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Abstract. In this paper, the design of a repairable series-parallel system with failure
dependencies is studied. The key point is that failure dependency and limited repair teams
can affect the state transition rates of each subsystem, and thus affect the state distribu-
tion of the subsystem and the availability of the system. Taking this into consideration,
we present a dependence function to determine the failure rate of components in each
subsystem and a Markov model to determine state distribution of the subsystem. An
optimal allocation problem is proposed and is aimed at minimizing the system cost con-
sisting of costs associated with components and costs associated with repair teams subject
to the system availability constraint. To solve the optimization problem, the dependence
function is specified and genetic algorithm is used to determine the optimal allocation so-
lutions due to its flexibility in representing discrete design variables and its robust search
capability. A numerical example is presented to illustrate that different dependencies
make the allocation strategies different.
Keywords: Repairable system, Series-parallel, Optimization, Failure dependency, Markov
model, Genetic algorithm

1. Introduction. Optimal design of system and reliability optimization play a key role
in engineering design and have been effectively applied to enhance performance [1]. Re-
pairable system indicates that a system can be repaired to operate normally in the event
of any failure, and system availability is a concept closely related to reliability and refers
to scale of measuring the reliability of a repairable system [2]. For repairable system,
availability is a very meaningful measure, and achieving a high or required level of avail-
ability is an essential requisite. In general, redundant components and repair teams are
used to provide a required level of system availability. While increasing the number of
redundant components and the number of repair teams, the cost is also on the upswing.
Therefore, system designers and decision-makers typically try to determine how many
redundant components and repair teams to use in each subsystem, in order to minimize
the system cost while satisfying the system availability constraint.

A series-parallel system consists of a few subsystems connected in series whereas each
subsystem consists of a few components connected in parallel. A subsystem is failed if all
the components in the subsystem are failed. Failure of any subsystem causes the failure
of the whole system. The reliability or availability of the series-parallel system can be im-
proved by increasing redundant components in parallel subsystems as an effective design
strategy. Thus, redundancy allocation must be considered in the initial design activity.
A redundancy allocation problem (RAP) of the series-parallel system refers to difficult
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NP-hard combinatorial optimization problems. Much research has been investigated in
the area of RAP for series-parallel system with various assumptions. Ramirez-Marquez et
al. [3] showed that optimization approaches to determine optimal or very good solutions
include dynamic programming, integer programming, mixed integer and non-linear pro-
gramming and heuristics. Comprehensive overviews of this problem have been addressed
by Kuo et al. [4] and Gen et al. [5].
Repairable series-parallel systems are frequently used in practice, e.g., power systems,

telecommunications systems, manufacturing production systems, and industrial systems.
The availability estimation and redundancy optimization for repairable series-parallel
system have drawn continuous attention both in problem characteristics and solution
methodologies [2,6-8]. In traditional RAP for a repairable series-parallel system, the re-
pair resources are assumed to be unlimited. Recently, the research work [9] for the RAP
of the system has proposed the more general case where the repair facilities are limited.
This problem is more realistic than the classical RAP because it takes into account limited
number of maintenance teams. In [9], the authors assumed allocating a set of maintenance
personnel to each subsystem, used universal generating function and Markov chain model
to evaluate the availability of each subsystem, and used a heuristic approach to solve the
RAP of the system. In the studies of [2,6-9], it has been assumed that component failures
occur independently in each subsystem. However, there are several situations in which
this independence assumption is not valid.
In some systems, the failure rate of the operating components will increase due to the

additional loading induced by the other failed components. Yu et al. [10] stated that
failure dependencies consider the interactions in the failure process of a system. Pecht
[11] proposed the following three types of failure dependency: common-mode failure,
multi-mode failure and other failure dependencies. The optimization problem for series-
parallel systems with common-mode failure was discussed in [12,13]. Levitin et al. [14,15]
investigated the optimization problem for series-parallel multi-state systems with two
failure modes. For the other failure dependencies, Ebeling [16] and Barros et al. [17]
analyzed two-component systems, in which the failure rate of the operating component
will increase due to the additional loading induced by the other failed components. In a
recent study [10], an N -component redundant system with the consideration of redundant
dependency was investigated and a dependency function was introduced to quantify the
redundant dependency.
Though the RAP of repairable series-parallel systems and the failure dependency prob-

