vm) = exp(αu)×Πm

j=1δ(vj−
λj) is a uniform synthesis effect function on (−∞,+∞); S3(u, v1, v2, · · · , vm) = αu +
Σm

j=1η(vj − λj) is a uniform synthesis effect function on (−∞,+∞). Here, δ(t) = 0 for
t < 0, and δ(t) = 1 for t ≥ 0; η(t) = −∞ for t < 0, and η(t) = 1 for t ≥ 0.
5) For any given a, b, αj ∈ (0,+∞), j = 1, 2, · · · ,m, S(u, v1, v2, · · · , vm) = bu +

aΣm
j=1αjvj is a synthesis effect function on (−∞,+∞), but is not uniform.

4. Stochastic Programming Model Based on Random Synthesis Effect Func-
tion (BSE-SGM).

4.1. Description of BSE-SGM. Using the above synthesis strategy, for stochastic
programming problem (1), if we regard u and vj in S(u, v1, v2, · · · , vm) as the concen-
trated quantification value C(f(x, ξ)) of f(x, ξ) and the satisfaction degree βj(x) =
Sat(gj(x, ξ) ≤ 0) of the ith constraint for the scheme x, respectively, then S(C(f(x, ξ)),
β1, β2, · · · , βm), considering both objective and constraint, is a quantitative descriptive
model measuring the quality of the solution, so model (1) can be converted into the
following model (6):{

maxS(C(f(x, ξ)), β1(x), β2(x), · · · , βm(x)),
s.t. x ∈ X.

(6)

Here, (inf C(f(x, ξ)), supC(f(x, ξ))) ⊂ Θ, S(u, v1, v2, · · · , vm) is a (uniform) synthesis
effect function on Θ. For convenience, we call (6) stochastic programming model based
on synthesis effect, simply denoted as BSE-SGM.
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4.2. Features of BSE-SGM.

Theorem 4.1. If model (1) is a crisp programming, (inf f(x, ξ), sup f(x, ξ)) ⊂ Θ, S(u, v1,
v2, · · · , vm) is a uniform random synthesis effect function on Θ. When the number of
elements in ∩m

j=1{w|gj(w, ξ) ≤ 0} is more than 1, and f(x, ξ) is not constant function on
∩m

j=1{w|gj(w, ξ) ≤ 0}, then model (6) and model (1) have the same optimal solution.

Proof: As the constraint of a crisp programming only has two states: satisfied or
dissatisfied, βj(x) only has two values: 0 or 1, that is, βj(x) = Sat(gj(x, ξ) ≤ 0) = 1 for
gj(x, ξ) ≤ 0, and βj(x) = Sat(gj(x, ξ) ≤ 0) = 0 for gj(x, ξ) > 0.

1) If x∗ is the optimal solution of model (1), then βj(x) = Sat(gj(x, ξ) ≤ 0) = 1,
j = 1, 2, · · · ,m. In the following, we will prove S(C(f(x, ξ)), β1(x), β2(x), · · · , βm(x)) ≤
S(C(f(x∗, ξ)), β1(x

∗), β2(x
∗), · · · , βm(x

∗)) through two cases.
a) For any x ∈ ∩m

j=1{w|gj(w, ξ) ≤ 0}, by f(x, ξ) ≤ f(x∗, ξ), βj(x) = Sat(gj(x, ξ) ≤ 0) ≡
1, D(f(x, ξ)) = 0, and the monotonicity increasing of C(f(x, ξ)) and S(u, 1, 1, · · · , 1), we
have that S(C(f(x, ξ)), β1(x), β2(x), · · · , βm(x)) ≤ S(C(f(x, ξ)), 1, 1, · · · , 1) ≤ S(C(f(x∗,
ξ)), 1, 1, · · · , 1) = S(C(f(x∗, ξ)), β1(x

