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Abstract. This paper is concerned with the problem of delay-dependent exponential
H∞ model reduction for discrete-time switched delay systems under switching signals
with average dwell time (ADT). The objective is to construct a reduced-order model,
which ensures that the resulting error system under switching signal with ADT is expo-
nentially stable with an H∞ norm bound. A weighting factor α is introduced to construct
a Lyapunov function for switched delay systems such that ADT approach is used with
piecewise Lyapunov matrices instead of common Lyapunov function matrices. Further-
more, sufficient conditions for the solvability of this problem are obtained in terms of
strict linear matrix inequalities (LMIs), which lessen the computation complexity. A nu-
merical example is provided to show the effectiveness of the developed method.
Keywords: Model reduction, Discrete-time switched systems, State delay, LMIs

1. Introduction. During the last decades, switched systems have been extensively stud-
ied [1-12]. On one hand, many real-world processes can be modeled as switched systems
including networked control systems, robotic manufacture and so on. On the other hand,
switching among different controllers can improve the system performance when no single
controller is effective. Due to the hybrid nature of switched systems operations, it is very
difficult to deal with them. The existence of a common Lyapunov function (CLF) for all
subsystems is a sufficient and necessary condition for analysis and synthesis of switched
systems under arbitrary switching signals (see [1] and references therein). In fact, most
of switched systems are difficult to find or do not possess a CLF, but they may still be
analyzed and synthesized under some constrained switching signals. Multiple Lyapunov
function method (MLF) is proposed for finding such a switching signal, by which an in-
dividual decrescent Lyapunov function is constructed for each subsystem [2]. Switched
Lyapunov function (SLF) method [5] and average dwell time (ADT) technique [6] are
two special cases of Multiple Lyapunov function method. As time delays are the inher-
ent features of many practical processes, recently, more and more attention is shifted to
switched system with time delays. The behavior of switched delay systems is more com-
plicated than that of switched systems or delay systems due to the simultaneous existence
of switchings and time delays [8,13-16]. In this context, it has been recognized that ADT
technique is a powerful and flexible tool for analysis and synthesis of such systems.

As is well known that many practical systems are often modeled as high-order models
because it is straightforward to obtain the model formulation using many variables. How-
ever, this causes the great difficulties in analysis and synthesis of the systems. Thus, it is
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desirable to replace these high-order models with reduced-order ones for reducing the com-
putational complexities in some given criteria without incurring much loss of performance
or information, which has motivated the study of the model reduction problem. During
the past few years, many criteria have been proposed including the L2 model reduction
[17-19] and the H2 model reduction [20]. Recently, the problem of H∞ model reduction is
addressed by making use of LMIs technique for singular systems [21], time-delay system
[22,23], Markovian jump systems [24] and switched systems [25]. It is worth mentioning
that the criteria for the discrete-time context in [21,23,24] are formulated in terms of
LMIs with some non-convex conditions, which make LMIs difficult to find the numerical
solution. Although many numerical approaches have been proposed to overcome this dif-
ficulty, for example, the cone complementarity linearization method [26] and sequential
linear programming matrix method [27], the computation is very heavy. Therefore, the
strict LMI formulation is desired to avoid it. In [25], the existence conditions for H∞
model reduction for discrete-time switched systems are derived in terms of strict LMIs by
using SLF method. However, time delays are not taken into account in [25]. When ADT
method is used to address the problem of H∞ model reduction for discrete-time switched
systems with time delays, it requires the existence of some common Lyapunov matrices
for all subsystems [14,15]. It is desired to construct a piecewise Lyapunov function, i.e.,
to select the corresponding Lyapunov matrices for each subsystem. To the best of the
authors’ knowledge, however, no result with regard to this problem is reported up to date.
In this paper, we are interested in the problem of exponential H∞ model reduction