lem for some systems have been reported in the above research; so far very few researchers
have studied the redundant components and repair teams allocation problem for repairable
series-parallel system with failure dependencies. Failure dependency is often neglected in
reliability analysis due to its complexity, and repair resources are often assumed to be
unlimited in some system models. However, a wide variety of dependencies exist among
the failure behavior of systems, and the assumption of unlimited repair resources is easily
violated in practice. This motivates us to develop an optimization allocation problem for
a repairable series-parallel system with failure dependencies, where limited repair teams
are available for each subsystem. In this work, genetic algorithm (GA) is used to solve
the optimization allocation problem. Chern [18] showed that even a simple RAP with
linear constraints is NP-hard. Hence, some researchers try to develop meta-heuristic algo-
rithms to achieve optimal or very good solutions in a reasonable computational time. As
a member of meta-heuristic algorithms, GA has proved itself to be effective optimization
tool for a large number of applications. Successful applications of GA to optimization
allocation problem in reliability engineering are reported in [2,6-8,12-15,19].
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The purpose of this paper is to present analysis of availability and the optimal design for
the repairable series-parallel system with redundant dependency. A dependence function
[10] is used to determine the failure rate of components in each subsystem; Markov model
is developed to determine state distribution of each subsystem based on its transition rates
and thus determine the subsystem availability. Then, the explicit expression of the system
availability can be obtained. In addition, an optimal allocation problem is proposed and
is aimed at minimizing the system cost consisting of costs associated with components
and costs associated with repair teams subject to the system availability constraint. The
GA is used to determine the optimal solutions due to its flexibility in representing discrete
design variables and its good global optimization capability.

The structure of this paper is organized as follows. The problem is formulated in Section
2. In Section 3, the availability of the system with different redundant dependencies is
analyzed. GA is used to solve the optimization problem in Section 4. A numerical example
is provided in Section 5. Conclusions are given in Section 6.

Nomenclature
m number of subsystems in the repairable series-parallel system
ni number of components in subsystem i
ri number of repair teams in subsystem i
Cc

i unit cost of components in subsystem i
Cr

i unit cost of repair teams in subsystem i
CS cost of the system
AS system availability
A0 system availability constraint value
Z+ the space discrete of positive integers
Pj probability of a subsystem in state j
λi
j transition rate from state j to j − 1 for subsystem i

µi
j transition rate from state j − 1 to j for subsystem i

Ai availability of subsystem i
g(·) dependence function
λi inherent failure rate of a component in subsystem i
µi repair rate of a component in subsystem i
n vector associated with numbers of components n = (n1, n2, . . . , nm)
r vector associated with numbers of repair teams r = (r1, r2, . . . , rm)
vk representation of chromosome
Fk individual fitness

2. Problem Formulation. The common structure of a series-parallel system is illus-
trated in Figure 1. The system consists of m subsystems with failure dependencies con-
nected in series, and each subsystem i (i = 1, 2, . . . ,m) has ni components connected in
parallel. Without loss of generality, suppose that all components are identical in each
subsystem. Each parallel subsystem works if and only if at least one of its components
work, and the entire system works if and only if all subsystems work. In addition, there
are ri repair teams available in each subsystem i (i = 1, 2, . . . ,m).

