International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 10(A), October 2012 pp. 6885—6902

NEW IMAGE INTERPOLATION ALGORITHMS
BASED ON DUAL-TREE COMPLEX WAVELET TRANSFORM
AND MULTILAYER FEEDFORWARD NEURAL NETWORKS

SHIRIN SALEHI' AND HOMAYOUN MAHDAVI-NASAB?

Young Researchers Club
?Department of Electrical Engineering
Najafabad Branch, Islamic Azad University
Isfahan, Iran
sh_salehi@sel.iaun.ac.ir; mahdavinasab@iaun.ac.ir

Received July 2011; revised November 2011

ABSTRACT. In this paper, new image resolution enhancement algorithms based on com-
plex wavelet transform and feedforward neural networks are proposed. The wavelet sub-
bands corresponding to high-resolution images are estimated by meural networks using
low-resolution counterparts. High-resolution images are then reconstructed employing
the inverse transform. We take advantage of dual-tree complex wavelet transform, such
as approzrimate shift invariance, substantial reduced aliasing and directional selectivity, to
obtain a richer representation of local structures in interpolated images. These properties
make the subband estimation process more effective and lead to more accurate reconstruc-
tion of texture and edge regions. We also present a simplified version of the proposed
algorithm to reduce computational cost without significant performance reduction. Sub-
jective comparisons and objective quality assessments indicate notable improvement over
the conventional bicubic and bilinear interpolation techniques and some typical recently
proposed methods.

Keywords: Image interpolation, Image resolution, Dual-tree complex wavelet trans-
form, Multilayer feedforward neural networks

1. Introduction. Resolution of a digital image is defined as the number of pixels per unit
distance [1]. Super-resolution is the process of producing a high-resolution (HR) image
using one or more low-resolution (LR) images or frames [2]. In this paper the concentration
is on single-frame super-resolution which employs just one LR image as the source. This
kind of super-resolution is known as image interpolation, resolution enhancement, scaling,
zooming and enlargement. Image interpolation is necessary to magnify images so that
output images contain more pixels. Due to the physical limitations of imaging hardware,
image interpolation techniques are commonly used to construct an HR image from its LR
version by estimating the unknown pixel intensities. The challenge is to process the image
in such a way that keeps the interpolated image sharp and clear to human observer. Image
interpolation has applications in medical imaging, remote sensing, digital photography,
printing industry and video transmission [3-11]. It is an essential process in HDTV or
medical image display technologies [9]. When the resolution of an image generated by a
host PC is different from the screen resolution of a Liquid Crystal Display (LCD), image
scaling process is necessary. Nowadays, satellite images are used in many applications such
as geosciences, astronomy and geographical information systems. Image interpolation is
a well-known method to increase the resolution of satellite digital images [4].
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The conventional methods of interpolation, such as nearest neighbor, bilinear and bicu-
bic, use the weighted sum of neighboring pixels to estimate the interpolated pixel. Al-
though these methods are simply implemented, they suffer from blurring and blocking
artifacts. They are also unable to generate the high-frequency or fine details [2,10-14].
These shortcomings have been the motivation of proposing new and more sophisticated
methods to improve the visual quality of interpolated images.

Edge-directed methods use the LR edge information to estimate the edge mapping of
the HR image [13-16]. The estimation helps to guide the process so that the edges are
not smoothed. In [13], a nonlinear edge-directed interpolation algorithm using directional
filtering and data fusion is proposed. In this algorithm the directional estimates of the
missing samples are computed and fused for interpolation. The basic idea in [14] is to
estimate local covariance coefficients from an LR image to adapt interpolation based on
the geometric duality between LR and HR covariances.