for discrete-time switched systems with time delay. When ADT method is used to deal
with the analysis of switched delay systems, there exist some common Lyapunov matrices
among all subsystems due to the existence of time delay [14,15]. Our objective is to
remove such restriction, that is, a corresponding Lyapunov matrix is constructed for each
subsystem. Sufficient conditions for the existence of the desired reduced-order model are
derived and formulated in terms of strict LMIs, which lead to lessening the computational
complexity. Finally, an example is shown to illustrate the effectiveness of the proposed
techniques.
The remainder of this paper is organized as follows. The problem of exponential H∞

model reduction for discrete-time switched systems with time delay under ADT switching
signal is formulated. Section 3 presents sufficient conditions for the existence of desired
reduced-order models. Section 4 provides an illustrative example and we conclude this
paper in Section 5.
Notation: The notation used in this paper is fairly standard. The superscript ‘T ’

stands for matrix transposition, Rn denotes the n dimensional Euclidean space. In addi-
tion, Matrices, if their dimensions are not explicitly stated, are assumed to be compatible
for algebraic operations. P < 0 represents a negative definite matrix P . I and 0 de-
note, respectively, identity matrix and zero matrix. For simplicity and in the absence of
confusion, the following notions are used: xk = x(k), uk = u(k), dk = d(k), fk = f(k).

2. Problem Statement and Preliminaries. Consider discrete-time switched systems
with state delays described by:

xk+1 = Aσxk + Adσxk−d +Bσuk

yk = Cσxk + Cdσxk−d +Dσuk (1)

xψ = φψ, ψ = −d,−d+ 1, . . . , 1

where xk ∈ Rn is the state, yk ∈ Rm is the measured output, uk ∈ Rp is the input vector
which belongs to l2 [0,∞). The piecewise constant function σ (denoting σk for simplicity):
[0, ∞) → P = {1, · · · , p} is a switching signal to specify, at each time instant k, the index
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σ ∈ P of the active subsystem, i.e., σ = i means that the ith subsystem is activated.
p > 1 is the number of subsystems. The ith subsystem is denoted by constant matrices
Ai, Adi, Bi, Ci, Cdi and Di. d > 0 is a constant time delay.

In this paper, we are interested in constructing a reduced-order switched system de-
scribed by

x̂k+1 = Arix̂k + Ardix̂k−d +Briuk

ŷk = Crix̂k + Crdix̂k−d +Driuk (2)

where x̂k ∈ Rq is the state vector of the reduced-order system with q < n. ŷk ∈ Rm is the
output of reduced-order system with the same dimension m as the original output yk. Ari,
Bri, Cri and Dri, i ∈ P are the matrices with compatible dimensions to be determined.
Note that system (2) is assumed to be switched synchronously by switching signal σ in
system (1).

Remark 2.1. Note from (2) that the constant delay τ is assumed to be known a prior.
Then, the conservatism can be reduced by extending the results to include the time-varying
delays or the unknown delays. Another underlying assumption is to switch synchronously
between the original systems and the reduced-order systems. A possible improvement to
this point is to design an observer which allows the asynchronously switchings.

Augmenting the model of system (1) to include the states of (2), we can obtain the
following model error system:

x̃k+1 = Ãix̃k + Ãdix̃k−d + B̃iuk

ẽk = C̃ix̃k + C̃dix̃k−d + D̃iuk (3)

where

x̃k =

[
xk
x̂k

]
, Ãi =

[
Ai 0
0 Ari

]
, Ãdi =

[
Adi 0
0 Ardi

]
, B̃i =

[
Bi

Bri

]
C̃i =

[
Ci −Cri

]
, C̃di =

[
Cdi −Crdi

]
, D̃i = Di −Drdi, ẽk = yk − ŷk.

To present the main objective of this paper, the following definitions are introduced.