Furthermore, other assumptions are given as follows:

(1) The system and component have two states: perfect functioning and complete failure.
(2) A repaired component is as good as a new one.
(3) In each subsystem, the failure rates of operating components increase with the num-

ber of other failed components.
(4) The repair rate of each component is constant.
(5) Each repair team can repair only one failed component at a time.
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Figure 1. Series-parallel system structure

Our objective is to present the explicit expression of availability and to minimize the
construction cost of the system consisting of the components costs and the repair teams
costs while satisfying the system availability constraint. The design optimization problem
to be discussed in this paper can be formulated as follows:

Minimize CS =
m∑
i=1

(niC
c
i + riC

r
i )

Subject to AS ≥ A0

ni, ri ∈ Z+

ri ≤ ni, i = 1, 2, . . . ,m

(1)

where CS is the total cost of the system, AS is the system availability. ni is the number
of components in subsystem i, and Cc

i is the unit cost of components in subsystem i. ri
is the number of repair teams in subsystem i, and Cr

i is the unit cost of repair teams in
subsystem i. A0 is the system availability constraint value.

3. Availability and Failure Dependency Analysis. To solve the optimization prob-
lem (1), it is important to have an effective approach to calculate the availability for the
repairable series-parallel system with failure dependency. In this section, the proposed
method is based on Markov model with a dependence function. We will discuss how
failure dependency (redundant dependency) affects the system availability.

3.1. Subsystem availability. Considering a subsystem i (i = 1, 2, . . . ,m) composed
of ni identical component with exponential failure distribution in parallel, where any
component can be viewed as a redundancy of another component. Each subsystem fails
if and only if all of the components fail. ri repair teams are available to repair the failed
components, and each repair team can repair only one failed component at a time.
Let Pj (j = 0, 1, . . . , ni) be the probability of the subsystem state that only j com-

ponents are working and the other ni − j components have failed during the stationary
regime. It is assumed that transitions can only occur between adjacent states, and the
state transition diagram of the subsystem i is shown in Figure 2. The transition rate from
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Figure 2. State transition diagram of the subsystem i
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state j to j − 1 is λi
j. The transition rate from state j − 1 to j is µi

j. Based on Figure 2
and the Markov model, we have the following transition rate matrix

Q =



−µi
0 µi

0

λi
1 −(λi

1 + µi
1) µi

1

λi
2 −(λi

2 + µi
2) µi

2

. . . . . . . . .

λi
ni−1 −(λi

ni−1 + µi
ni−1) µi

ni−1

λi
ni

−λi
ni


(2)

The steady-state probability vector P is the solution of the following equations

PQ = 0 (3)

P e = 1 (4)

where P = (P0, P1, . . . , Pni
) and e = (1, 1, . . . , 1)T. The general form solution of station-

ary availability of the subsystem i is

Ai =

ni∑
j=1

Pj = 1− P0 (5)

By using the theory of linear equations, we easily obtain

Pj =

(
µi
0µ

i
1 · · ·µi

j−1

λi
1λ

i
2 · · ·λi

j

)
P0, j = 1, 2, . . . , ni (6)

where

P0 =

(
1 +

ni∑
j=1

µi
0µ

i
1 · · ·µi

j−1

λi
1λ

i
2 · · ·λi

j

)−1

(7)

For each parallel subsystem i, the explicit expression of availability Ai is obtained as

Ai = 1−

(
1 +

ni∑
j=1

µi
0µ

i
1 · · ·µi

j−1

λi
1λ

i
2 · · ·λi

j

)−1

(8)

3.2. Failure dependency. Failure dependency is often neglected in availability analysis
for repairable systems. However, a wide variety of dependencies exist among the failure
behavior of repairable systems in practice. See, for instance, some engineering systems
with multi-component are designed to support varying amounts of load. In general, the
failure rate of a component depends on the load it supports and increases with the load
[20]. The types of failure dependencies among systems are different and depend on the
functional and constructional configuration of the systems. Yu et al. [10] showed that
the failure dependency of a system is called redundant dependency if any component can
be viewed as a redundancy of another component. Here, the redundant dependency is
considered for each subsystem.