Other important interpolation algorithms are those which employ neural networks.
Multilayer feedforward perceptrons (MLPs) have been applied successfully to solve some
difficult and diverse problems using a popular supervised training algorithm known as back
propagation (BP) [17-19]. Different variations of BP are presented including gradient de-
scent with momentum, variable learning rate, resilient, conjugate gradient, Quasi-Newton
and Levenberg-Marquardt algorithms in order to optimize network parameters and avoid
local minima [18,20]. In [21], an interpolation algorithm based on MLP is proposed.
Classification-based neural networks are used for interpolation in [22]. A human visual
system directed neural network-based scheme for natural images is proposed in [23]. Also,
researchers of [24,25] have presented methods of improving the spatial resolution of im-
ages by means of MLP neural networks. In [26], a wavelet-based resolution enhancement
algorithm is proposed which uses neural networks for estimating wavelet subbands. The
HR image is finally produced by the wavelet synthesis procedure.

Recently, some complex wavelet domain resolution enhancement algorithms have been
proposed for satellite images [4,5]. Complex wavelet transform (CWT) is recently emerged
in image processing [27,28]. CWT of an image produces two low-frequency and six high-
frequency complex-valued subbands. The high-frequency subbands are oriented at angles
+15°, +45° and +75°. Each complex-valued subband is composed of a real and an
imaginary part. In high-frequency subbands the real and imaginary parts are oriented at
the same angle. In [4], CWT is used to decompose an LR image into different subbands.
The high-frequency subbands are interpolated using bicubic interpolation. The input
image is also interpolated with the half of the interpolation factor used for the high-
frequency subbands. Finally, the interpolated subbands and input image are combined
by inverse CWT. In [5], the initial estimate of the HR image is constructed by applying a
cycle-spinning methodology introduced in [29]. CWT highpass coefficients together with
the LR image are used to reconstruct the HR image by inverse CW'T.

In this paper an image resolution algorithm based on dual-tree complex wavelet trans-
form (DT-CWT) and MLP neural networks is proposed. Each of wavelet subbands cor-
responding to an HR image is estimated using a subband estimator from its LR version.
The HR image is then obtained using inverse DT-CWT (IDT-CWT). Directional selectiv-
ity of DT-CWT makes the subband estimation process very successful and leads to more
accurate reconstruction of texture and edge areas. Subjective comparisons and objective
quality assessments indicate additional improvements over conventional and more recent
interpolation algorithms, described in [13,14], as edge directed methods, and [26], as a
neural network and wavelet-based method.

This paper is organized as follows. Section 2 reviews the main features of DT-CWT.
Section 3 describes the proposed interpolation algorithm. Section 4 presents a simplified



NEW IMAGE INTERPOLATION ALGORITHMS 6887

version of the algorithm which is suitable for fast and practical implementations. Section
5 presents the experimental results. Section 6 concludes this paper.

2. The Dual-Tree Complex Wavelet Transform. DT-CWT is a relatively new en-
hancement to the DWT. It was proposed to overcome the shortcoming of DWT [28].
In DWT, wavelet coefficients tend to oscillate positive and negative around singulari-
ties which makes the singularity extraction complicated. A small shift of the signal also
results in greatly different coefficients around singularities. It makes wavelet-based pro-
cessing intricate, because the algorithms must be capable of coping with different wavelet
patterns caused by shifted singularities. Any wavelet coefficient processing upsets the
delicate balance between the forward and inverse transforms, leading to artifacts in the
reconstructed signal. Furthermore, lack of directional selectivity greatly complicates pro-
cessing of image features like ridges and edges [28]. DT-CWT nearly overcomes all these
shortcomings at the cost of 2¢ for a d-dimensional signal. DT-CWT uses two real DWTs.
One produces the real and the other the imaginary part of the transform. The analysis
and synthesis filter banks are illustrated in Figures 1 and 2. hg(n) and hy(n) are the
lowpass and highpass filter pair for the upper filter bank and gy(n) and ¢;(n) are for the
lower one. It is 2-times expansive in 1-D because the total output data rate is exactly
twice the input data rate. The 1-D DWT decomposes the input signal z(¢) in terms of
wavelets and scaling functions as:

w(t)= Y et —n)+ Y > d(Gn)2*p(2t —n) (1)

n=—oo 7=0 n=—00

The scaling coefficients ¢(n) and wavelet coefficients d(j,n) are computed via the inner
products:

e(n) = / T oDt — n)dt @)

o0
o0

d(j,n) = 22 / H(#)b(2 — n)dt (3)
CWT is considered as the above mentioned equations with complex-valued wavelet and
scaling functions:

’ch(t) = ’QZ}r (t) + J% (t) (4)

¢c(t) = d)r(t) + ]¢z(t) (5)
The 2-D DT-CWT gives rise to wavelets in six different directions of +15°, +45° and
+75°. There are two wavelets in each direction. One can be considered as the real part
of a complex-valued wavelet and the other as the imaginary part. In fact, a DT-CWT
of an image produces two real-valued (imaginary-valued) low-frequency subbands and six
real-valued (imaginary-valued) high-frequency subbands. Because the complex version
has twice as many wavelets as the real transform, it is 4-times expansive. The complex
2-D dual-tree is implemented as four critically-sampled separable 2-D DWTs operating
in parallel. However, different filter sets are used along the rows and columns. As in the
real case, the sum and difference of subbands are used to obtain the oriented wavelets.

3. Proposed Interpolation Algorithm. In recent years, research interest in image in-
terpolation has been more focused on visual quality of the interpolated images. According
to a study carried out by van Quwerkerk [2], the algorithms which are based on neural
networks are capable of producing images without the artifacts described before. It seems
that neural networks make a promising field in image interpolation research. In one of
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the earliest studies by Plaziac in 1999 [21], MLP neural networks are used for this pur-
pose. There is no classification in this method. In almost all other algorithms, researchers
employ some kinds of classification methods, which consider local structures of images.
The purpose of data clustering is to partition the LR image neighborhoods into a finite
number of clusters which are similar in some sense. This is especially of high importance
in texture and edge areas, because of the human visual system sensitivity to the high
contrast regions rather than smooth areas. In [32], the division of signal space to local re-
gions is implemented via a vector quantization (VQ) algorithm. The VQ is accomplished
using Kohonen’s self-organizing map. In [22], in a pre-processing step the image blocks are
classified into a number of classes by Adaptive Dynamic Range Coding (ADRC) [33]. The
optimal coefficients of the neural interpolating filters are then obtained for each class by a
supervised learning process which uses original HR and downscaled images as the training
set. In [26], the neural networks do not accomplish the interpolation process directly. In
fact, the task of MLP is to approximate the DWT subbands corresponding to the HR
image. In this algorithm, the HR image is decomposed into vertical, horizontal and di-
agonal subbands and a separate neural network is used for estimating each subband. In
the algorithm presented in [23], a fuzzy decision system inspired by human visual system
is proposed to classify the input image into human perception nonsensitive regions and
sensitive regions to select either the bilinear or the proposed neural-network interpolation
module to operate in each region. It is observed that the accuracy of the interpolation
process is greatly dependent on the result of the classification process. Neural networks
generally present better performance when the solution space is reduced.

In this paper, DT-CWT with its high directional selectivity is used to decompose the
HR image into directional subbands. The estimation process of edges in the corresponding
directions is carried out by a specialized MLP estimator. Since high contrast regions such
as edge structures are sensitive to human eye, the proposed algorithms can significantly
enhance the edge structures and improve the quality of interpolated images. Unlike DW'T,
CWT coefficients do not have oscillatory behavior. This property simplifies the estimation
of directional subbands. Shift invariance property of CWT coefficients also improves the
estimation, since MLP estimators do not have to cope with different wavelet coefficients
produced by shifted singularities. Furthermore, reduced aliasing in CW'T reduces artifacts
in the reconstructed signal.

The neural networks are initially trained to obtain optimal coefficients for each of the
subband estimators. These coefficients are then used to estimate the wavelet subbands
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corresponding to the HR image using its LR version. The HR image is then reconstructed
by IDT-CWT.

