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Abstract. Data-structure preserved visualization of high-dimensional data reveals the
dataset borders and the spread and overlapping tendency of the class borders in a more
informative manner than the usual data-topology preserved mapping produced by Self-
Organizing Maps (SOMs). Hence, an extension of SOM called Probabilistic Regular-
ized SOM (PRSOM) is proposed for the data-structure preservation in the visualization;
however, PRSOM is less suitable for the classification task due to its regularized po-
sitioning of the prototypes. In many practical applications, a good classification rate
and data-structure informative visualization of high-dimensional data are simultaneously
required from an employed method. However, it is difficult to find a method in the cur-
rent literature that can perform these two tasks effectively. This paper proposes a vari-
ant of the Learning Vector Quantization (LVQ) algorithm as Data-Structure Preserving
LVQ (LV Qdsp) by combining the classical LVQ1 algorithm with a proposed visualiza-
tion mechanism to support these two tasks on high-dimensional datasets. Simulations
on several benchmark datasets demonstrated LV Qdsp’s promising capability of produc-
ing data-structure preserving visualizations in addition to offering excellent classification
rates.
Keywords: Data classification, Data-structure preserving visualization, Self-organizing
maps, Learning vector quantization

1. Introduction. Data-structure preserving visualization and the classification of high-
dimensional and complex data have been two active research interests over the past two
decades. However, it is difficult to find a method in the current literature that can perform
excellent classification on a labeled dataset, in addition to producing a data-structure
preserving visualization of the dataset simultaneously.

Data-structure preserving visualization can be defined as a <n → <l (n > 3, l ≤
3) mapping where high-dimensional data from the <n space are projected on a low-
dimensional (<l) space in such a way that the global relationship among the data samples
in <n space in terms of similarity quantification, often given by the Euclidean distance,
is effectively represented in the <l space, so that the inherent relationship among the
data samples in the <n space can be visualized. Such visualization reveals the borders
of the dataset, and the spread and the overlapping tendency of the class borders that
are insufficiently revealed by the usual data topology preserved mapping produced by
Self-Organizing Maps (SOM) [1] as shown in [2, 3].

Being more informative, data-structure preserved mapping inspired the development of
the two extensions of SOM called Visualization induced SOM (ViSOM) [2] and Proba-
bilistic Regularized SOM (PRSOM) [3] which are able to produce excellent data-structure
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preserving visualizations of high-dimensional data [2, 3]. Both PRSOM and ViSOM in-
tegrate a Multidimensional Scaling (MDS) [4] component with the SOM algorithm for
data-structure preservation. PRSOM uses a probabilistic approach motivated by the Soft
Topographic Vector Quantization (STVQ) algorithm [5], and is developed based on the
foundation introduced by the ViSOM [2] algorithm. PRSOM regularizes the spread and
positioning of the prototype vectors in the input space according to the inter-node dis-
tances in the 2D output grid, so that the inter-prototype distances in the input space
resemble the inter-node distances in the output grid in a trained map. Hence, PRSOM is
able to preserve the data-topology and the data-structure information in the mapping [3].
PRSOM has been proven more effective than Curvilinear Component Analysis (CCA)
[6], Sammon’s Mapping (SM) [7] and particularly ViSOM [2] in terms of data-structure
preserving visualization of high-dimensional data [3].
However, due to the constrained (regularized) positioning of the prototype vectors, PR-

SOM performs poor data quantization by the prototypes that eventually makes PRSOM
less suitable for the classification task. By using a larger map size with an empirical
parameter tuning, PRSOM can improve its data quantization performance; however,
the required computation then becomes impractical. Other classical methods of high-
dimensional data visualization, e.g., MDS [4] and SM [7] can produce data-structure
informative visualizations; however, they are not meant for vector quantization, learn-
ing and classification tasks. On the other hand, numerous methods with Artificial Neural
Networks (ANN) and non-ANN architecture have been widely applied to the classification
task. However, it is difficult to find a classification-focused method that can simultane-
ously support data-structure preserving visualization in the current literature.
Therefore, this paper proposes a practical method that can offer an excellent clas-