To quantify the redundant dependency, we use a dependence function g(j) (j = 1, 2, . . . ,
ni) [10] which is a function of the number of the redundant components. It is assumed that
the failure rate of components in each redundant subsystem depends on the dependence
function g(j) and its inherent failure rate (failure rate at failure independency). The
failure rate of components in each redundant subsystem i can be expressed as

λi

g(j)
, j ≥ 2, g(1) ≡ 1 (9)
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where λi is the inherent failure rate of the component, g(j) is the dependence function
and j is the number of working components in subsystem i. Accordingly, we can obtain
the transition rate λi

j from state j to j − 1 for the subsystem i

λi
j = j

λi

g(j)
, j = 1, 2, . . . , ni (10)

In general, the failure rate of components in a redundant system with failure dependency
is less than that of a system with failure independency, i.e., g(j) ≥ 1. The dependence
function g(j) is used to shows the strength of the failure dependency. The higher the
value of g(j), the stronger the dependency will be.
In some redundant systems, the repair dependency may also be considered. It may be

supposed that the repair rate of components is a function of the number of the redundant
components. Here, we assume that the repair rate of components is independent of the
number of the redundancies. Let µi be the repair rate of components and ri repair teams
are presented in subsystem i, and each repair team can repair only one failed component
at a time. We can obtain the transition rate µi

j from state j − 1 to j for the subsystem i
with ri repair teams

µi
j =

{
riµi, j = 0, 1, . . . , ni − ri,

(ni − j)µi, j = ni − ri + 1, ni − ri + 2, . . . , ni − 1.
(11)

By using (10) and (11), the availability Ai of the subsystem i (i = 1, 2, . . . ,m) is obtained
as follows:

Ai = 1−

1 +
ni−ri∑
j=1

rji
j∏

k=1

g(k)

j!

(
µi

λi

)j

+

ni∑
j=ni−ri+1

rni−ri
i ri!

j∏
k=1

g(k)

j!(ni − j)!

(
µi

λi

)j


−1

(12)

3.3. System availability. A series-parallel system can be represented by a series of
parallel subsystems, as observed in Figure 1. The availability of this system considered
can be determined by

AS =
m∏
i=1

Ai (13)

where Ai is the availability of the subsystem i. Considering the redundant dependency for
each subsystem i, the availability of each subsystem Ai can be represented by Equation
(12). Replacing Ai in Equation (13) by Equation (12), the availability of this repairable
series-parallel system with redundant dependency is obtained

AS =
m∏
i=1

1−

1 +
ni−ri∑
j=1

rji
j∏

k=1

g(k)

j!

(
µi

λi

)j

+

ni∑
j=ni−ri+1

rni−ri
i ri!

j∏
k=1

g(k)

j!(ni − j)!

(
µi

λi

)j


−1

(14)
The level of redundant dependency among components is different and depends on

the functional and constructional configuration of a system. In some systems, it can be
expressed in terms like weak dependence, moderate dependence and strong dependence.
In general, the level of redundant dependency can not be accurately estimated. Here, the
dependence function introduced g(j) can be used to indicate the level of the redundant
dependency, different redundant dependencies can be classified through the value of g(j).
Based on the value of g(j), four types of redundant dependencies are presented by Yu et
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al. [10] and are adopted in this paper as follows: 1) independence (g(j) = 1), 2) weak
dependence (1 < g(j) < j), 3) linear dependence (g(j) = j), and 4) strong dependence
(g(j) > j).

The following cases give the availability of the system with different types of failure
dependency:
Case 1. independence (g(j) = 1)

AS =
m∏
i=1

1−

[
1 +

ni−ri∑
j=1

rji
j!

(
µi

λi

)j

+

ni∑
j=ni−ri+1

rni−ri
i ri!

j!(ni − j)!

(
µi

λi

)j
]−1
 (15)

Case 2. linear dependence (g(j) = j)

AS =
m∏
i=1

1−

[
1 +

ni−ri∑
j=1

rji

(
µi

λi

)j

+

ni∑
j=ni−ri+1

rni−ri
i ri!

(ni − j)!