∗), β2(x
∗), · · · , βm(x

∗)).
b) For any x ∈ X−∩m

j=1{w|gj(w, ξ) ≤ 0}, at least there exists a j ∈ {1, 2, · · · ,m} such
that βj(x) = Sat(gj(x, ξ) ≤ 0) = 0, so Πm

j=1βj(x) = 0, combining with the properties of
S(u, v1, v2, . . . , vm), we know that S(C(f(x, ξ)), β1(x), β2(x), . . . , βm(x))=S(C(f(x, ξ)), 0,
0, · · · , 0) ≤ S(C(f(x∗, ξ)), 1, 1, · · · , 1) = S(C(f(x∗, ξ)), β1(x

∗), β2(x
∗), · · · , βm(x

∗)).
2) If x∗ is the optimal solution of model (6), then S(C(f(x, ξ)), β1(x), β2(x), · · · βm(x))≤

S(C(f(x∗, ξ)), β1(x
∗), β2(x

∗), · · · , βm(x
∗)) for any x ∈ X. Since S(u, 1, 1, . . . , 1) is strictly

monotone increasing, we only prove that x∗ ∈ ∩m
j=1{w|gj(w, ξ) ≤ 0}, then we can obtain

that x∗ is the optimal solution of model (1).
Actually, if x∗ /∈ ∩m

j=1{w|gj(w, ξ) ≤ 0}, then there must exist j such that βj(x
∗) =

Sat(gj(x
∗, ξ) ≤ 0) = 0, by this, we have that S(C(f(x∗, ξ)), β1(x

∗), β2(x
∗), · · · , βm(x

∗)) ≤
S(C(f(x, ξ)), β1(x), β2(x), · · · , βm(x)) for any x ∈ X, that is S(C(f(x∗, ξ)), β1(x

∗), β2(x
∗),

· · · , βm(x
∗)) = S(C(f(x, ξ)), β1(x), β2(x), · · · , βm(x)) for any x ∈ X, this implies that

S(f(x), β1(x), β2(x), · · · , βm(x)) is a constant function or −∞ on X. Particularly, S(C(f
(x, ξ)), β1(x), β2(x), · · · , βm(x)) is a constant function or−∞ on ∩m

j=1{w|gj(w, ξ) ≤ 0}. By
this and the number of elements in ∩m

j=1{w|gj(w, ξ) ≤ 0} is more than 1 and S(u, 1, 1, · · · ,
1) is strictly monotone increasing, we know that S(f(x, ξ), 1, 1, · · · , 1) is a constant func-
tion on ∩m

j=1{w|gj(w, ξ) ≤ 0}, this contradicts to the conditions.
In fact, most crisp programming problems satisfy that the number of elements in

∩m
j=1{w|gj(w, ξ) ≤ 0} is more than 1 and f(x, ξ) is not constant function on ∩m

j=1{w|gj(w,
ξ) ≤ 0}. So model (6) can be considered as an extension of ordinary programming prob-
lem. However, if f(x, ξ) or gj(x, ξ) exist randomness, the optimal solution determined by
different (uniform) synthesis effect functions is generally not same, sometimes even this
difference is great (see Section 5), and it can be popularly interpreted that this difference
is caused by different decision consciousness.

The above analysis indicate that, model (6) is the extension of the above three stochastic
programming problems discussed in Section 2. And, if we select different synthesis effect
function, model (6) can also be converted into the above three stochastic programming
problems, see the following Remarks 4.1-4.3.

Remark 4.1. If we use E(f(x, ξ)) to concentralizedly describe the size of f(x, ξ), βj(x) =
δ(E(−gj(x, ξ))) the satisfaction degree of gj(x, ξ) ≤ 0, then model (6) is the expectation
model (2) for S(u, v) = exp(u)η(Πm

j=1δ(vj − αj)). Here, δ(t) = 0 for t < 0, and δ(t) = 1
for t ≥ 0; and η(0) = −∞, η(1) = 1.
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Remark 4.2. If we use f(x) to concentralizedly describe the size of f(x, ξ), βj(x) =
Pr(gj(x, ξ) ≤ 0) the satisfaction degree of gj(x, ξ) ≤ 0, then model (6) is the chance-

constrained model (3) for S(u, v) = exp(u)η(Πm
j=1δ(vj − aj)). Here, f(x) = max{τ(x)|Pr

(f(x, ξ) ≥ τ(x)) ≥ α}, and δ(t) = 0 for t < 0, δ(t) = 1 for t ≥ 0; η(0) = −∞, η(1) = 1.