sification rate and data-structure preserving visualization of high-dimensional data. We
integrated the LVQ1 [8], i.e., the basic version of the Learning-Vector-Quantization (LVQ)
family, and a proposed visualization mechanism to propose the Data-Structure Preserving
LVQ (LV Qdsp) as a new variant of LVQ. A cost function is associated by combining the
vector-quantization error and the data-structure preservation error in the mapping. Sim-
ulations on several benchmark datasets are then conducted which show that the LV Qdsp

algorithm has a recognizable capability of producing data-structure preserving visualiza-
tion of high-dimensional data in addition to offering an excellent classification rate.
The remainder of this paper is organized as follows. Section 2 briefly describes the SOM

and PRSOM algorithms since they are used in the evaluation of LV Qdsp’s performance.
Section 3 describes the proposed LV Qdsp algorithm. Section 4 describes two quantification
criteria for the evaluation of data-structure preservation. Section 5 then reports the
simulations on the benchmark datasets. A discussion of the advantages, usability and
deficiency of the LV Qdsp algorithm is then given in Section 6. Section 7 concludes this
work.

2. SOM and PRSOM Algorithms.

2.1. Self-organizing maps (SOM). SOM [1] usually preserves data topology in a 2D
regular grid. Each node i in the grid is initially associated with a prototype vector
wi = [wi1, . . . , win] ∈ <n. In the incremental SOM training, each data sample x(t) ∈ <n

in discrete time step t is presented to the network, then a winner node c is selected based
on the closest similarity as,

c = argmin
i

‖x(t)− wi(t)‖, (1)
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where ‖ ∗ ‖ is the Euclidean distance between two vectors. Then, the winner node with a
set of neighboring nodes Nc is updated as,

wi(t+ 1) =wi(t) + α(t)hic(t)[x(t)− wi(t)], ∀i ∈ Nc,

wi(t+ 1) =wi(t), ∀i /∈ Nc,
(2)

where hic(t) is the neighborhood function that can be defined using a shrinking neigh-
borhood range σ(t) as,

hic(t) = exp

{
−‖ri − rc‖2

2σ(t)2

}
, (3)

where ‖ri − rc‖ is the Euclidean distance between a node i and the winner node c in the
output grid. Data-topology preservation is a very useful and discriminative feature of
SOM that has been employed in various application fields, e.g., [9-11].

2.2. Probabilistic regularized SOM (PRSOM). PRSOM [3] modifies the learning
rules of the ViSOM [2] algorithm using a probabilistic approach for soft assignments.
ViSOM introduced an extension of SOM by decomposing the force Jix(t) = [x(t)−wi(t)]
representing the force between any prototype wi and x(t) into two parts as, [x(t)−wi(t)] =
[x(t) − wc(t)] + [wc(t) − wi(t)] = Jcx(t) + Jic(t) = Jix(t), where Jcx(t) is the force from
the winner prototype wc(t) to x(t) and Jic(t) is the lateral force from wi(t) to wc(t). This
enables the data-structure preservation by mesh-like spreading of the prototypes [3].

Assuming that K is the number of nodes in the map, χ is a normalization constant,
and hjk is a neighborhood function given in Equation (3), the probabilistic assignment of
x(t) to jth node can be expressed as,

Pj(x(t)) =
1

χ
×

(∥∥∥∥ K∑
k=1

hjk [x(t)− wk(t)]

∥∥∥∥2)−1

, (4)

where Pj(x(t)) achieves the highest probability assignment if wj is the best matching
prototype to x(t). Then, the neighborhood-affected probabilistic assignment denoted as

pj(x(t)) for the jth node can be given as pj(x(t)) =
K∑
i=1

hijPi(x(t)), where
K∑
i=1

hij = 1.

Having the learning rate denoted as α(t), and a normalized probabilistic assignment
p′j(x(t)) representing p′j(x(t)) = pj(x(t))/max

k
{pk(x(t)}, PRSOM’s prototype updating

can be written as,

wj(t+ 1) = wj(t) + α(t)p′j(x(t))
K∑
i=1

pi(x(t)) [Jix(t) + Jji(t)Ω(t)] , (5)

where Jix(t) = [x(t) − wi(t)], Jji(t) = [wi(t)− wj(t)], and Ω(t) = γ

(
d2ij(t)− λδ2ij

)(
λδ2ij + Iij

) is a

MDS [4] component integrated for data-structure preservation, I is an identity matrix
to avoid the denominator term becoming zero [3], dij and δij are the distances between
the prototype of node i and j in the input space and their corresponding grid positions,
respectively. λ and γ are the resolution and the regularization parameters, respectively.