(
µi

λi

)j
]−1
 (16)

Case 3. weak dependence and strong dependence (as an example, g(j) is uniformed as
g(j) = jl, 0 < l < 1: weak dependence and l > 1: strong dependence)

AS =
m∏
i=1

1−

[
1 +

ni−ri∑
j=1

rji (j!)
l−1

(
µi

λi

)j

+

ni∑
j=ni−ri+1

rni−ri
i ri!(j!)

l−1

(ni − j)!

(
µi

λi

)j
]−1
 (17)

4. Optimization Model and Genetic Algorithm. In this section, we will present
the optimization model for the repairable series-parallel system with different types of
redundant dependencies. The objective is to minimize the system cost subject to the
specified minimum required level of system availability. Here, GA is used to solve this
optimization model.

4.1. The optimization model with redundant dependency. Based on the discus-
sions above, the optimization model (1) with the redundant dependency can be rewritten
as follows:

Minimize CS(n, r) =
m∑
i=1

(niC
c
i + riC

r
i )

Subject to AS(n, r) =

m∏
i=1

1−

1 + ni−ri∑
j=1

rji

j∏
k=1

g(k)

j!

(
µi

λi

)j
+

ni∑
j=ni−ri+1

r
ni−ri
i ri!

j∏
k=1

g(k)

j!(ni−j)!

(
µi

λi

)j−1
 ≥ A0

ni, ri ∈ Z+

ri ≤ ni, i = 1, 2, . . . ,m

(18)

where n = (n1, n2, . . . , nm) and r = (r1, r2, . . . , rm) indicate the vectors associated with
numbers of components and numbers of repair teams, respectively.

The system availability AS(n, r) depends the following factors: 1) the number of subsys-
tems, m; 2) the number of components and the number of repair teams in each subsystem,
n and r; 3) inherent failure rate and repair rate of each component, λi and µi; and 4)
dependence function of the subsystem i when j component are working, g(j). The num-
ber of subsystems, m, is usually determined by the system function required [21]. The
inherent failure rate and repair rate of a component can be estimated based on available
data. In this paper, we assume that both λi and µi are known. Moreover, to solve the op-
timization problem formulated in (18), we also assume that the dependence function g(j)
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is determined through specific forms as indicated in Cases 1-3. Thus, the optimal design
problem is concerned with finding the optimal solutions n and r (the optimal values of
n1, n2, . . . , nm and r1, r2, . . . , rm) to minimize CS(n, r) subject to the system availability
constraint.

4.2. Genetic algorithm. The optimization problem formulated in (18) is a constrained
nonlinear optimization problem with discrete design variables. GA is used to obtain the
optimal solutions of this optimization problem. The GA is basically an evolutionary algo-
rithm and is a search strategy that employs random choice to guide a highly exploitative
search, striking a balance between exploration of the feasible domain and exploitation of
good solutions [22]. It is one of the most powerful and broadly applicable probabilistic
search and optimization techniques based on concepts from evolution theory. The GA
operates with “chromosomal” representation of solutions, where crossover, mutation and
selection procedures are applied. Unlike various constructive optimization algorithms that
use sophisticated methods to obtain a good singular solution, the GA deals with a set of
solutions (population) and tends to manipulate each solution in the most simple manner
[23]. There are many reports that give details on the family of GA. More details on the
topic are presented in [24-26].
A simplified flow chart solving the formulated optimization problem by GA is illustrated

in Figure 3. First of all, the GA randomly generates an initial population of potential

Generate the initial 

 population of solutions

Evaluate the fitness 

of each solution

No

Sort and select solutions

by their fitness

Yes
Optimum

Solution

End

Start

Evolve selected solutions 

using genetic operations

(Crossover and mutation)

Stoping criteria

satisfied

Selection (Roulette wheel)

Keep the best solution 

in memory

Figure 3. Flow chart of the procedure using genetic algorithm
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solutions (individuals), referred to as the parent population, with a predefined size. The
individuals of this population are evaluated using the fitness function which is determined
based on the corresponding system cost and system availability. The solution with respect
to the best fitness value is saved and the solutions of the current population are sorted
based on their fitness values. A selection procedure is used to select the individuals
candidate for reproduction on the basis of the fitness function. In order to produce a
new offspring pool, the crossover operator and the mutation operator are implemented.
Therefore, from the initial population a new generation is obtained. From this new
generation, a second new generation is produced by the same process and so on. The stop
criterion is based on the number of generations.