3.1. Training procedure. The block diagram of the training procedure is shown in
Figure 3. The down-scaled version of the training set is considered as the input to the
neural networks. 16 subbands resulting from DT-CWT of the original HR training set are
considered as targets. We employ a separate MLP estimator for each subband. The input
vectors are the overlapping blocks of size 5 x 5 in the LR input and the central pixel of the
corresponding block in each wavelet subband is considered as the target. As the size of
the blocks is increased more information is provided around the approximation location.
On the other hand, the size of the blocks determines the number of input elements and
therefore the larger block size leads to higher network complexity. Therefore, we consider
blocks of size 5 x 5 as a compromise between complexity and performance. Note that
each wavelet subband of the HR image has the same size of the LR input. Here we
consider one separate subband estimator for estimating each of the real or imaginary
parts of the complex-valued subbands. The final weights for each estimator are obtained
using resilient BP (RP) and Levenberg-Marquardt (LM) training algorithms beginning
by random weight matrices. The neural networks characteristics are shown in Table 1.
The hidden layers’ number of neurons was selected heuristically. Different numbers of
neurons in hidden layers have been tested and the numbers with the best performance
are selected. The memory requirements for RP training algorithm are relatively small in
comparison with the other algorithm. Although memory requirements for LM are larger,
the mean square error is much lower than that achieved by RP algorithm.

3.2. Interpolation process. The block diagram of the interpolation process is shown
in Figure 4. MLP subband estimators estimate 16 wavelet subbands corresponding to
the HR image from the LR input which are all of the same size equal to the LR image.
The HR image is then reconstructed by IDT-CWT. The structure of a typical subband
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TABLE 1. Neural network characteristics

Number of input elements 25
Number of output neurons 1
Number of hidden layers 2
Number of neurons in first hidden layer 22

Number of neurons in second hidden layer | 12

Transfer function of the first hidden layer Hyperbolic tangent
Transfer function of the second hidden layer | Hyperbolic tangent
Transfer function of the output layer Linear

Type of network Feedforward

- Resilient BP

- Levenberg-Marquardt

Network training algorithm

100 (RD)
Number of epochs
b 50 (LM)
Performance function Mean squared error
Max error 7x 107 (RP)
4% 10~ (LM)
Subband estimator
r—v 1
l.\'j . z V I
|
I X2 =
X | ©
|
: |
LR image | | Real orimaginary part
X > { of a complex subband
|_ ___________________ J of HR. image

F1GURE 5. The structure of a typical subband neural estimator

estimator is shown in Figure 5. The output of the first hidden layer O~ is:
O~ % = tanh(U.X + B). (6)

where X is the input vector, U is the weight matrix of the first hidden layer and B is the
bias vector. The output of the second hidden layer O~! is:

O~ ' = tanh(V.0 % + C). (7)

where V is the weight matrix of the second hidden layer and C is the bias vector of the
second hidden layer. The estimated pixel value of the subband image y is:

y=W.0'+d (8)

where W the weight matrix of the output layer and d is the bias of the output neuron.
Boundary pixels that cannot be estimated by MLP subband estimators are set to zero in
high-frequency subbands, and are replaced from the LR image in low-frequency subbands
so that the size of output image is exactly twice of the input.
Clearly this wavelet-based scheme supports a progressive interpolation. We can recon-
struct the interpolated HR image by estimating the low-frequency subbands. Adding one
or more high-frequency subbands can enhance the quality of the interpolated image.
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4. Simplified Algorithm. To reduce the structural and computational complexity of
the proposed scheme, especially in the final interpolation step, we can consider 8 subband
estimators instead of 16. The block diagram of the simplified training procedure is shown
in Figure 7. The input is the down-scaled version of the training set as before and 8
complex-valued (with a real and an imaginary part) subbands resulting from DT-CWT of
the original HR training set are considered as targets. The input vectors are 5 x 5 blocks
in the LR input and the central pixels of the corresponding blocks in each complex-valued
subband are the targets. To avoid any complex arithmetic, we consider each complex-
valued subband consisting of two real and imaginary parts. Therefore, we have two central
pixels with real values and we have 2-element target vectors. The optimal weights for
each estimator are approximated by LM training algorithm. The other characteristics of
the neural networks are as before. Block diagram of the simplified interpolation process
and the structure of a typical subband estimator are shown in Figure 6 and Figure 8§,
respectively. The estimated pixel value of a complex-valued subband image Y is obtained
by the following equations.