Definition 2.1. [6]: For any kv > ks > 0, let Nσ (ks, kv) denote the switching numbers
of σ during [ks, kv]. For given scalars τ ∗ > 0 and N0 ≥ 0, we have

Nσ (ks, kv) ≤ N0 +
kv − ks
τ ∗

(4)

where τ ∗ and N0 are called ADT and the chattering bound, respectively. Here we assume
N0 = 0 for simplicity as commonly used in literature.

Definition 2.2. [28]: Exponential H∞ performance: given a scalar γ > 0, system (3) is
said to be exponentially stable with an H∞ norm bound γ, if it is exponentially stable when
uk = 0 and under zero initial condition, ‖ẽk‖2 ≤ γ ‖uk‖2 for all nonzero uk ∈ l2 [0,∞).

Our objective is to design a reduced-order system in the form of system (2), and find
admissible switching signals with ADT such that the resulting model error system (3)
under such switching signals is exponentially stable and guarantees an H∞ performance
index.

To obtain our main result, the following lemma is presented.

Lemma 2.1. [30]: For any constant matrix M ≥ 0, Φl ∈ Rn, there exist positive integers
β1 ≥ β2 ≥ 1 such that

−(β2 − β1 + 1)

β2∑
l=β1

ΦT
l MΦl ≥ −

β2∑
l=β1

ΦT
l M

β2∑
l=β1

Φl. (5)
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3. Main Results. In this section, the following theorem provides sufficient conditions
for the existence of a reduced-order model (2) for system (1) based on Lemma 2.1.

Theorem 3.1. For given scalars, 0 < α < 1, γ > 0 and µ ≥ 1, system (3) is exponentially
stable with an H∞ norm bound γ under ADT switching signal σ, if there exist symmetric
and positive definite matrices Pi, Qi, Zi and matrices Mci, c = 1, 2, 3,∀i ∈ P, such that
the following inequalities hold, [

Ξ1 Ξ2

∗ Ξ3

]
< 0 (6)

Pi ≤ µPj, Qi ≤ µQj, Zi ≤ µZj, ∀i, j ∈ P (7)

and average dwell time τa

τa > τ ∗ = − lnµ/ lnα (8)

where

Ξ1 =

 Ψ11 Ψ12 Ψ13

∗ Ψ22 Ψ23

∗ ∗ −γ2I

 , Ξ2 =

 M1i C̃T
i ÃTi ATi − I

M2i C̃T
di ÃTdi ÃTdi

M3i D̃T
i B̃T

i B̃T
i


Ξ3 = diag

{
−αdd−1Zi,−I,−P−1

i ,−(dZi)
−1

}
Ψ11 = Qi − αPi +MT

1i +M1i, Ψ12 =MT
2i −M1i

Ψ22 = −αdMQi −MT
2i −M2i, Ψ23 =MT

3i, Ψ13 =MT
3i.

Proof: Choosing the following Lyapunov-Krasovskii function as

Vi(k) = V1i(k) + V2i(k) + V3i(k) (9)

where

V1i(k) = x̃TkPix̃k, V2i(k) =
k−1∑
l=k−d

αk−l−1x̃Tl Qix̃l

V3i(k) =
−1∑
j=−d

k−1∑
l=k+j

αk−l−1ηTl Z1iηl, ηl = x̃l+1 − x̃l

and Pi, Qi and Zi are symmetric and positive definite matrices.
In terms of ∆Vi(k) = Vi(k + 1)− αVi(k), we have

∆V1i(k) = x̃Tk+1Pix̃k+1 − αx̃TkPix̃k (10)

∆V2i(k) = x̃TkQix̃k − αdx̃Tk−dQix̃k−d (11)

∆V3i(k) = dηTk Z1iηk −
k−1∑
l=k−d

αk−lηTl Z1iηl. (12)

By means of Lemma 2.1, we have

∆V3i ≤ dηTk Z1iηk − αdd−1

k−1∑
l=k−d

ηTl Z1i

k−1∑
l=k−d

ηl. (13)