Remark 4.3. If we use fi(x) = Pr(hi(x, ξ) ≤ 0) to represent the satisfaction degree
of hi(x, ξ) ≤ 0, i = 1, 2, · · · , q, and fi(x) = Pr(gi(x, ξ) ≤ 0) the satisfaction degree of
gi(x, ξ) ≤ 0, i = q+1, q+2, · · · , q+p, then model (6) is the dependent-chance programming
model (5) for S(u, v) = Πq

i=1vi ·H(Πq+p
i=q+1vi). Here, H(0) = 0, and H(t) = 1 for t > 0.

These discussions indicate that our model is effective not only in theory, but also in
practice. It can embody the non-variance of stochastic programming, it has better struc-
tural characteristic and strong interpretation, therefore model (6) provides a theoretical
platform for solving stochastic programming problem. Remark 4.4 will give us an operable
method for model (6).

Remark 4.4. If we use (E(f(x, ξ)), D(f(x, ξ))) to describe the compound quantification of
f(x, ξ) from the size characteristic, and T (E(f(x, ξ)), D(f(x, ξ))) to represent C(f(x, ξ))
(Here, T (E(f(x, ξ)), D(f(x, ξ))) is some synthesis value of E(f(x, ξ)) and D(f(x, ξ)),
and T (x, y) satisfies: 1) T (s, t) is monotone non-decreasing on s; 2) T (s, t) is monotone
non-increasing on t, 3) T (s, 0) is increasing on s), and use βj(x) = Pr(gj(x, ξ) ≤ 0) to
represent the satisfaction degree of gj(x, ξ) ≤ 0, then the model (6) can be{

maxS(T (E(f(x, ξ)), D(f(x, ξ))), β1(x), β2(x), · · · , βm(x)),
s.t. x ∈ X.

(7)

Remark 4.5. In practice, most constraints in stochastic programming cannot be absolutely
satisfied, sometimes we pay more attention to the importance degree to each constraint,
please see the example given in introducing Dependent-chance programming in Section 2.
Through pre-setting a threshold value α that is the satisfaction degree to each constraint,
the existing stochastic programming methods could to some entent reflect the importance
degree to each constraint when making decision, but this limit is too absolute and also non-
continuous, while our model can not only embody the difference in importance for each
constraint during the process of decision, also reflect the continuity of decision conscious-
ness through the selection of synthesis effect function (including the form and parameters),
please see the example in Section 5.

4.3. Convexity of BSE-SGM. In the following, we will discuss the convexity of BSE-
SGM. First, we will introduce the concept of stochastic convex (concave).

Definition 4.1. [16] Let X ⊂ Rn be a convex set, ξ be a given random variable on
probability space (Ω, ß,Pr), f(x, ξ) be a random variable function on X.
1) If D(f(λx1+(1−λ)x2), ξ) ≤ λD(f(x1, ξ))+(1−λ)D(f(x2, ξ)) for any given x1, x2 ∈

X and λ ∈ [0, 1], then f(x, ξ) is stochastic convex with respect to x on X; 2) If D(f(λx1+
(1−λ)x2), ξ) ≥ λD(f(x1, ξ))+ (1−λ)D(f(x2, ξ)) for any given x1, x2 ∈ X and λ ∈ [0, 1],
then f(x, ξ) is stochastic concave with respect to x on X.