O~% = tanh(U.X + B) (9)
O~' = tanh(V.O™% 4+ O) (10)
Y =WO'+D (11)

5. Experimental Results. The training set of 5 different gray-scale images including
Houses, Elaine, Couple, Boat and Bridge of size 512 x 512 pixels is used for training. These
images include a variety of natural images such as people, building and landscape. Houses
and Boat have edges in different directions, Bridge has mainly horizontal edges, Couple
has the various types of image components and Flaine is a portrait image. The number
of training images is selected by experimentation to achieve better general performance.
321,552 samples are used for training of each subband estimator.

As shown in [30], for an acceptable and fair comparison of image interpolation algo-
rithms, the down-scaling techniques, image contents and the quality metrics all need to be
considered. So, in the following experiments we use three different down-scaled versions of
HR images, named LR1, LR2 and LR3, two objective quality metrics along with subjec-
tive quality assessment. Also test images with different internal structures are employed;
namely Lena, Peppers, Baboon, Goldhill, Lighthouse and F-16.

The first down-scaled version of the training set, LR1, is generated by lowpass filtering
with the averaging filter of size 2 x 2 and then down-sampling of the HR image. The
second version, LR2, is made by directly down-sampling of the HR training set, and the
third, LR3 is generated through MATLAB imresize command. In fact LR3 is generated



6892 S. SALEHI AND H. MAHDAVI-NASAB

HR mmage
+15° Complex
— Subband l4— Subband |4
estimator m+15°
D own-
scalmg
+45° Complex
— Subband |4 Subband
estimator m+45°
+75° Complex
- Subband l4— Subband |
estimator m+75°
-15° Complex
v - Subband -#— Subband [«
estimator m-15° h 4
_LR | | DT- +15° Complex
image 45" Complex CWT —1 Subband — Subband [—
= Subband 4 Subband (% estimator in+13
estimator in-45°
+45° Complex
. c — Subband Subband —
o omplex estimator in+45°
= Subband 44— Subband |4 ) i
estimator m-75"
Il [ ] oo | BT
N - = —| Subband — Subband — =
Low-freq Low-freq estimator i +75°
—m Subband 4 Complex (4
estimator Subband
Low-req Low-freq Low-freq Low-req
L Subband (4 Complex |- Subband (—m| Complex —
estimator Subband estimator Subband
FiGure 7. Block diagram of Ficure 8. Block diagram of
the simplified training proce- the simplified interpolation
dure process

from decimated and anti-aliasing filtered HR image. For objective quality assessments we
use Peak Signal to Noise Ratio (PSNR) and Mean Structural SIMilarity index (MSSIM).
Structural Similarity (SSIM) index [31] is more consistent to perceived visual quality. The
test images are with the original size of 512 x 512 and are not included in the training set
to show the generalization ability.

We compare the performance of the proposed algorithms with that of bilinear and bicu-
bic as two conventional interpolation algorithms and recently proposed methods named
WMI [26], NEDI [13] and DFDF [14]. CWRPI, CWLMI and SCWTI algorithms represent
the proposed methods with 16 Complex Wavelet subband estimators and RP training
Interpolation algorithm, 16 subband estimators and LM training and the simplified one
with 8 subband estimators, respectively.

5.1. Peak signal to noise ratio. PSNR is defined in Equations (12) and (13), where M
and N are numbers of rows and columns in an image and ¥pig, Yinp are pixel intensities
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of the original and interpolated image respectively. PSNR is widely used in image inter-
polation as a quantitative measurement of image quality. Greater PSNR corresponds to
better quality of an interpolated image. The PSNR results for the test images are shown
in Tables 2-4. A comparison of different interpolation algorithms on LR1 down-sampled
training images is also shown in Table 5. The greatest value for each test image is shown
in bold.