Setting appropriate γ and λ are challenging and require empirical assignments, due to
their data-dependent nature. A smaller λ may cause the prototypes to be placed too
densely to cover the data spread that will produce an inappropriate data representation
by the prototypes. On the other hand, a large λmay cause the prototypes to be positioned
beyond the data regions which increases the chances of dead nodes.
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3. Data-Structure Preserving LVQ (LV Qdsp).

3.1. Data-structure preservation. For a given dataset X = {x1, x2, . . . , xM} ∀x ∈ <n,
suppose that the corresponding counterparts in the low-dimensional (e.g., 2D) space are
known as Y = {y1, y2, . . . , yM} ∀y ∈ <l. Since the inherent data-structure can be repre-
sented by the global relationship among the data samples given by a similarity measure,
such relationship in the <n and <l spaces can be expressed by the following two relation-
ship matrices as,

DXn =

 R (x1, x1) · · · R (x1, xM)
...

. . .
...

R (xM , x1) · · · R (xM , xM)

 , DY l =

 R (y1, y1) · · · R (y1, yM)
...

. . .
...

R (yM , y1) · · · R (yM , yM)

 ,

where R(xi, xj) =
‖xi − xj‖

µn
and R(yi, yj) =

‖yi − yj‖
µl

∀i, j ∈ M , where µn and µl rep-

resent the maximum distance between all points in the <n and <l space, respectively.
Then, the data-structure of X can be called preserved in the <n → <l mapping if:
‖DXn−DY l‖ ≈ 0. A data-structure revealing mapping using ∀x ∈ X and ∀y ∈ Y is not
practical for the learning algorithms since data quantization is required by the learning
algorithms for knowledge representation and generalization.
If data quantization is performed by K number of nodes (K < M), then a set of

prototypes, i.e., W = {w1, w2, . . . , wK} ∀w ∈ <n, are positioned in such a way that W
approximates X sufficiently through training. Each wi can have a 2D coordinate vector
vi = [vi1, vi2], so that the set of coordinate vectors, i.e., V = {v1, v2, . . . , vK}, can be
positioned in the output layer for visualization. Then, the data-structure of X can be
revealed by V through W , provided that the following two conditions are sufficiently
satisfied.

1. First, sufficient preservation of the inter-point relative distances, i.e., ‖DW n −
DV l‖ ≈ 0, where DW n and DV l are the inter-point relationship matrices for W
and V , respectively in a trained network. DW n and DV l can be produced similarly
as shown for DXn and DY l above.

2. Second, sufficient quantization of X by W , i.e., 1
M

∑M
i=1 ‖xi − wp‖ ≈ 0, where p =

argmin
j
{‖xi − wj‖}.

These two conditions define the cost function of the LV Qdsp algorithm.

3.2. LVQ1. LVQ1 is the prime representative of the large LVQ family [8]. Let us assume
that ∀x ∈ <n are derived from a finite set of classes with overlapping distributions.
Initially, several prototypes w ∈ <n are assigned to each class of data samples. For data
sample xp(t) in a discrete time step t, the winner node wc(t) is selected as,

‖xp(t)− wc(t)‖ = argmin
i

‖xp(t)− wi(t)‖. (6)

Then, only the winner node is updated using a monotonically decreasing learning rate
α(t) (0 < α(t) < 1) as,

wc(t+ 1) = wc(t) + α(t)[xp(t)− wc(t)], if xp(t) and wc(t) belong to the same class, and

wc(t+ 1) = wc(t)− α(t)[xp(t)− wc(t)], if xp(t) and wc(t) belong to different classes.
(7)

The LVQ1 algorithm is routinely fast, and is able to produce a classification rate at least
as good as other supervised classifiers [8].
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3.3. Data-structure preserving visualization. First, a low-dimensional output layer
needs to be created to enable the proposed mechanism to produce visualization. The
output layer can be considered as a 2D space that holds the visualization. Each node i
is then associated with a display vector vi, which is randomly positioned in the output
layer. Let µout (user defined) specify the expected maximum Euclidean distance between
the display vectors in a trained map. Let there be another scaling constant µin to represent
the maximum Euclidean distance between the data samples in the input space.