Theorem 4.2. Let X ⊂ Rn be a convex set, ξ be a given random variable on probability
space (Ω, ß,Pr), f(x, ξ) be a random variable function on X.
1) If f(x, ξ) = h(x)ϕ(ξ), and h(x) is a non-negative convex function on X, then f(x, ξ)

is stochastic convex with respect to x on X. 2) If f(x, ξ) = h(x)ϕ(ξ), and h2(x) is a
concave function on X, then f(x, ξ) is stochastic concave with respect to x on X. 3) If
f(x, ξ) = h(x)+ϕ(ξ), then f(x, ξ) is not only stochastic convex, but also stochastic concave
with respect to x on X. 4) For any real number a, af(x, ξ) has the same convexity or
concavity with f(x, ξ).
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It can be proved by the definition of convex and concave and the properties of variance.

Theorem 4.3. [16] If random variable function g(x, ξ) is joint convex with respect to
(x, ξ), and probability measure Pr is pseudo-concave, then for any given confidence level
α ∈ [0, 1], B = {x|Pr{g(x, ξ) ≤ 0} ≥ α} is a convex set.

Theorem 4.4. Let X ⊂ Rn be a convex set, ξ be a given random variable on probability
space (Ω, ß,Pr). If: 1) For any state of ξ, f(x, ξ) is convex with respect to x on X; 2)
f(x, ξ) is stochastic concave with respect to x on X; 3) T (s, t) is joint convex with respect
to (s, t); 4) gj(x, ξ) is joint convex with respect to (x, ξ), j = 1, 2, · · · ,m; 5) Probability
measure Pr is pseudo-concave, then (8) is a convex programming.

Proof: Denote Bj = {x|Pr{gi(x, ξ) ≤ 0} ≥ αj}, j = 1, 2, · · · ,m. From condition 4),
5) and Theorem 4.3, we know Bj are all convex set, so B = ∩m

j=1(Bj ∩X) is convex set.
In the following, we will prove T (E(f(x, ξ)), D(f(x, ξ))) is convex with respect to x on B.

For any given x1, x2 ∈ B and λ ∈ [0, 1], by 1), we know f(λx1 + (1 − λ)x2, ξ) ≤
λf(x1, ξ)+(1−λ)f(x2, ξ) and E(f(λx1+(1−λ)x2, ξ)) ≤ λE(f(x1, ξ))+(1−λ)E(f(x2, ξ)),
that implies that E(f(x, ξ)) is convex. Using the properties of T (s, t) and condition 2), 3),
we know that T (E(f(λx1 + (1− λ)x2, ξ)), D(f(λx1 + (1− λ)x2, ξ))) ≤ T (E(f(λx1 + (1−
λ)x2, ξ)), λD(f(x1, ξ))+ (1−λ)D(f(x2, ξ))) ≤ T (λE(f(x1, ξ))+ (1−λ)E(f(x2, ξ)), λD(f
(x1, ξ)) + (1− λ)D(f(x2, ξ))) ≤ λT (E(f(x1, ξ)), D(f(x1, ξ))) + (1− λ)T (E(f(x2, ξ)), D(f
(x2, ξ))). So T (E(f(x, ξ)), D(f(x, ξ))) is convex with respect to x on B.

Remark 4.6. Though Theorem 4.2 gives us some methods to judge the stochastic convex
or stochastic concave of f(x, ξ), a lot of cases in real life do not satisfy the Theorem 4.4,
for instance, f1(x, ξ) = xαξ are not stochastic concave for α ≥ 0.5.

The above theorems give some good properties of BSE-SGM from the theoretical level.
The fact reminds us using the analytical methods such as Newton method and simplex
method. for the solution to convex programming model (6). However, all these conclusions
need too strong conditions, BSE-SGM is still commonly not convex programming and we
cannot solve it through traditional methods. Therefore we can solve it by using some
intelligent algorithms such as genetic algorithm, and ant colony optimization algorithm.

5. Example Analysis. In this Section, we will further analyze the features of stochastic
programming model by a measure programming problem of oilfield.