2552
PSNR = 10logy 7=, (dB) (12)
1 M N
MSE = MN Z Z (yorig(iaj) - yinpl(i’j))Q (13)

i=1 j=1

As it is seen in Tables 2-4, the proposed methods are superior to other interpolation
algorithms, both conventional and the more recently proposed, by an average of 0.78-3.81,
0.11-2.7 and 1.43-4.1dB for LR1, LR2 and LR3 down-sampling methods, respectively.
Most image interpolation algorithms achieve higher PSNR when the down-scaling method
is LR1 or LR3. This is because in LR1 and LR3 we apply a lowpass/anti-aliasing filter
as a part of down-sampling process to avoid aliasing, while in directly down-sampling

TABLE 2. PSNR for LR1 down-sampled test images

Bilinear Bicubic WMI NEDI DFDF CWRPI CWLMI SCWI

Lena 32.69 34.26  31.12 30.32 30.43  34.59 35.61  35.59
Peppers 32.72 33.84 30.53 30.68 30.68  33.89 35.13  35.08
Baboon 23.37 23.98 23.24 2270 22.68  24.06 24.29  24.30

Goldhill 28.96 29.84 27.86 27.47 27.65 29.96 30.29  30.30
Lighthouse  25.22 26.08 2497 23.73 24.19  26.08 26.67  26.76
F-16 31.66 33.45 29.32 29.23  29.55 33.73 3491  34.93
Average 29.10 30.24 27.84 27.35 2753  30.38 31.15  31.16

TABLE 3. PSNR for LR2 down-sampled test images

Bilinear Bicubic WMI NEDI DFDF CWRPI CWLMI SCWI

Lena 30.15 30.07 30.96 33.77 33.81 33.27 34.15  34.02
Peppers 30.21 30.03 30.17 32.94 3299  32.40 33.44  33.36
Baboon 22.04 21.68 22.66 23.08 23.08 22.89 23.08 23.06

Goldhill 27.26 27.06 2743 28.33 28.71 28.60 28.79 28.78
Lighthouse  23.09 23.49 2441 2474 25.38  25.08 25.25  25.24
F-16 29.27 29.31  29.26 32.17 33.22 3233 33.17  33.17
Average 27.00 26.94 2748 29.17 29.53 20.09 29.64  29.60

TABLE 4. PSNR for LR3 down-sampled test images

Bilinear Bicubic WMI NEDI DFDF CWRPI CWLMI SCWI

Lena 32.64 34.08 31.58 30.34 3043  34.85 35.89  35.82
Peppers 32.66 33.68 30.82 30.66 30.67  33.83 35.26  35.21
Baboon 23.24 23.84 23.64 22.71 22.69  24.23 24.53 24.54

Goldhill 28.79 29.64 2825 2751 27.66 @ 30.13 30.56  30.55
Lighthouse  25.01 25.87 25,59 23.88 24.18  26.43 27.37 2713
F-16 31.59 33.21  29.44 29.23 29.53  34.01 35.30 35.26
Average 28.98 30.05 28.22 27.38 27.52 30.58 31.48 31.41
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TABLE 5. PSNR for LR1 down-sampled training images

Bilinear Bicubic WMI NEDI DFDF CWRPI CWLMI SCWI
Houses 23.01 23.88 2245 21.50 21.67 @ 24.46 26.07 2581
Elaine 32.49 33.09 29.88 31.09 31.16  33.13 33.48  33.47
Couple 28.70 29.68 28.08 27.29 27.44 @ 29.94 30.71  30.59
Boat 29.02 30.07 2821 2750 27.60  30.46 31.54 31.43
Bridge 25.93 26.75 2531 24.70 24.87  26.93 27.50 2745
Average 27.83 28.69 26.78 26.41 26.54  28.98 29.86  29.75

the Nyquist condition for proper sampling may not be satisfied. However, it can be seen
that NEDI and DFDF algorithms perform better when the images are directly down-
sampled (LR2). Predictably, the LM training performs better than RP. However, even
the simpler CWRPI is superior to existing methods in most situations; especially when
more applicable LR1 and LR3 down-sampling are used. Finally, the proposed CWLMI
and SCWI methods perform almost equally which means that we can employ SCWI with
a significant lower complexity without noticeable performance reduction.

