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ABSTRACT. This study presents a novel method for the extraction and screening of knee
joint vibroarthrographic (VAG) signals using an independent component analysis (ICA)
technique. A time-frequency analysis technique of the extracted vibration signals is pro-
posed to carry out knee joint diagnosis. The performance of the ICA technique is verified
experimentally. Statistical pattern classification screening accuracy is 82.5% in VAG.
The results confirm that ICA is a feasible approach for the noninvasive diagnosis and
monitoring of articular cartilage pathology.
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1. Introduction. The knee joint is the most commonly injured or diseased joint in the
human body. Arthritic degeneration of an injured knee is a well-known phenomenon.
Vibroarthrography, the recording of vibration or acoustic signals from the human knee
joint during active movement of the leg, can be used as a noninvasive diagnostic tool
to detect articular cartilage degeneration. Conventional imaging techniques and x-ray
diagnostic tests are not feasible for accurate diagnosis of knee joint pathology because they
are unable to show objective signs of degenerative joint disease, especially during early
stages of deterioration. Even after gross cartilage degeneration or injury has occurred,
changes cannot be detected in many cases without invasive tests such as arthroscopy [1-
3]. Arthroscopy is one of the best-known diagnostic procedures for screening knee joint
disorders. It is a semi invasive procedure wherein a fiber optic cable inserted into the knee
joint allows the physician to look at the joint through an arthroscope. Due to the semi
invasive nature, arthroscopy is not suitable for repeated assessment or follow-up studies
for monitoring purposes. However, noninvasive imaging techniques such as X-rays and
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computed tomography (CT) scans cannot detect knee joint disorders until they are in
the advanced stages. Compared with the other imaging techniques, magnetic resonance
imaging (MRI) is much more sensitive for knee joint disorders and is still evolving. MRI
scanners are expensive and not commonly available, which make them an uneconomical
choice, both in terms of money and time for screening purposes and particularly for
follow-up studies [4-15].

The vibration signals emitted from knee joints during their flexion or extension provide
valuable clues regarding their pathological condition or physiological state. As a result,
vibroarthrography (VAG), specifically, the recording of human knee joint vibrations or
acoustic signals during active movement of the leg, provides an invaluable noninvasive
diagnostic tool for the early detection of articular cartilage degeneration. However, the
detected joint signals can be contaminated with noise from a variety of sources, including
the transducer used to detect the signal, the measurement apparatus, manual interven-
tion during the test procedure, and so forth. Moreover, the resulting signal interference
is not stable, but varies over time, from swing to swing and from one individual to an-
other. Therefore, effective interference cancellation techniques are required to reduce the
variability of the vibration signal so that more reliable diagnostic results can be obtained.

Early medical researchers had no choice but to use simple electric-stethoscopes or mi-
crophones for knee joint signal detection purposes. However, the signals detected using
such instrumentation were inevitably afflicted with high levels of extraneous interference,
arising from hand tremors, skin friction, background noise, and so forth. In 1976, Chu et
al. [16] developed a double microphone differential amplifier setup to address this prob-
lem. However, while the proposed setup successfully suppressed extraneous background
noise, it did not resolve the characteristic problem of all acoustic systems, namely a poor
response to low-frequency signals (such as those generated in a knee joint) [17]. Modern
VAG methods [6-12], in which the vibration signals are detected directly via accelerome-
ters attached to the subject, are capable of measuring these lower frequency joint signals.
However, the contact sensors used to detect the vibration signals are highly sensitive to
low frequency inputs, and hence the VAG signal is severely contaminated by low-frequency
artifacts caused by the muscle contraction required to move the knee for measurement
purposes. This artifact, conventionally referred to as muscle contraction interference, en-
compasses all the signals induced by muscle contraction, including muscle activity, muscle
sounds and tremors, vibromyographic signals, and so on [18]. A interference contribution
of muscle contraction is inevitable in VAG applications, since the muscles involved in
knee movement cannot be maintained in a totally relaxed state at all times during the
measurement, procedure, and the muscle contraction required to execute knee movement
cannot be kept constant as the leg is swung backward and forward due to the inherent
inertia of the movement.