Example 5.1. In the mid to late part of the oilfield mining process, the appropriate
measures (e.g., fracturing, acidizing, fill holes, plugging, transfer pumping, sand and heat
mining) to maintain wells are important to extend the field production life, lower oil and
gas costs and enhance the production rate. Due to that the exploitation of oil fields are
often subject to many random factors, and therefore, the oil field measure programming
can be described by the following stochastic programming problem:

max z =
∑n

i=1 qixi

s.t.
∑n

i=1 cixi ≤ TC ,
M− ≤

∑n
i=1 xi ≤ M+,

M−
i ≤ xi ≤ M+

i , i = 1, 2, · · · , n,
xi ≥ 0, and is an integer, i = 1, 2, · · · , n.

(8)

Here, n is the numbers of the measures; xi is the ith measure’s workload; TC are the
total cost of the measure programming, M− and M+ are the minimum of the total
workload and the maximum of the total workload respectively; M−

i and M+
i are the

minimum and maximum of the ith measure’s workload respectively; qi, ci are the unit
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production increment and the unit production cost for the ith measure. And qi is a
random variable with the uniform distribution U(q−, q+); ci is a random variable with the
uniform distribution U(c−, c+).
In model (8), we consider the following programming problem of the oilfield (denote

SOF for short) like that: 1) maintenance measures include: fracturing, acidification,
reperforating, water shutoff, transfer pumping, sand control, thermal mining, overhaul
and others; 2) the total cost of the measures TC = 45000 yuan; 3) the total workload of
the measures is not more than 5160 times for individual well; 4) the basic data of the
measures are presented in Table 1 and Table 2. So the measure programming is

max z =
∑9

i=1 qixi

s.t.
∑9

i=1 cixi ≤ 45000,∑9
i=1 xi ≤ 5160,

M−
i ≤ xi ≤ M+

i , i = 1, 2, · · · , 9,
xi ≥ 0, and is an integer, i = 1, 2, · · · , 9.

(9)

For uniform distribution U(a, b), using the expect value (a + b)/2 and variance (b −
a)2/12, we can easily get Table 3. In order to analyze the features of BSE-SGM, we only
solve the problem (9) by using the expectation model (2) and the BSE-SGM as follows.

Table 1. The parameters of U(q−i , q
+
i ) and U(c−i , c

+
i )

measures
increment production cost for individual

for individual well (ton) well (ten thousand yuan)
q− q+ c− c+

fractueing 1591 1619 29.93 36.85
acidificatio 2857 3000 53.74 68.2
reperforating 554 586 10.42 13.34
water shutoff 200 215 3.76 4.89

transfer pumping 759 867 15.7 19.73
sand control 77 80 1.45 1.82

thermal mining 430 436 8.2 9.79
overhaul 283 320 6.02 6.44
others 57 86 0.88 1.96

Table 2. The minimum and maximum of the every measure’s workload

measures minimum M−
i maximum M+

i

fractueing 180 210
acidification 50 70
reperforating 120 140
water shutoff 1000 1200

transfer pumping 120 150
sand control 350 500

thermal mining 1980 2140
overhaul 460 600
others 0 350
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Table 3. The mathematical expectation and variance of qi and ci

measures E(qi) E(qi) D(qi) D(ci)
fractueing 1605 33.39 65.333333 3.9905333
acidification 2928.5 60.97 1704.0833 17.4243
reperforating 570 11.88 85.333333 0.7105333
water shutoff 207.5 4.325 18.75 0.1064083

transfer pumping 813 17.715 972 1.3534083
sand control 78.5 1.635 0.75 0.0114083

thermal mining 433 8.995 3 0.210675
overhaul 301.5 6.23 114.08333 0.0147
others 71.5 1.42 70.083333 0.0972

(I) By model (2), (9) can be transformed into the general programming problem (10):

max z∗ = 1605x1 + 2928.5x2 + 570x3 + 207.5x4 + 813x5 + 78.5x6

+433x7 + 301.5x8 + 71.5x9

s.t. 33.9x1 + 60.97x2 + 11.88x3 + 4.325x4 + 17.715x5 + 1.635x6 + 8.995x7

+6.23x8 + 1.42x9 ≤ 45000,∑9
i=1 xi ≤ 5160,

M−
i ≤ xi ≤ M+

i , i = 1, 2, · · · , 9,
xi ≥ 0, and is an integer, i = 1, 2, · · · , 9.