5.2. Structural similarity index (SSIM). The most widely used interpolation quality
metric is the mean squared error (MSE), computed by averaging the squared intensity
differences of distorted and reference image pixels, along with the related quantity of peak
signal to noise ratio (PSNR). These are appealing because they are simple and mathe-
matically convenient in the context of optimization and have clear physical meanings.
However, they are not well matched to perceived visual quality [31]. In [31], Wang et
al. proposed a quality assessment metric, named SSIM, which is based on degradation
of structural information. Here we use this metric as a supporting quality criterion to
evaluate the interpolation techniques of this study.

Suppose that X and Y are two image signals. The default local weighting for computing
statistics is a Gaussian weighting function of size 11 x 11 with standard deviation of 1.5.
So the local statistics jiz, 0, and o4, are defined as:

N
=1

N 1/2
0y = (Z wi(w; — Mm)2> (15)

Opy = Zwi(xi — ) (Yi — fy) (16)

The SSIM is defined as:

(2/%/@ + Cl)(QUIy + C3)

SSIM(X,Y) =
( ) (124 p2 + C1) (02 + 02 + Cy)

(17)

where C; = (K, L)* and Cy = (K, L)?. L is the dynamic range of pixel values and
K; = 0.01 and K3 = 0.03. The overall image quality is evaluated by mean SSIM (MSSIM)
as:

M
1
MSSIM(X,Y) =+ > SSIM(x;,y;) (18)
j=1
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where X and Y are the reference and distorted images, respectively. x; and y; are the
image contents at the jth local window and M is the number of local windows in the
image.

The value of MSSIM is between 0 and 1 and the higher value indicates the higher quality.
The MSSIM values on different test images are shown in Tables 6-8. The greatest value
for each test image is shown in bold. A comparison of different interpolation algorithms
on LR1 down-sampled training images is also shown in Table 9.

TABLE 6. MSSIM for LR1 down-sampled test images

Bilinear Bicubic WMI NEDI DFDF CWRPI CWLMI SCWI

Lena 0.89 0.90 0.83 0.85 0.86 0.90 0.92 0.91
Peppers 0.86 0.87 0.81 0.84 0.85 0.87 0.88 0.88
Baboon 0.68 0.73 0.70 0.64 0.64 0.75 0.76 0.75
Goldhill 0.81 0.84 082 0.77 0.78 0.85 0.86 0.86
Lighthouse  0.76 0.79 0.73 072 0.72 0.79 0.81 0.81
F-16 0.92 0.94 090 0.89 090 0.92 0.94 0.94
Average 0.82 0.845 0.798 0.785 0.791 0.846 0.861  0.858

TABLE 7. MSSIM for LR2 down-sampled test images

Bilinear Bicubic WMI NEDI DFDF CWRPI CWLMI SCWI

Lena 0.85 0.84 0.86 0.87 0.89 0.89 0.90 0.89
Peppers 0.82 0.81 0.83 0.86 0.86 0.85 0.86 0.86
Baboon 0.61 0.62 0.68 0.71 0.71 0.69 0.71 0.70
Goldhill 0.76 0.76 0.80 0.80  0.81 0.81 0.82 0.82
Lighthouse  0.71 0.71 0.75 0.78 0.78 0.77 0.78 0.77
F-16 0.89 0.89 091 092 0.93 0.92 0.93 0.92

Average 0.773 0.771 0.821 0.805 0.830 0.821 0.833  0.826

TABLE 8. MSSIM for LR3 down-sampled test images

Bilinear Bicubic WMI NEDI DFDF CWRPI CWLMI SCWI

Lena 0.89 0.90 0.87 0.85 0.86 0.89 0.92 0.91
Peppers 0.86 0.87 0.84 084 0.84 0.87 0.88 0.88
Baboon 0.67 0.72 0.72  0.63 0.63 0.74 0.76 0.76
Goldhill 0.80 0.83 083 0.76  0.77 0.85 0.86 0.86
Lighthouse  0.74 0.77 0.78 0.71 0.71 0.77 0.83 0.82
F-16 0.91 0.93 0.90 0.88 0.89 0.93 0.94 0.94