The idea is, when the incremental LVQ1 selects a winner for a given data sample, then
the winner’s display vector vc(t) triggers every other node’s display vector vi(t) to adjust
the relative distance in respect to it. The adjustment is conducted by using an adaptation
factor fic(t) for each node i in time step t as,

fic(t) =
‖vi(t)− vc(t)‖

µout

− ‖wi(t)− wc(t)‖
µin

, i 6= c, (8)

where fic(t) > 0 forces vi(t) of node i to move towards vc(t) of winner c, while vi(t) < 0
forces vi(t) to move in the opposite direction. Then, the display vector vi(t) of every other
node i is updated in respect to the display vector vc(t) of the winner node c as,

vi(t+ 1) = vi(t) + ξic(t)fic(t)[vc(t)− vi(t)]η(t), (9)

where η(t) is a monotonically decreasing adaptation parameter 0 < η(t) < 1, and ξic(t)
is an adaptation smoothing operator based on the relative similarity between prototype
pair {wi(t), wc(t)} to allow soft adaptation of vi(t) with respect to vc(t). Being motivated
by Equation (3), ξic(t) can be written as,

ξic(t) = exp

{
−‖wi(t)− wc(t)‖2

ϕµ2
in

}
, (10)

where ϕ can have empirical assignments, e.g., ϕ = 2 can be a workable assignment (as
used in the simulations).

3.4. Cost function. LV Qdsp’s cost function is composed of two terms, i.e., an error
component for the vector quantization and the data-structure preservation. LV Qdsp per-
forms supervised vector quantization using the LVQ1 learning rules. Hence, LV Qdsp’s
quantization error function denoted as Fmse can be given by the mean square error (mse)
computation as,

Fmse(t) =
1

M

M∑
p=1

‖xp(t)− wc(t)‖. (11)

In LV Qdsp, the data-structure preservation is defined as an approximation of the relative
distance among the prototypes in the input space by their corresponding display vectors
in the output layer. The following Fdsp term gives the average relative-distance (data-
structure) preservation error using the adaptation factor given in Equation (8) as,

Fdsp(t) =
1

K(K − 1)

K∑
i 6=j

∣∣∣∣‖vi(t)− vj(t)‖
µout

− ‖wi(t)− wj(t)‖
µin

∣∣∣∣ , (12)

where K, µin and µout are defined earlier. Then, the total cost function of LV Qdsp can
be written as,

F (t) = Fmse(t) + Fdsp(t). (13)

Figure 1 shows an empirical demonstration on the above cost function during random
runs on five benchmark datasets. Dataset details and LV Qdsp settings are given in Section
5. It can be seen that LV Qdsp’s relative-distance preservation given in Equations (8) and
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(9) can minimize the cost component Fdsp through training, while the quantization error
term Fmse is minimized by LVQ1’s established learning rules. Hence, LV Qdsp’s overall
cost F is minimized. The algorithm is defined next.
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Figure 1. (a) The decreasing of the relative-distance (data-structure)
preservation error Fdsp through training; and (b) the decreasing of the over-
all cost F = Fmse + Fdsp during random runs on five datasets

3.5. LV Qdsp algorithm. Assume that ∀x ∈ <n are derived from a finite set of classes
with overlapping distributions, and several prototypes w ∈ <n, preferably selected from
data samples, are assigned to each class. A 2D(3D) output layer is initialized by the
user defined µout value. Each node i has a display vector vi randomly positioned in the
output layer. The maximum distance between the data samples in the input space is
computed and assigned to µin. Then, the LV Qdsp algorithm with incremental training
can be defined as follows.

1. Select the winner node wc for data sample xp(t) using Equation (6) in time step t.
2. Apply LVQ1 training for wc using Equation (7).
3. Compute the adaptation factor fi(t) for each node i using Equation (8).
4. Update the display vector vi(t) of each node i using Equation (9).
5. Repeat Step 1 to Step 4 until the stopping condition is satisfied.