Accordingly, in this paper, we propose an enhanced VAG detection and diagnosis
method based on independent component analysis and time-frequency analysis, respec-
tively. The proposed method is essentially an extension of that employed previously for
the processing of the EEG signal produced by the neurons in the human brain [19].

ICA can be used to isolate the original independent sources in a set of mixed signals.
Traditional VAG systems often received mixed signals from the VAG signal and other
noises, causing difficulty in monitoring knee health. The use of ICA can improve the
quality of VAG signals and ensure accurate understanding of the knee’s condition. Other
approaches of improving VAG quality have been tested in many studies [4-15]. However,
none of these approaches is as simple and effective as ICA.
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2. Data Acquisition. The experimental trials were carried using 23 subjects diagnosed
with articular cartilage pathology and 12 subjects with no knee joint disability. As shown
in Figure 1(a) and Figure 1(b), four miniature accelerometers (Model 353-B33, PCB
Piezotronics Inc., USA) were attached to the subjects’ skin using double-sided adhesive
tape in regions of the knee corresponding to the lateral condyle of the femur (LCF), the
medial condyle of the femur (MCF), the lateral condyle of the tibia (LCT), and the medial
condyle of the tibia (MCT). The accelerometers were positioned such that the majority
of the sensors detected the VAG signal, while the remainder monitored variations in the
signal along the leg, providing information with which to discriminate the noise signals
from the VAG signal. The resulting signals were amplified by a pre-amplifier (Model
482A20, PCB Piezotronics Inc., USA) and then output to an oscilloscope for observation
purposes and a computer for data processing. The recorded signals were digitized with
a sampling rate of 50k Hz, 24-Bit, using a signal data acquisition board (Model USB
9233, National Instruments Inc., USA) and processed using Labview software (National
Instruments Inc., USA). Figure 1(b) shows an experimental trial for diagnosis of articular
cartilage pathology.

Accelerometers

[Pre-amplifier

{ Channel 1
\ Channel 2 :

FIGURE 1. (a) Schematic illustration of experimental setup, (b) experimen-
tal trial for diagnosis of articular cartilage degeneration

3. VAG Signal Monitoring and Diagnosis Using ICA. In the VAG scheme pre-
sented in this study, the signals obtained by the four accelerometers are processed using
ICA to identify individual contributions of the VAG and noise signals. A time-frequency
technique is then applied to further signal processing so that a reliable diagnostic re-
sult can be obtained. Figure 2 shows a block diagram of the overall VAG detection and
diagnostic approach.

3.1. Independent component analysis (ICA) theory. In general, ICA is a method
for separating a mutually-interfering mixture of signals in a multiple input system into a
corresponding set of independent signals. In traditional VAG techniques, multiple sensors
are applied to the patient’s patella for detection of a mixture of signals from various
sources, including muscle contraction signals, cartilage pathology signals, and various
other noises originating from interior or exterior interference sources. ICA provides a
powerful technique for separating these mixed signals so that each can be independently
observed. ICA is a relatively new statistical technique and has been successfully applied
for the processing of physiological signals [19-22].
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FIGURE 2. Block diagram of proposed detection and diagnosis technique
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FIGURE 3. Schematic representation of independent component analysis

Figure 3 presents a block diagram representation of the ICA approach. In the ICA
model, the observed data x are regarded as random variables in a single m-dimensional
space. For convenience, the random variables can be expressed in the following matrix
form:

r = As, (1)

where A is a mixing matrix and s = (s, 89,...,5,)" are the latent variables (i.e., the

independent components). Generally speaking, ICA searches for a linear transformation
of the form
y =wz, (2)

where y denotes the estimated value of the independent components s, and w is an
unmixing matrix. The aim is to render the y = (y1,¥2,...,¥,)” between the compo-
nents as independently as possible. In other words, if the measured independent function
f(y1, 99, -, yn) is maximized, then w = A~'. Thus, y = (y1,¥s,---,¥n)’, which, pro-
cessed by ICA, will be equal to the original latent variables, such as s = (s1,59,...,5,)".
The objective of ICA is to determine the linear transformation w of the dependent sensor
signals x, which renders the outputs as independent; i.e., y = wz.