Define ξk =
[
x̃Tk x̃Tk−d wTk

]T
, due to

2ξTkMi

[
xk − xk−d −

k−1∑
l=k−d

ηl

]
= 0,
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one gets

∆Vi(k) + ẽTk ẽk − γ2wTk wk + 2ξTkMi

[
xk − xk−dk −

k−1∑
l=k−dk

ηl

]
≤ ξTk

(
Ξ1 +Miα

−ddZ−1
i MT

i

)
ξk + z̃Tk z̃k + x̃Tk+1Pix̃k+1 + ηTk dZiηk

−

[
ξTkMi +

k−1∑
l=k−d

αdd−1ηTl Z1i

]
(αdd−1Z1i)

−1 ×

[
MT

i ξk +
k−1∑
l=k−d

αdd−1Z1iηl

]
.(14)

Due to Zi > 0, the last term is non-positive. By Schur Complement, further, from (6),
we have

∆Vi(k) + ẽTk ẽk − γ2wTk wk ≤ 0. (15)

Furthermore, one can obtain from (15) that

Vi(k + 1) ≤ αVi(k)− Γ(k), (16)

where Γ(k) = ẽTk ẽk − γ2wTk wk. On the other hand, it follows from (7) and (9) that

Vi (k) ≤ µVj (k) . (17)

Constructing the finite switching time instants k1 < · · · < ks−1 < ks, s = 1, 2, · · · , N of
the switching signal σ during [0, k). Then, let Nσ [0, k) denote the switching numbers of
σ during [0, k).

By combining (15) with (16) during [0, k), based on (9), one can get

Vσ(k) ≤ αk−ksVσ(ks)−
k−1∑
l=ks

αk−l−1Γ(l) ≤ αk−ksµVσ(ks)−
k−1∑
l=ks

αk−l−1Γ(l)

≤ αk−ks−1µVσ(ks−1)− µ

ks−1∑
l=ks−1

αk−l−1Γ(l)−
k−1∑
l=ks

αk−l−1Γ(l)

≤ αkµNσ(0,k)Vσ(0)− µN(0,k)

k1−1∑
l=0

αk−l−1Γ(l)

−µN(k1,k)

k2−1∑
l=k1

αk−l−1Γ(l)− · · · −
k−1∑
l=ks

αk−l−1Γ(l)

≤ αkµNσ(0,k)Vσ(0)−
k−1∑
l=0

µNσ(l,k)αk−l−1Γ(l). (18)

Considering (4), (8) and (18), we have

Vσ(k) ≤ eλkVσ(0)−
k−1∑
l=0

eλ(k−l)α−1Γ(l) (19)

where λ = lnα + lnµ/τa. It follows from (8) that λ < 0.
Assuming the zero disturbance input wk = 0 to the state equation of system (3),

it follows from (19) that Vσ(k) ≤ eλkVσ(0). In addition, there exist some constants
aσ > 0 and bσ > 0 such that aσ ‖x̃k‖2 ≤ Vσ(k), Vσ(0) ≤ bσ ‖x̃0‖2. Then, we have

‖x̃k‖ ≤
√
bσ/aσe

λk/2 ‖x̃0‖. Therefore, system (3) is exponentially stable.
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Now, we consider the following performance index:

J =
∞∑
k=0

[
ẽTk ẽk − γ2wTk wk

]
.

For any nonzero wk ∈ l2 [0,∞) and under zero-initial condition, one has
k−1∑
l=0

eλ(k−l)α−1Γ(l)

≤ 0 from (19). Note in the above inequality that
k−1∑
l=0

eλ(k−l)α−1ẽTl ẽl is summable from

k = 1 to ∞ since
k−1∑
l=0

eλ(k−l)α−1wTl wl is summable for any wl ∈ l2 [0,∞) in the same

interval. Then, from k = 1 to ∞, we obtain that
∞∑
k=1

k−1∑
l=0

eλ(k−l)α−1Γ(l) ≤ 0. Exchanging

the double-sum region yields

∞∑
l=0

Γ(l)
∞∑

k=l+1

eλ(k−l)α−1 =
eλα−1

1− eλ

∞∑
l=0

Γ(l) ≤ 0

which means that J ≤ 0. Then, one has ‖z̃k‖2 ≤ γ ‖wk‖2 for nonzero wk ∈ l2 [0,∞). The
proof is completed.
The stability analysis is given above; in the sequel, the parameters of the reduced-order

systems are designed by the following theorem.