(10)

(II) By using BSE-SGM: its parameters settings are: 1) use C(z) = E(z)[1 + (max√
D(z) −

√
D(z)) ÷ (max

√
D(z) − min

√
D(z))]a to describe the concentrated quan-

tification value of z (by Table 3, we know max
√

D(z) = 11196.21581, min
√
D(z) =

8737.60365); 2) use S(u, v) = uvb to describe the stochastic synthesis effect function, then
problem (9) can be transformed into the following general programming problem (11):

max z
′′
= (1605x1 + 2928.5x2 + 570x3 + 207.5x4 + 813x5 + 78.5x6 + 433x7

+ 301.5x8 + 71.5x9) ∗ βb[(11196.21581− (65.333333x2
1 + 1704.0833x2

2

+ 85.333333x2
3 + 18.75x2

4 + 85.333333x2
3 + 18.75x2

4 + 972x2
5 + 0.75x2

6

+ 3x2
7 + 114.08333x2

8 + 70.083333x2
9)

0.5)/2458.61276]a

s.t. β = Pr{c1x1 + c2x2 + c3x3 + c4x4 + c5x5 + c6x6 + c7x7 + c8x8 + c9x9

≤ 45000},
9∑

i=1

xi ≤ 5160, M−
i ≤ xi ≤ M+

i , i = 1, 2, · · · , 9,

xi ≥ 0, and is an integer, i = 1, 2, · · · , 9.

(11)

Obviously, a and b are the parameters describing the uncertainty consciousness. For any
given β ∈ (0, 1), we have βb → 0(b → +∞), βb → 1(b → +0), so b should not be too big,
nor too small, and its best value generally be limited to between 0-3. The greater (smaller)
b is, the greater (smaller) the satisfaction for constraints is. For the two solutions x and
y for programming model (9). If the compound quantification values of the objective z
are respectively C(z(x)) = 3500000, C(z(y)) = 3300000, and the levels of satisfaction for
constraint

∑9
i=1 cixi ≤ 45000 are respectively β(x) = 0.8, β(y) = 0.84, then we have: 1)

when b = 1, the synthesis effect value of x and y are z∗(x) = 3500000 × 0.8 = 2800000,
z∗(y) = 3300000×0.84 = 2772000 respectively, i.e., solution x is better than solution y; 2)
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when b = 2, the synthesis effect value of x and y are respectively z∗(x) = 3500000×0.82 =
2240000, z∗(y) = 3300000× 0.842 = 2328480, i.e., y is better than x. Similarly, for x > 0,
we know that (1 + x)a → +∞(a → +∞). Therefore, a should not be too big and its
best value generally be limited to between 0-2. The smaller a is, the smaller the required
level of uncertainty for objective is (for example, when a = 0, the quality of solution is
irrelevant to the variance of objective); the greater a is, the greater the required level of
uncertainty for objective is.
From the above analysis, we should synthetically consider both the objective and con-

straints, this is also required by the essence of decision. Otherwise, we may lose better
solution. And our model can realize the idea, while the existing stochastic programming
methods cannot.
Obviously, (10) and (11) are nonlinear programming problems and they cannot be

solved easily by analytical methods. We can give the solution strategy combining with
genetic algorithm, and its parameters setting are: binary code mode; mutation probability
is 0.001; crossover probability is 1; population size is 80; evolutionary generations is 100.
Then the results of the problem under different methods are shown in Table 4 (Here,
S.E.V. denotes the Synthesis Effect Value).