An appropriate linear transformation w can be identified by applying the following
function approximation based on the maximum entropy principle [23]:

T(y) o [E{G(y)} — E{G(v)}], (3)

where F is the probability expectation; G denotes a non-quadratic function; and v is a
Gaussian random variable. Here, G(y) = (1/a;) logcosh a1y, where 1 < a; < 2, and the
mean of v is zero. The maximum entropy distribution for such variables is the Gauss-
ian distribution. The changing factor is the Gaussian random variable of 1. G can be
any non-quadratic function without restriction, for which the value will be zero when
G is a quadratic function. The FastICA scheme identifies independent components by
maximizing the negentropy [21]. According to Hyvérinen [23], the largest J values in
F{G(w"z)G(y)} are attained at certain optima of E{G(w"z)}. Nongaussianity is here
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measured by the approximation of negentropy J(w”z) given in Equation (3). Under the
delimitation of E{(w”z)?} = |Jw||® = 1, the optima of E{G(w” )} are given by [23]

E{rg(w"z)} — pw =0, (4)
where 8 is a constant that can be easily evaluated to give 8 = E{w] zg(wlx)}, where
wy is the value of w at optimum and the function ¢ is a derivative of G, similar to the
analysis of Hyvérinen [24]. In this study, Equation (4) is solved using Newton’s method,
as described below. Denoting the function on the left-hand side of Equation (4) by F,
Equation (4) can be expressed in terms of the partial differential of w; i.e.,

JF (w) = E{zz"¢'(wx)} — BI. (5)

The objective of Newton’s method in the current solution procedure is to identify the
change in w following each iteration time-step in accordance with [27]

JF(w)Aw = —F(w). (6)

Given some random variables, it is straightforward to linearly transform them into
uncorrelated variables. Therefore, it would be tempting to try to estimate the independent
components by such a method, which is typically called whitening. In terms of the
covariance matrix, this obviously means that F{zz"} = I, in which T is the unit matrix.
Determining the extent of the modification in w for each time requires the computation
of the inverse matrix of JF (w). To simplify the calculation procedure, an approximation
of the first term in Equation (6) is processed. After the data has been whitening, then

E{za"g'(we)} ~ E{za" }E{g'(wz)} = E{g'(w"z)}. (7)

Such an approximation is acceptable. The Jacobian matrix in Equation (5) can then
be diagonalized as

JF(w) = [E{g'(w"z) — BYI. (8)

Computing the inverse matrix is then fairly straightforward. Applying the approxima-

tion in Equation (8), the Newton iterative solution procedure will have the following form
[25]:

wt 2w+ Aw

=w — [B{ag'(w'z) — Bw}]/[E{g' (w"x) — B}] (9)
w2 w/ [Jwt]].

This algorithm can be further simplified by multiplying both ends of Equation (9) by
B — E{g'(wTz)}. The resulting fixed-point iteration scheme then becomes

w = F{ag' (w'z)} — E{g'(w"z)}w (10)
w=w"/[[w].

This was introduced in [26] using a more heuristic derivation. An earlier version (for
kurtosis only) was derived as a fixed point iteration of a neural learning rule in [23], which
is where its name comes from. The condition for convergence requires that the old vector
w and the new vector w™ be parallel, but not necessarily directed toward the same point.
Since w and w™ are parallel, convergence identifies the independent components, when
the inner absolute value of both vectors is 1. FastICA uses Newton’s method, a classical
numerical analysis that optimizes the mixed matrix by the iteration of linear equations.
It does not require learning rate as a parameter. This makes FastICA much more accept-
able to the users. Moreover, VAG requires an algorithm with fast convergence speed. A.
Hyviérinen [25] compared FastICA and a stochastic gradient employed in an information
maximization approach, with the best learning rate sequence in a quasi-neural network.
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FI1GURE 4. The whole computing flow of the ICA algorithm