In the remainder of this section, the main steps of the GA we have implemented are
described below in detail.

4.2.1. Solution encoding and initial population. A gene is defined as an ordered couple of
nki and rki, just like this vki = (nki, rki), where the subscript k is index of chromosome
that the gene belongs to, the nki denotes the number of components and rki denotes the
number of repair teams in subsystem i. A chromosome is represented as

vk = [(nk1, rk1), (nk2, rk2), · · · , (nkm, rkm)]

The size of any population is given and remains the same at each generation. Here,
set the size of the population to 50. The initial population of chromosome is randomly
generated. An integer between 1 and maxni

(maximum number of components allowed
in subsystem i) is randomly selected to represent nki, and rki is randomly selected with
limits: rki ≤ nki, rki ∈ Z+.

4.2.2. Evaluation of individuals. Each individual of the population is judged by the func-
tional value of the fitness function. As GA follows the rule of survival-of-the-fittest can-
didate in nature to make a search process, so the algorithm is very suitable for solving
some optimization problems. In order to provide an efficient search through the infeasible
region but to assure that the final best solution is feasible, the fitness function is deter-
mined based on the corresponding system cost, system availability and a penalty function
as follows:

Fk =
m∑
i=1

(nkiC
c
i + rkiC

r
i ) +K ×max{0, A0 − AkS} (19)

where the penalty term K is a very large positive number and is used to discourage
the constraint violation. When the system availability AkS is less than the constraint
value A0, the individual fitness value becomes larger, and thus only solutions satisfying
constraints are selected during the process of optimization. The solution with respect to
the best fitness value is saved and the solutions of the current population are sorted based
on their fitness values.

4.2.3. Construction of the new population. To form a new population, the roulette wheel
selection method is used to select individuals from the current population based on their
relative fitness. After the selection, the single-point crossover operator and even mutation
operator are used to generate new individuals in the new population, where the crossover
probability Pc is 0.5 and the mutation probability Pm is 0.1.

4.2.4. Termination. The new population is formed after the above steps, and runs a
new genetic cycle. When the best feasible solution has not changed for 500 consecutive
generations, the procedure is terminated and the results are outputted.
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5. Numerical Example. An example is used in this section to illustrate the approach
presented in this paper. In this example, a repairable system with six parallel subsystems
connected in series is considered. For the available components and repair teams in each
subsystem, the inherent failure rate, repair rate and the unit cost are presented in Table 1.
Assume four different types of redundant dependencies (independence, weak dependence,
linear dependence and strong dependence) are considered in this repairable system.

Table 1. Data for each subsystem

Subsystem i λi µi Cc
i Cr

i

1 0.03 0.10 40 15
2 0.04 0.13 50 20
3 0.05 0.14 30 10
4 0.06 0.20 70 30
5 0.07 0.18 65 25
6 0.09 0.27 80 35

In this example, the design variable vector is as follows:

(n, r) = (n1, n2, n3, n4, n5, n6, r1, r2, r3, r4, r5, r6) (20)

where ni, ri ∈ Z+ (ri ≤ ni, i = 1, 2, . . . , 6), representing the number of components and the
number of repair teams in subsystem i, respectively. The maximum number of components
allowed in each subsystem is 15. Our objective is to minimize the construction cost of
the system considered in this example while satisfying the system availability constraint.
The optimization problem can be determined using (18), dependence function g(j) can be
determined through specific forms as indicated in Cases 1-3. Furthermore, we fix l = 0.5
(representing weak dependence) and l = 1.5 (representing strong dependence) in Case 3.
This optimization problem is solved by the GA proposed in Section 4.
We would like to investigate allocation strategies with different types of redundant