4. Evaluation of Data-Structure Preservation. Several quantification criteria, e.g.,
Topographic Function [12] and Topographic Product [13] have been proposed to quantify
the neighborhood ordering in a data topology preserved mapping. However, these criteria
are not suitable to quantify the data-structure preserved mapping since the evaluation
of the data-structure preservation requires quantification of the preservation of the inter-
prototype relative-distance by their corresponding counterparts in the output layer. Two
possible criteria are therefore proposed.

4.1. Relative-distance approximation error (RDAE). First, LV Qdsp’s normaliza-
tion constants µin,out are generalized as βin,out for quality evaluation of other methods. For
a given trained network, let the maximum distance between the prototype vectors in the
input space be denoted as βin, and the maximum distance between the nodes’ positioning
in the output layer be denoted as βout. Then, the Relative-Distance Approximation Error
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(RDAE) can be given as:

RDAE =
1

K(K − 1)

K∑
i6=j

∣∣∣∣∣ dni,jβout

−
dli,j
βin

∣∣∣∣∣ , (14)

where dni,j and dli,j are the distances between node i and j in the input and output layers
respectively, and K is the number of nodes in the network. RDAE gives the average
relative-distance approximation error occurring in the mapping.

4.2. Relative-distance-based neighborhood dissimilarity (RDND). First, we ne-
ed to randomly select L number of nodes to be the neighborhood centers such that L < K
from a trained network having K number of nodes. Due to the global association, each
prototype wj belongs to the neighborhood of each neighborhood center Ci = wi to some
extent that could be quantified by their in-between relative-distance. Let Qn

i represent
the neighborhood measure of each neighborhood center Ci = wi as:

Qn
i =

K∑
j=1

[
1−

dni,j
βin

]
, (15)

where dni,j is the distance between the prototype wj of any node j and the prototype of
neighborhood center Ci in the input space, and βin is the maximum distance between the
prototypes. Then, the global neighborhood distribution among L neighborhood centers

in the input space can be written as: Qn = [Qn
1 , Q

n
2 , Q

n
3 , . . . , Q

n
L] such that

L∑
q=1

Qn
q = 1.

Similarly, Ql can be the neighborhood measure in output layer, where vi represents the
neighborhood center Ci in the output layer and βout is defined in Section 4.1.

A good data-structure preservation in the <n → <l mapping should have minimal
dissimilarity between the relative-distance-based neighborhood representation. Hence,
for a large number of trials, taking randomly selected L number of neighborhood centers
in each trial, the RDND quantification can be written as:

RDND = E{ ‖Qn −Ql‖ }, (16)

where E{} is the mathematical expectation. This criteria statistically quantifies the data-
structure preservation of a network by quantifying the relative-distance-based neighbor-
hood dissimilarity in the mapping, provided that a large number of prototypes are used
to sufficiently approximate the data.

5. Performance Evaluation.

5.1. Visual observation. A 2D Twin Spiral dataset [14], a simulated 3D Synthetic
dataset [3], Iris Flower dataset [15], Wisconsin Breast Cancer (WBC) dataset [3], Iono-
sphere dataset [15], and Pima Indian Diabetes dataset [15] are used in the simulations.
LV Qdsp’s data-structure preservation performance is compared with the PRSOM algo-
rithm; since, PRSOM [3] is the most recent and a superior algorithm over ViSOM and SM
for data-structure preserved visualization. SOM’s data-topology preserved visualizations
are then included as references.

Figure 2 to Figure 7 with informative captions show the visualizations of the benchmark
datasets produced by LV Qdsp, SOM and PRSOM. The parameters of PRSOM are set
according to [3]. It can be seen in the figures that LV Qdsp is able to reveal the borders
of datasets, and the spread and the overlapping tendency of class borders of the datasets,
which are found promisingly similar to that of PRSOM [3] and better than the SOM’s
visualizations.
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(e)

Figure 2. Twin spiral dataset (2D, 2-class, 194-samples), <2 → <2 map-
ping. (a) View of the 2D twin spiral dataset, (b) visualization by LV Qdsp

(12×12 nodes, µout = 10, 500 iterations), (c) visualization by SOM (12×12
nodes, 1000 iterations), (d) visualization by PRSOM (12×12 nodes, γ = 1.5,
λ = 0.1, 1000 iterations), (e) visualization by PRSOM (20 × 20 nodes,
γ = 1.5, λ = 0.1, 1000 iterations).