Theorem 3.2. Consider system (1) and let 0 < α < 1, γ > 0 and µ ≥ 1 be given
constants, if there exist symmetric and positive definite matrices Pi ∈ Rm×m, Qi ∈ Rm×m,
Zi ∈ Rm×m, and matrices Xi ∈ Rn×n, Yi ∈ Rq×q, Msi ∈ Rm×m, m = n + q, s = 1, 2, 3,
∀i ∈ P such that (7), ADT satisfies (8) and the following inequalities hold[

Ξ1 Ξ̃4

∗ Ξ̃5

]
< 0 (20)

where

Ξ̃4 =

 M1i Ψ̃T
15 Ψ̃T

16 Ψ̃T
17

M2i Ψ̃T
25 Ψ̃T

26 Ψ̃T
26

M3i Ψ̃T
35 Ψ̃T

36 Ψ̃T
36

 , Ωi =

[
Xi 0
Y T
i E Yi

]
Ξ̃5 = diag

{
−αdd−1Zi −I Ψ66 Ψ77

}
, Ψ̃17 = Ψ̃16 − Ωi

Ψ66 = Pi −
(
Ωi + ΩT

i

)
, Ψ77 = dZi −

(
Ωi + ΩT

i

)
,

Ψ̃15 =
[
Ci −S̄i

]
, Ψ̃25 =

[
Cdi −N̄i

]
, Ψ̃35 = Di − R̄i, E =

[
I 0

]
Ψ̃16 =

[
XiAi 0
Y T
i EAi Li

]
, Ψ̃26 =

[
XiAdi 0
Y T
i EAdi Hi

]
, Ψ̃36 =

[
XiBi

Y T
i EBi + Ti

]
.

Then, there exists an admissible reduced-order model (2) such that system (3) is expo-
nentially stable with H∞ norm bound γ under switching signals with ADT satisfying (8).
In addition, if (7) and (20) have a feasible solution, switching signals with ADT satisfying
(8) are found and the parameters of an admissible reduced-order model can be constructed
by [

Ari Ardi Bri

Cri Crdi Dri

]
=

[
Y −1
i 0
0 I

] [
Li Hi Ti
S̄i N̄i R̄i

]
. (21)
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Proof: By Theorem 3.1, system (3) under switching signals with ADT satisfying (8)
is exponentially stable with H∞ norm bound γ, if LMIs (6) and (7) hold.

For Pi > 0 and the nonsingular matrix Ωi, from the fact that (Pi − Ωi)P
−1
i (Pi − Ωi)

T ≥
0, we have −ΩiP

−1
i ΩT

i ≤ Pi −
(
Ωi + ΩT

i

)
. Similarly, one has −Ωi(dZi)

−1ΩT
i ≤ dZi −(

Ωi + ΩT
i

)
. Therefore, if the following inequality holds,[

Ξ1 Ξ4

∗ Ξ̃5

]
< 0 (22)

where

Ξ4 =

 M1i C̃T
i ÃTi Ω

T
i Ψ17

M2i C̃T
di ÃTdiΩ

T
i ÃTdiΩ

T
i

M3i D̃T
i B̃T

i Ω
T
i B̃T

i Ω
T
i

 , Ψ17 = (ÃTi − I)ΩT
i

one can infer [
Ξ1 Ξ4

∗ Ξ6

]
< 0 (23)

where

Ξ6 = diag
{

−αdd−1Zi −I Ψ̂66 Ψ̂77

}
, Ψ̂66 = −ΩiP

−1
i ΩT

i , Ψ̂77 = −Ωi(dZi)
−1ΩT

i .