The results showed that flops in FastICA are only 10% of the stochastic gradient. If
the learning rate sequence was chosen in an trail-and-error manner without preliminary
processing, the convergence speed of the fixed point algorithm would be 10? integer times
faster than the series, and the stochastic gradient might not lead to convergence. There-
fore, FastICA is more suitable for processing VAG signals. There are several conditions
and constraints in the application of ICA to VAG. All the independent components s;
(i.e., VAG and noise interference) must be statistically independent, which means they
must have the relation of p(sy, sa2,...,8;) = pi(s1)p2(s2) - .. pu(s;). All the independent
components s; must have a non-Gaussian distribution. It is crucial to the efficacy of
retrieving signals by ICA. However, according to the central limit theorem, one compo-
nent is allowed to have a Gaussian distribution among grouped signals. The number of
linear mixed signals x,(¢) and x5(t) should be greater or equal to that of the independent
components.

The computing steps proposed in this study are shown in Figure 4. The details of
centering and whitening are mentioned in previous literature [21-25].

This study used a CPU-Core2 Duo 2.0GHz industrial computer with MATLAB R2007b
software. The proposed approach of using ICA can improve the quality of VAG signals
and ensure the accuracy of understanding the patient’s knee condition. Other means of
improving VAG quality have been tested in previous studies [4-15]. However, none of
these means is as simple and effective as the proposed approach.

In ICA, the successful separation of the original signals is dependent on the fulfillment
of the following conditions [24].

e The VAG are statistically independent from the knee signals.

e The number of sources is the same as the number of mixtures.

e There should be no (little) noise common to the sources and there should be no
(minimal) delay between the signals of the different sources in the recordings.

3.2. Hilbert transform (HT) theory. The ICA approach described above allows iso-
lation of the various signals detected by the accelerometers. The Hilbert transform is used
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in the second stage of the proposed signal processing technique. The Hilbert transform
y(t) for an arbitrary signal x(¢) can be defined by [28]

y(t) = 1 /+°o (1) 4 (1)

T o —T

where p is the Cauchy principal value. In Equation (11), the Hilbert transform is defined
as the convolution of the signal x(t) with 1/t. Therefore, the Hilbert transform is capable
of identifying the local properties of z(t). Coupling x(¢) and y(t), we obtain the analytic
signal z(t) of z(t)

2(t) = x(t) + iy(t) = a(t)e?®, (12)

a(t) = /22(t) + y2(t), 0(t) =tan! (%) : (13)

The a(t) is the instantaneous amplitude of z(¢), which can reflect how the energy of
the z(t) varies with time; and 6(¢) is the instantaneous phase of z(t). The controversial
instantaneous frequency w(t) is defined as the time derivative of the instantaneous phase
6(t), as follows:

where

do(t)
w(t) = T (14)
In the above process, both the amplitude and the instantaneous frequency are a function
of time. This frequency-time distribution of the amplitude is designated as the Hilbert
spectrum H(w,t). After performing the Hilbert transform for the signal component, the
original signal can be expressed as the real part, in the following form:

H(w,t) =Re Y a;(t)e!/«O", (15)
=1

The Time-Frequency analysis technique is particularly suitable for characterizing signals
at different localization levels over time and in different frequency domains. Then the
marginal spectrum can be defined as [28]

h(w) = /OTH(w,t)dt (16)

where T is the total data length. The contribution of the total amplitude from each
frequency is measured by the marginal spectrum.

4. Experimental Study and Results. The observed differences between normal and
abnormal VAG signals are characterized using ICA and time-frequency analysis. The four
VAG signals measured in the 10-second period for a subject with no knee disability are
shown in Figure 5. Figures 5(a)-5(d) show mixed VAG and noise signals. The signals cor-
respond to the gradual movement of the subject from a standing position to a squatting
position and then back to an upright position over the 10-second interval. However, in the
present form, these signals (shown in Figure 5) provide no insight into the pathological
condition of the knee joint. Thus, they are transformed into a time-frequency figure by
the Hilbert transform technique. This approach has the advantage that it can be easily
constrained to yield the real distributions, which can be interpreted as a two-dimensional
decomposition of a signal’s energy. The resulting time-frequency analysis of the four sig-
nals illustrated in Figure 5 is presented in Figure 6. The temporal waveform of the VAG
signal, which is a linear frequency modulation signal, and its instantaneous frequency,
as calculated by Equations (14) and (15), are shown in this figure. The horizontal axis
indicates the elapsed time, the vertical axis the frequency domain, and the color spectrum
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FIGURE 5. Signals acquired from healthy subject. (a) Medial condyle of
femur (MCF), (b) lateral condyle of femur (LCF), (c¢) medial condyle of
tibia (MCT), (d) lateral condyle of tibia (LCT).