In LV Qdsp’s visualization, a straight line is drawn to indicate the maximum distance
between the nodes in the output layer. Note that after the training, obtained µout value
approximates the user defined (as specified in the figure captions) expected maximum
distance between the nodes in the output layer.
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Figure 3. 3D Synthetic dataset (3D, 3-class, 300-samples), <3 → <2 map-
ping. (a) View of 3D synthetic dataset, (b) visualization by LV Qdsp (10×10
nodes, assigned µout = 20, 500 iterations), (c) visualization by SOM (10×10
nodes, 1000 iterations), (d) visualization by PRSOM (10×10 nodes, γ = 1.5,
λ = 0.01, 1000 iterations), (e) visualization by PRSOM (20 × 20 nodes,
γ = 1.5, λ = 0.01, 1000 iterations).

5.2. Quantitative evaluation of data-structure preservation. Quantitative evalu-
ation of the data-structure preservation performance is necessary for more precise eval-
uation. Table 1 presents a 10-run average of the RDAE and RDND scores produced by
LV Qdsp, PRSOM and SOM on the datasets. For comparison reasons, all networks are
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Figure 4. Iris flower dataset (4D, 3-class, 150-samples), <4 → <2 map-
ping. (a) Visualization by LV Qdsp (10× 10 nodes, assigned µout = 10, 500
iterations), (b) visualization by SOM (10× 10 nodes, 1,000 iterations), (c)
visualization by PRSOM (10 × 10 nodes, γ = 1.5, λ = 0.03, 1,000 itera-
tions), (d) visualization by PRSOM (20×20 nodes, γ = 1.5, λ = 0.06, 1,000
iterations).

given same size. Then, the performance scores are normalized, i.e., best = 0, worst = 1,
for the three methods considered on each dataset to improve readability. Table 1 shows
that both RADE and RDND’s promising scores recognize LV Qdsp’s data-structure preser-
vation ability in respect to that of PRSOM, and better than that of SOM.
Effective data-structure representation through the prototypes requires: i) a sufficient

number of prototypes in the data region; and ii) a sufficient approximation of the data by
the prototypes. Hence, in order to observe how these methods perform in terms of data
quantization, a 10-run average of the MSE produced by the networks on each dataset are
presented in Table 1 which shows that LV Qdsp performs the best, and PRSOM performs
the worst data representation for a given network size on each dataset. SOM’s quantiza-
tion performance is found to be reasonably better than PRSOM. PRSOM performs poor
data representation due to its regularized positioning of the prototypes, which eventually
makes it ineffective in the classification task.

5.3. Classification performance comparison. Being a supervised method, LV Qdsp

can be anticipated to produce a better classification rate than SOM and PRSOM. How-
ever, due to the context of this paper, it is necessary to quantitatively compare LV Qdsp’s
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Table 1. A 10-run average of relative-distance preservation and quantiza-
tion performance

Relative-distance
preservation

Vector quan-
tization

Dataset Network Size RDAE RDND MSE

Twin Spiral PRSOM 12× 12 0.2018 1 1
(2D) LV Qdsp 12× 12 0 0 0

(194 samples) SOM 12× 12 1 0.4206 0.3024

3D Synthetic PRSOM 10× 10 0 0 1
(3D) LV Qdsp 10× 10 0.0842 0.0928 0

(300 samples) SOM 10× 10 1 1 0.0949

Iris Flower PRSOM 10× 10 0 0 1
(4D) LV Qdsp 10× 10 0.0067 0.0726 0

(150 samples) SOM 10× 10 1 1 0.2070

Pima Indian PRSOM 15× 15 0 0 1
(8D) LV Qdsp 15× 15 0.2911 0.2254 0

(768 samples) SOM 15× 15 1 1 0.0270

WBC PRSOM 15× 15 0 0 1
(9D) LV Qdsp 15× 15 0.1227 0.0180 0

(683 samples) SOM 15× 15 1 1 0.0175

Ionosphere PRSOM 15× 15 0 0 1
(34D) LV Qdsp 15× 15 0.3442 0.1058 0

(351 samples) SOM 15× 15 1 1 0.0938

RDAE = Relative-Distance Approximation Error.