Performing a congruence transformation to (23) via diag
{
I, I, I, I, I,Ω−T

i ,Ω−T
i

}
yields

(6). In what follows, we will show (20) ensures that (22) holds.
Note that from (20), we have

Ωi + ΩT
i =

[
Xi +XT

i ETYi
∗ Yi + Y T

i

]
> 0 (24)

which means that Xi and Yi are nonsingular. And thus, by using system (3), the following
definitions are introduced,

Li
∆
= YiAri, Hi

∆
= YiArdi, Ti

∆
= YiBri, S̄i

∆
= Cri, N̄i

∆
= Crdi, R̄i

∆
= Dri. (25)

By using (3) and (25), we can get

ΩiÃi = Ψ̃110, ΩiÃdi = Ψ̃210, ΩiB̃i = Ψ̃310, C̃i = Ψ̃19, C̃di = Ψ̃29, (26)

and substitute them into (22) to have (20). This means that if (20) holds, (6) is true,
which implies that the error system (3) is exponentially stable with an H∞ performance
index. Meanwhile, from (25) that the parameters of a reduced-order model are given by
(21). The proof is completed.

Remark 3.1. It should be pointed out that the Lyapunov function (9) is general with
comparison to the existing Lyapunov function. When α = 1 in (9), the Lyapunov function
(9) reduces to those in [23] for non-switched delay systems. When α = 0, the Lyapunov
function (9) is capable of dealing with switched systems [25]. It is obvious to see from
Ξ2 and Ξ3 in (6) that it is difficult to deal with the problem of model reduction due to
the existence of P−1

i , which leads to some product terms between Pi and Ãi, Ãdi and B̃i.

There exists the same case between Zi and Ãi, Ãdi and B̃i. To overcome the difficulties,
motivated by the work [29], an auxiliary slack matrix Ωi is introduced in the proof of
Theorem 3.1 such that these product terms are decoupled. That is, Pi and Zi are not
involved in any product with Ãi, Ãdi and B̃i in (22). This makes it feasible to construct a
reduced-order model. On the other hand, the introduction of the auxiliary slack matrices
leads to the use of so much resources such as computer storage space. Therefore, it is the
future topic to make the proper tradeoff between them.
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Remark 3.2. Note that many existing results on model reduction in the discrete-time
context are formulated in terms of LMIs with inverse constraints or other non-convex
conditions, (see, for instance, [21,23] and references therein), which is difficult to obtain
the numerical solutions. An LMI-based solution is obtained for the model reduction prob-
lem of switched systems in [25], but the time delay is not taken into account. The main
reason is that the existence of time delay will lead to the common Lyapunov matrices,
which is the conservatism [15]. To reduce the conservatism, a factor α is introduced such
that all Lyapunov matrices are piecewise.

4. Numerical Example. In this section, an example is provided to illustrate the effec-
tiveness of the proposed method.
Consider discrete-time switched system (1) consisting of two subsystems, with param-

eters from [23,25]:

A1 = ρ


1.3 2.2 −1.3 0.8
0.5 −0.3 1.9 0.6
−0.7 −0.5 −0.4 −1.2
−1.7 2.1 0.3 2.8

 , A2 = ρ


1.1 2.2 −1.3 0.8
0.5 −0.3 1.5 0.6
−0.7 −0.3 −0.4 −1.2
−1.7 2.1 0.3 2.0


Ad1 = Ad2 = ρ


0.2 0.1 0 0
0 0.2 0 0
0 0 0.2 0.1
0 0 0 0.2

 , B1 = ρ


1.9
−1.8
1.6
−0.8

 , B2 = ρ


2.3
−1.3
1.6
−0.4


C1 = ρ

[
12 5 0.3 2.8

]
, C2 = ρ

[
12 5 0.3 2.8

]
Cd1 = Cd2 = ρ

[
0.2 0.5 0.1 0.9

]
, D1 = D2 = ρ, d = 2.