the signal volume in dB. Low frequency signals that possess higher energy are presented
in red, while high frequency signals are depicted in blue or green. The changes in the
signals over time are clearly observable in the four sub-figures. The upper trace in Figure
6 indicates the time-frequency analysis of the VAG signals. The results show the high
frequency signals processed by FastICA at 2-3 and 4-6 seconds. However, in the present
form, these signals provide no insight into the pathological condition of the knee joint.
Since the VAG and muscle contraction motion signals are of lower frequency, i.e., they
are in the low frequency range, it is impossible to separate them using a classical filter.
Furthermore, although the muscle contraction interference signals can be canceled using
an adaptive filter, the noise signal continues to interfere with the VAG signal. Therefore,
in the signal processing scheme developed in this study, FastICA is used to identify the
mixed matrix w and to reconstruct the four VAG signals. An X-Ray image of degenera-
tive knee joint pathology is shown in Figure 7. Figure 8 shows the accelerometer-detected
signals for a subject known to have degenerative knee joint pathology. The VAG signals
from the subject with degenerative knee joint pathology and processed by FastICA are
shown in Figure 9. The time-frequency of the signals given in expression (14) and (15)
is illustrated by the contour in Figure 10. As can be seen in Figure 10, the range be-
tween the high energy and the low energy is about 250 Hz. High-energy signals on the
VAG signal band occur at 1-6 seconds. In contrast, the VAG and noise signals can be
clearly identified. The VAG signal is seen to have duration of approximately 1-6 seconds.
The upper trace shows the VAG signal, while the other three traces indicate the noise
signals. The standing and squatting positions can be observed as one period beat of 10
seconds. The loading of the joint and the friction are indicated by the higher energy
of the VAG signals. This higher energy confirms the degenerative knee joint pathology.
The frequency changes in the signals are clearly observable. One obvious visual difference
between normal and abnormal signals is that the amplitude of the variability between the
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FIGURE 6. Time-frequency analysis of VAG signals acquired from healthy subject

standing and squatting ends of the cycle is much greater for abnormal signals than for
normal signals. Visual comparison indicates that the time-frequency result has preserved
most of the important characteristics, especially the transient component. Figure 11(I)
to Figure 11(XII), which show practical examples of 12 subjects with articular cartilage
degeneration, respectively. The abnormal signals shown in Figure 11(b) are higher in
value than the normal signals shown in Figure 6, confirming the expectation that the
VAG signal conveys more discriminatory information during extension than flexion, due
to increased loading of the knee joint during the standing and squatting movement of the
leg. The proposed approach in the paper uses ICA to isolate the original independent
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Ficure 8. VAG signals from subject with degenerative knee joint pathol-
ogy. (a) Medial condyle of femur (MCF), (b) lateral condyle of femur (LCF),
(c) medial condyle of tibia (MCT), (d) lateral condyle of tibia (LCT).

sources in a set of mixed signals. Traditional VAG systems often receive mixed signals
from other noises, causing difficulty in diagnosis. The use of ICA can improve the quality
of VAG signals and ensure the accuracy of understanding the patient’s condition. How-
ever, imaging-based noninvasive techniques such as X-rays can capture only gross cartilage
defects, and may not be useful for early detection of articular cartilage degeneration. The
proposed approach in this paper utilizes a simple instrument to diagnose and monitor
articular cartilage degeneration for patients at any time. As can be seen in Figure 11(b),
the range between the high energy and the low energy is about 250 Hz. High-energy
signals on the VAG signal band occur at 2-8 seconds. However, there are some limitations
to this approach. First, during the diagnosis, the patient needs to move from a standing
position to a squatting position and then return to an upright position over the 10-second
interval. In serious cases, the patient will be unable to do the test. Secondly, experienced
experts must diagnose articular cartilage degeneration from the time-frequency diagram.
It is crucial to the efficacy of retrieving signals by ICA. We hope an extraction system
may be developed to perform auto-diagnosis based on the measured VAG signals. The
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FIGURE 9. VAG signals from subject with degenerative knee joint pathol-
ogy processed by FastICA. (a) Medial condyle of femur (MCF), (b) lateral
condyle of femur (LCF), (¢) medial condyle of tibia (MCT), (d) lateral
condyle of tibia (LCT).