RDND = Relative-Distance-based Neighborhood Dissimilarity.

MSE = Mean Square Error.

Scores are normalized (best = 0, worst = 1) for the 3 networks on each

dataset.

Table 2. Classification performance comparison

A 20-run average accuracy (%)

Dataset Training data (memorization) Test data (generalization)

LV Qdsp SOM+LVQ SOM PRSOM LV Qdsp SOM+LVQ SOM PRSOM

Twin Spiral 99.66 97.66 93.66 86.51 74.25 68.33 66.20 63.25
Pima Indian 86.36 81.18 79.15 75.23 73.24 69.53 66.88 65.88
Ionosphere 97.67 95.89 94.36 91.05 90.01 87.32 83.21 82.42
Iris Flower 99.66 98.85 98.33 93.45 96.66 93.33 89.98 88.25

WBC 99.25 98.16 97.28 96.15 95.93 94.34 91.35 89.36

classification ability against the visualization methods considered, i.e., SOM (unsuper-
vised) and PRSOM (unsupervised and regularized). LVQ’s supervised fine tuning can be
employed on a SOM’s trained map to improve its classification ability, if the class labels
are known. Let us denote this coupling as SOM+LVQ and include it in this compari-
son. In SOM+LVQ learning, 500 epoch of fine tuning with small constant learning rate
α = 0.001 is applied on SOM’s trained map.
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Figure 5. Wisconsin breast cancer (WBC) dataset (9D, 2-class, 683-
samples), <9 → <2 mapping. (a) Visualization by LV Qdsp (15× 15 nodes,
assigned µout = 15, 500 iterations), (b) visualization by SOM (15×15 nodes,
1000 iterations), (c) visualization by PRSOM (15 × 15 nodes, 1000 itera-
tions, γ = 1.5, λ = 0.03), (d) visualization by PRSOM (20×20 nodes, 1,000
iterations, γ = 1.5, λ = 0.03).

A 20-run average of the classification rates produced by these methods on the datasets
are presented in Table 2. During each run, 80% of the data samples are randomly selected
for training and the remaining 20% are used for testing. After training, nodes are labeled
according to the majority winning class of the data samples falling in the activation re-
gions, and by carefully removing the ‘tie’ situations. Then, 1 − NN based classification
is conducted for the testing data (generalization) and the training data (memorization).
Table 2 clearly indicates the superiority of the LV Qdsp algorithm in terms of the classifica-
tion performance over SOM and PRSOM algorithms. Note that, SOM+LVQ can improve
SOM’s classification ability to partially satisfy the context of this paper by producing a
good classification rate and data topology preserving visualization.

6. Discussion.

6.1. Advantages and deficiencies. The main advantage and unique feature of the
LV Qdsp is that it can support an excellent classification rate and a data-structure pre-
served visualization simultaneously on a labeled dataset. On the other hand, PRSOM
supports an excellent data-structure preserved visualization, however it fails to support a
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Figure 6. Pima Indian diabetes dataset (8D, 2-class, 768-samples), <8 →
<2 mapping. (a) Visualization by LV Qdsp (15×15 nodes, assigned µout = 25,
500 iterations), (b) visualization by SOM (15× 15 nodes, 1000 iterations),
(c) visualization by PRSOM (15 × 15 nodes, γ = 1.5, λ = 0.02, 1000
iterations), (d) visualization by PRSOM (20×20 nodes, γ = 1.5, λ = 0.007,
1000 iterations).

good classification rate. Other data-structure preserving methods, e.g., MDS [4] and SM
[7] are not classically meant for a data classification task, and SOM/(SOM+LVQ) can
offer a workable classification rate, however cannot reveal data-structure information in
the visualization. Therefore, in a practical situation when an excellent classification rate
is primarily required in addition to a data-structure preserved visualization on a labeled
dataset, LV Qdsp can be a reasonable choice.