The parameter Adi of time delay term stems from those of [23] while others are from
those in [25] since the latter is concerned with switched delay-free systems. Here, we are
interested in designing a q-order (q < 4) system (2) and find out an admissible ADT
switching signals such that the model error system (3) is exponentially stable with H∞
norm bound γ. Given ρ = 0.1, α = 0.9, µ = 1.2 and γ = 2.0, by utilizing the LMI
Toolbox, it follows from Theorem 3.2 that the following reduced-order models can be
given:
Third order model:

Ar1 =

 0.2610 0.0527 −0.0216
0.0475 0.2262 0.0234
−0.0099 −0.0128 0.2653

 , Adr1 =

 0.0008 0.0026 −0.0021
0.0059 −0.0013 0.0037
0.0008 −0.0007 0.0047


Br1 =

[
−0.3226 0.5332 −0.3734

]T
, Cr1 =

[
−0.0618 0.0461 −0.0118

]
Cdr1 =

[
−0.0125 0.0126 −0.0113

]
, Dr1 = −0.7156

Ar2 =

 0.2554 0.0497 −0.0243
0.0322 0.2466 0.0058
−0.0117 −0.0147 0.2678

 , Adr2 =

 0.0006 0.0028 −0.0021
0.0058 −0.0012 0.0039
−0.0011 0.0014 0.0027


Br2 =

[
−0.6795 0.1368 −0.5570

]T
, Cr2 =

[
−0.0452 0.0055 −0.0121

]
Cdr2 =

[
−0.0039 0.0071 −0.0053

]
, Dr2 = −0.3804.

Second order model:[
Ar1 Ard1 Br1

Cr1 Crd1 Dr1

]
=

 0.2719 0.0399 0.0000 0.0032 −0.5025
0.0292 0.2509 0.0043 0.0005 0.6031
−0.0661 0.0372 −0.0083 0.0112 −0.6833


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Ar2 Ard2 Br2

Cr2 Crd2 Dr2

]
=

 0.2711 0.0380 0.0007 0.0027 −0.7842
0.0242 0.2563 0.0035 0.0009 0.4300
−0.0600 −0.0140 −0.0004 0.0056 −0.2979

 .
First order model:[

Ar1 Ard1 Br1

Cr1 Crd1 Dr1

]
=

[
0.2532 −0.0024 −0.7170
−0.0600 −0.0086 −0.6759

]
[
Ar2 Ard2 Br2

Cr2 Crd2 Dr2

]
=

[
0.2502 −0.0018 −1.0418
−0.0496 0.0006 −0.3038

]
.

In addition, the minimal ADT τ ∗ = 1.7305 is obtained by (8). Thus, the reduced-order
switched model under ADT switching signals is constructed by the proposed approach.

Remark 4.1. When non-switched delay systems are considered, the model reduction prob-
lem of such systems is addressed in [23]. By making use of Finsler’s Lemma, sufficient
condition with a non-convex constraint is established, which is difficult to find the numer-
ical solution. Although many numerical approaches have been proposed to overcome this
difficulty, for example, the cone complementarity linearization method [26] and sequential
linear programming matrix method [27], the computation is very heavy. In the present
paper, Ω are introduced to obtained the strict LMI-based condition. The computation is
obviously light. Thus, the proposed approach is less conservative from the computational
point of view.

5. Conclusions. In this paper, we have studied the problem of the exponential H∞
model reduction for discrete-time switched systems under ADT switching signals. Time
delay under consideration is interval time-varying. Based on H∞ performance analysis
and new linearization technique, sufficient conditions for the solvability of this problem
have been established in terms of strict LMIs, which avoid the numerous work of the
calculation and decrease the computation complexity. An example has been given to
show the effectiveness of the proposed methods.
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