TABLE 1. R.M.S of the proposed features for normal VAG signals

Normal MCF LCF MCT LCT

signals | RMS(m/ sec?) | RMS(m/ sec?) | RMS(m/ sec?) | RMS(m/ sec?)

1 0.0074 0.0094 0.0089 0.0127

2 0.0087 0.0068 0.0070 0.0065

3 0.0042 0.0084 0.0044 0.0099

4 0.0082 0.0076 0.0053 0.0052

5) 0.0070 0.0082 0.0084 0.0103

6 0.0090 0.0074 0.0054 0.0057

7 0.0092 0.0077 0.0053 0.0074

8 0.0053 0.0073 0.0044 0.0047

9 0.0049 0.0057 0.0057 0.0073

10 0.0079 0.0076 0.0039 0.0059

11 0.0061 0.0055 0.0063 0.0063

12 0.0117 0.0073 0.0097 0.0106

mean 0.0075 0.0074 0.0062 0.0079

SD 0.0020 0.0010 0.0018 0.0024

improvement in signal detection technique is a significant contribution to the analysis of
VAG signals even though the measured VAG signals are in a low signal-to-noise (NSR)
situation.

Table 1 shows the root mean square (RMS) of the proposed features for the normal
VAG signals. Table 2 shows the RMS of the proposed features for the abnormal VAG
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signals. The mean and standard deviation (SD) of the classification performance are
recorded in Table 1 and Table 2. The mean and SD of knee acceleration signals in the
range of 100-500 Hz are found to be significantly different for abnormal (with degenerative
knee joint pathology) compared with normal (without degenerative knee joint pathology)
signals. The abnormal signals are higher in value, confirming the expectation that the
VAG signal conveys more discriminatory information during extension than flexion, due
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FI1GURE 10. Time-frequency analysis of VAG signals in Figure 9



EXTRACTION AND SCREENING OF KNEE JOINT VAG SIGNALS 7513

Vo5
Time(s)

IT

II1 ITI

Time{s)

IV

R S A SR A T O T
Time{s)

VI




7514 J.-C. CHEN, P.-C. TUNG, S.-F. HUANG, S.-W. WU AND S.-L. LIN

VII

Time{s)

VIII

o8 [ 7 j
0 | ? 3 I 5 L] 1 H 4 i
Time{s)

IX

16 B BT A R A sE @ D
Time{s)

X

il | -| I
I ? 1 ] 5 L] 1 H ] n

Time(s)

XI

o ? 3 ![iu;( S)ﬂ 1 L 4 ]
X1 XII
() (b)

FIGURE 11. (a) X-ray image of abnormal knee, (b) time-frequency analysis
of VAG signals
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TABLE 2. R.M.S of the proposed features for abnormal VAG signals

Abnormal MCF LCF MCT LCT
signals | RMS(m/sec?) | RMS(m/sec?) | RMS(m/ sec?) | RMS(m/ sec?)