LV Qdsp can efficiently visualize a workable data-structure of high-dimensional data
using a comparatively smaller map size and quicker training than PRSOM as observed in
the simulations. Additionally, PRSOM tends to produce a large number of dead nodes
due to the regular positioning of the prototypes, while LV Qdsp produces almost 0% dead
nodes with careful initialization. In addition to that, LV Qdsp is free of any sensitive
parameters, which makes it more efficient and employable.

LV Qdsp improves the LV Q1 algorithm to be able to produce data-structure preserving
visualization. However, it imposes the requirement of a comparatively larger network size
than the LV Q1 algorithm requirement as a necessary condition for effective data-structure
visualization, while this map size increment has little or no impact on the classification
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Figure 7. Ionosphere dataset (34D, 2-class, 351-samples), <34 → <2 map-
ping. (a) Visualization by LV Qdsp (15× 15 nodes, assigned µout = 15, 500
iterations), (b) visualization by SOM (15 × 15 nodes, 1000 iterations), (d)
visualization by PRSOM (15×15 nodes, γ = 0.5, λ = 0.07, 1000 iterations),
(e) visualization by PRSOM (20 × 20 nodes, γ = .5, λ = 0.07, 1000 itera-
tions).

result. Using a large number of nodes needs careful consideration as an excessively larger
network size can cause overfitting to the network and reduce the generalization ability in
classification task.
Additionally, the cost function associated with LV Qdsp is rather heuristic driven that

can be mathematically improved. LV Qdsp is currently able to produce a workable data-
structure preservation, however improvement seems necessary and will be beneficial. A
soft probabilistic approach can be investigated in this regard.

6.2. Applicability. Being able to reveal additional information to the usual data-topolo-
gy preserved visualization, data-structure preserving visualization has great usefulness in
applications of the same kind that utilize data-topology preserved visualization, which
has been successfully applied in numerous scientific and engineering applications.
Additionally, LV Qdsp’s visualization is more advantageous and realistic in finding near-

est neighbors of a node than the grid-based visualizations of SOM and PRSOM algorithms,
since the grid-based representation fails to assign ranking among the immediate-neighbors
of a node in the grid. In addition to this, the nearest-neighbors of a node in a SOM grid
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do not resemble their actual similarity in the high-dimensional space as effectively as a
data-structure preserving visualization.

Data-structure informative visualization can be a supportive feature to the prototype-
based-classifiers (e.g., LVQ) to increase the transparency and reliability of the classifica-
tion result to the user, instead of being a black-box classifier. The unseen data sample can
be mapped to the best matching node in the visualization to reveal the characteristics
of the data sample with respect to global data distribution, which is often useful to take
decisive actions on the data and the classification result.

6.3. Similarity to MDS. Traditional MDS [4] preserves the inter point distances in
the <n → <l mapping. The objective function, often called stress, can be given as [3],

H =
∑
i<j

(
dli,j−dni,j

dni,j

)2

, where dni,j and dli,j are the distances between the data pair i, j in the

<n and <l spaces, respectively. This MDS stress has an intuitively similar interpretation
of LV Qdsp’s relative distance approximation error (Fdsp) given in Equation (12). Hence,
LV Qdsp’s visualization technique has a similar objective as the MDS methods, however
it has a simpler mechanism and it could be integrated with any incremental learning
algorithm of LVQ type as well as unsupervised vector quantization (VQ) type. Classical
MDS methods (e.g., [4, 7]) are not meant for prototype-based data representation that
can be used for a classification task, hence they are excluded from the comparison.

LV Qdsp is briefly reported in our previous work [16]. Recently, a variant of LVQ called
Generalized Matrix LVQ (GMLVQ) [17] has been proposed to produce low-dimensional
projections of high-dimensional datasets after performing dimension reduction using a
matrix transformation-based concept, however its visualization does not address the data-
structure preservation.

7. Conclusions. In this paper a variant of LVQ, named Data-Structure Preserving LVQ
(LV Qdsp), is proposed by combining the LVQ1 algorithm and a proposed visualization
mechanism. LV Qdsp is able to produce data-structure preserving visualization of a high-
dimensional dataset to reveal some useful information about the data distribution, besides
producing an excellent classification rate on a labeled dataset. The proposed LV Qdsp

addresses the practical scope where these two tasks need to be performed by a single
method, while the existing methods are unable to satisfactorily support these two tasks
simultaneously.
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