Average 0.811 0.836 0.823 0.778 0.783  0.841 0.865 0.861

TABLE 9. MSSIM for LR1 down-sampled training images

Bilinear Bicubic WMI NEDI DFDF CWRPI CWLMI SCWI
Houses 0.75 0.77 0.71 0.70 0.70 0.77 0.83 0.82
Elaine 0.77 0.79 0.76 0.75 0.76 0.79 0.80 0.80
Couple 0.83 0.85 082 0.79  0.80 0.86 0.87 0.87
Boat 0.83 0.85 0.80 0.79  0.80 0.86 0.87 0.86
Bridge 0.75 0.79 0.74 070 0.71 0.81 0.83 0.83
Average 0.786 0.810 0.766 0.746 0.754  0.818 0.840 0.836
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FIGURE 9. (a) Original Lena image. Resolution enhanced Lena image by
(b) Bilinear, (c) Bicubic, (d) WMI, (e) NEDI, (f) DFDF, (g) CWLMI and
(h) SCWL
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FIGURE 10. (a) Original Goldhill image. Resolution enhanced Goldhill
image by (b) Bilinear, (¢) Bicubic, (d) WMI, (e) NEDI, (f) DFDF, (g)
CWLMI and (h) SCWL
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(f) (8)

FiGURE 12. Difference images between the original Lena image and the
resolution enhanced Lena image by (a) Bilinear, (b) Bicubic, (¢) WMI, (d)
NEDI, (e) DFDF, (f) CWLMI and (g) SCWIL.
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MSSIM results also show the superiority of the proposed algorithms by an average
of 0.016-0.076, 0.003-0.062 and 0.029-0.087 for LR1, LR2 and LR3 down-sampled test
images, respectively. Again, we see that CWLMI and SCWI perform almost equally.

5.3. Subjective comparison. In order to compare the performance of the proposed
methods subjectively, portions of Lena, Goldhill and Lighthouse magnified by a factor of 2
are shown in Figures 9-11. It is obvious that the proposed methods are able to reconstruct
the edges most sharply and produce less artifacts, leading to a better image quality. The
images produced by bilinear and bicubic interpolations are blurred and WMI images suffer
from blocking artifacts. In some cases, NEDI is not able to produce the interpolated image
properly, as in Lighthouse image. DFDF algorithm suffers from blocking artifacts, as in
the edge of the hat in Lena image. Figure 12 displays the difference images between the
original Lena and the corresponding resolution enhanced images. The gray pixels indicate
the error free area, while the darker or lighter areas indicate the interpolation errors. The
proposed algorithms reduce the errors significantly and are able to reconstruct the original
image nearly completely. The performance of the proposed interpolation algorithm is
especially of considerable value in high contrast edge areas where the other interpolation
algorithms fail to reconstruct the original image.

A comparison of computation time for generating a 512x512 HR image from a 256 x 256
LR input for different image interpolation algorithms is shown in Table 10. The programs
are implemented in MATLAB. The simulations are done on a system with 2.5-GHz Intel
Core 2 Duo CPU and 4-GB RAM and Windows Vista operating system.

TABLE 10. Comparison of computation time for different image interpola-
tion algorithms

WMI NEDI DFDF CWRP(LM)I SCWI
Time (sec) 6 24 16 28 14

6. Conclusions. We proposed hybrid image interpolation algorithms using DT-CWT
and MLP neural networks. MLP subband estimators estimate the expected wavelet sub-
bands corresponding to the HR image. The HR image is then reconstructed using the
IDT-CWT. To reduce the computational complexity, a simplified version of the inter-
polation algorithm was presented. The simplified version has half of the complexity of
the original algorithm but no significant performance reduction is observed. Taking ad-
vantage of CWT such as shift invariance, substantial reduced aliasing and directional
selectivity the subband estimation process is most effective and leads to nearly accurate
reconstruction of texture and edge areas. The experimental results on various images and
down-scaling methods using different image quality assessments verify the superiority of
the proposed algorithms.
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