1 1.0107 0.9948 0.9998 0.9998

2 1.0107 0.9984 0.9961 1.0000

3 0.9950 0.9994 0.9994 0.9998

4 0.9853 1.0000 1.0000 1.0001

) 1.0005 0.9968 1.0014 1.0000

6 1.0759 0.9973 1.0002 0.9995

7 0.9994 0.9979 1.0000 0.9998

8 1.0001 1.0001 1.0003 0.9998

9 0.9579 1.0001 0.9999 0.9999
10 0.9994 1.0004 0.9996 0.9990
11 0.9980 0.9988 0.9996 0.9998
12 0.9996 1.0022 1.0000 1.0005
13 0.9928 0.9965 0.9985 0.9999
14 0.9985 0.9997 1.0129 1.0005
15 1.0004 1.0000 0.9987 0.9997
16 1.0024 1.0003 1.0003 1.0004
17 0.9968 0.9944 0.9998 1.0005
18 1.0011 1.0004 1.0000 1.0009
19 0.9838 1.0001 1.0003 1.0006
20 1.0010 0.9992 0.9994 1.0006
21 1.0003 0.9997 0.9990 1.0004
22 0.9898 1.0002 0.9998 1.0000
23 1.0009 1.0005 1.0044 1.0000
mean 1.0000 0.9990 1.0004 1.0000
SD 0.0192 0.0019 0.0030 0.00042

to increased loading of the knee joint during the standing and squatting movement of the
leg.

In comparison with the results reported in previous studies [2,30-32] on the analysis
of VAG signals, the results obtained in the present study are important. The proposed
parameters, derived from the VAG signals with no segmentation and no additional clin-
ical information, have provided screening accuracies comparable to or better than those
obtained with more sophisticated methods [2,30-32]. Krishnan et al. [2], who used the
matching pursuit time-frequency distribution (TFD), a nonstationary signal analysis tool,
to avoid segmentation and joint angle estimation. The best normal versus abnormal clas-
sification accuracy achieved was 68.9% as evaluated by TFD. Rangayyan et al. [30] derived
dominant poles and cepstral coefficients using logistic regression analysis from CC-LRA
models of adaptively segmented VAG signals using the same database as above. The cep-
stral coefficients appeared to be the best discriminant features, providing a classification
accuracy of 75.6%, as evaluated by CC-LRA. Krishnan et al. [31] derived autoregressive
(AR) coefficients from VAG signal segments and tested the methods with a database of
VAG signals of 90 subjects (51 normal subjects and 39 abnormal subjects); the methods
provided a classification accuracy of 68.9% using logistic regression analysis (AR-LRA).
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TABLE 3. Comparison of the classification accuracies using different feature
extraction and pattern classification methods [29]

Method Subect mmber el | acearay (5
TFD [2] iﬁﬁigl()gg) 11(; ;; 68.9
CC-LRA [30] igﬁiﬁ%g) g; ﬁ M 75.6
AR-LRA [31] fﬁfﬂiﬁlég) E? i ﬁ;ﬁ 68.9
WD-LDA [32] igﬁiﬁl(gs) ¢ |30 76.4
The proposed ICA igﬁ?ilng?%) ;0 ;0 82.5

Recently, Umapathy and Krishnan [32] applied wavelet packet decomposition and a modi-
fied local discriminant based algorithm (WD-LDA) to the 89 VAG signals as in the present
work (51 normal subjects and 38 abnormal subjects), and achieved a classification accu-
racy of 76.4% using linear discriminant analysis (WD-LDA). Table 3 shows the comparison
of the classification accuracy using different feature extraction and pattern classification
methods. We compare the other classification accuracies and the ICA method. The pro-
posed approach provides a classification accuracy of 82.5%. The results confirm that the
proposed scheme can successfully separate mixed signals, thereby enabling medical staff
to better monitor degenerative knee joints.

The results confirm that the FastICA scheme can successfully separate mixed signals,
thereby enabling medical staff to better monitor degenerative knee joint pathology.

5. Discussion. A novel approach to illuminating noise from VAG signals so as to enhance
feature extraction and identify problems is proposed. Since VAG applications require the
use of algorithms with a rapid convergence speed, FastICA is more suitable for process-
ing VAG signals. The ICA and time-frequency analysis scheme presented in this study
makes a significant contribution to the detection and diagnosis of VAG signals and is
intended to pave the way toward the development of an enhanced non-invasive technique
for monitoring knee joint heath.

Further detailed studies of knee joint disorder monitoring must be carried out with a
large number of patients. We are also conducting further investigations of more advanced
methods for feature selection, nonlinear pattern classification, and the optimization of the
parameters of the classifier.
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