Table 4. The results of the problem (10) under different methods

Solving
Optimal Solution S.E.V.

Expectation Variation Constraint
Model of objective of objective satisfaction

Expectation (209, 70, 137, 1192, 147,
———— 2137905.0 10771.025 0.570

Model 491, 2133, 585, 196)

BSE-SGM

a=2, b=2
(206, 51, 124, 1008, 120,

7258181.43 1909597.0 8861.54 0.989
491, 2013, 464, 30)

a=1, b=2
(206, 51, 124, 1008, 120,

7258181.43 1909597.0 8861.54 0.989
491, 2013, 464, 30)

a=0.5, b=2
(209, 69, 134, 1008, 124,

2723354.26 2019608.0 9184.24 0.981
467, 2121, 460, 28)

a=0.1, b=2
(210, 70, 132, 1006, 12,

2163012.99 2042046.5 9371.04 0.979
492, 2137, 492, 75)

a=2, b=1
(203, 52, 123, 1020, 120,

7189480.11 1949794.0 8933.71 0.989
491, 2113, 460, 3)

a=1, b=1
(210, 51, 137, 1004, 121,

3751110.714 1974674 8984.42 0.988
500, 2122, 464, 77)

a=0.5, b=1
(210, 69, 132, 1012, 124,

2721162.081 2031868.5 9245.14 0.979
475, 2140, 467, 28)

a=0.1, b=1
(210, 70, 138, 1016, 124,

2164376.152 2046334.5 9355.49 0.976
498, 2135, 476, 97)

a=2, b=1
(200, 51, 133, 1003, 121,

7272507.75 1887932.0 8829.36 0.983
473, 1982, 462, 9)

a=1, b=1
(210, 52, 131, 1029, 122,

3688574.06 1965712.5 9041.35 0.976
447, 2103, 468, 31)

a=0.5, b=1
(208, 69, 120, 1000, 123,

2723908.596 2017709.5 9174.00 0.972
480, 2138, 464, 36)

a=0.1, b=1
(209, 70, 140, 1027, 120,

2167596.39 2047318.5 9356.06 0.971
488, 2136, 461, 199)

a=2, b=1
(210, 50, 132, 1000, 120,

7378074.89 1901368.0 8811.67 0.982
411, 1999, 460, 15)

a=1, b=1
(208, 51, 135, 1001, 120,

3777555.73 1967299.5 8933.87 0.975
476, 2132, 462, 29)

a=0.5, b=1
(209, 70, 139, 1002, 120,

2734517.49 2024983.0 9171.42 0.971
434, 2132, 464, 38)

a=0.1, b=1
(208, 69, 134, 1114, 131,

2174239.97 2058580.0 9553.91 0.968
483, 2134, 460, 112)
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The above analysis and computation results indicate: 1) BSE-SGM has good struc-
tural characteristics; 2) For the same stochastic programming problem, the variations of
the decision results and the satisfaction probability of constraints by using BSE-SGM are
generally smaller than that of expectation model, which shows that the decision reliability
of BSE-SGM is greater than that of the expectation model; 3) For the different synthesis
effect functions, the decision results are different, and even the difference is great. There-
fore, BSE-SGM can effectively integrate uncertainty process consciousness into decision
process.

6. Conclusion. In this paper, for the solution of stochastic programming, by analyzing
the deficiencies of the existing methods, combining with the essential features of stochastic
decision, we give the comparison method based on synthesis effect for random information,
and give an axiomatic system for random synthesis effect function, and establish a general
solution model for stochastic programming problem; further, we analyze the feature of
our model through an example. All the results indicate that BSE-SGM has good struc-
tural characteristics, it not only contains the existing random programming methods, and
can integrate the processing consciousness of stochastic information into the quantitative
operation process, and it extends and enriches the existing relevant theories, which laid
the foundation for further establishing random optimization theories and methods.
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