dependencies when different availability requirements are considered. First, we set the
availability constraint value A0 = 0.90, and investigate different allocation strategies
with different types of redundant dependencies. The optimal allocation solutions for
independence, weak dependence, linear dependence and strong dependence are presented
in Table 2, in which the number of components ni and number of repair teams ri are
presented for each subsystem i.
It can be seen from Table 2 that the optimal solutions are different when different types

of redundant dependencies are considered. For the independence type (weak dependence
type, linear dependence type and strong dependence type), the optimal system contains
19 (18, 16 and 15) components and 15 (12, 12 and 11) repair teams, and the system cost is
1355 (1285, 1125 and 1060). The results show that the strongest dependence type yields
the most economic system and uses the least numbers of components and repair teams.
Then we raise the availability constraint value to 0.95 and 0.99, and investigate different

allocation strategies with different types of redundant dependencies. The optimal design
results are listed in Tables 3 and 4, respectively. One can see that with the increase of
the availability constraint value, more components and repair teams should be used, and
the system cost also increases with it.
From the above results (Tables 2-4), we can notice that for stronger dependence type,

less numbers of components and repair teams will be required and more economic system
will be constructed. Therefore, in order to construct a more economic system, we should
reinforce the dependent characters in each subsystem with redundant dependency.
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Table 2. Optimal allocation solutions when availability constraint value
A0 = 0.90

Subsystem Independence Weak dependence Linear dependence Strong dependence

i (ni, ri) (ni, ri) (ni, ri) (ni, ri)
1 (3,3) (3,1) (3,2) (3,1)
2 (3,2) (3,2) (3,2) (2,2)
3 (4,3) (3,2) (3,2) (3,2)
4 (3,2) (3,2) (2,2) (2,2)
5 (3,3) (3,3) (3,2) (3,2)
6 (3,2) (3,2) (2,2) (2,2)

Cost 1355 1285 1125 1060
Availability 0.9025 0.9051 0.9020 0.9031

Table 3. Optimal allocation solutions when availability constraint value
A0 = 0.95

Subsystem Independence Weak dependence Linear dependence Strong dependence

i (ni, ri) (ni, ri) (ni, ri) (ni, ri)
1 (4,3) (3,3) (3,2) (3,2)
2 (3,3) (3,2) (3,3) (3,2)
3 (4,3) (4,2) (3,3) (3,2)
4 (4,3) (3,3) (3,1) (3,1)
5 (4,3) (3,3) (3,2) (3,1)
6 (3,3) (3,3) (3,2) (3,1)

Cost 1615 1410 1275 1185
Availability 0.9502 0.9504 0.9514 0.9528

Table 4. Optimal allocation solutions when availability constraint value
A0 = 0.99

Subsystem Independence Weak dependence Linear dependence Strong dependence

i (ni, ri) (ni, ri) (ni, ri) (ni, ri)
1 (5,3) (4,4) (4,2) (3,3)
2 (5,4) (4,3) (4,2) (3,2)
3 (5,4) (5,3) (4,2) (4,2)
4 (5,3) (4,4) (4,2) (3,2)
5 (5,4) (4,4) (4,3) (4,3)
6 (5,3) (4,2) (3,3) (3,2)

Cost 2135 1810 1590 1410
Availability 0.9904 0.9901 0.9910 0.9901

6. Conclusions. In this work, we investigate the steady-state availability of a repairable
series-parallel system with redundant dependency, and develop an optimal design problem
for the system. The redundant dependency is quantified by introducing the dependence
function. The availability of the system is analyzed by the Markov model, and the optimal
allocation problem is solved by the GA. The results of optimization for the repairable
series-parallel system show that the different types of redundant dependencies can affect
the optimal numbers of components and repair teams, and then make the allocation
strategies different. In the presence of redundant dependencies, the strongest dependence
level yields the most economic system and uses the least numbers of components and
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repair teams. As redundant dependency exists in many systems composed of redundant
components, this study provides an important way for constructing optimal systems.
In the repairable series-parallel system we consider here, repair teams are always avail-

able. However, in many real world repairable systems, some repair teams may become
unavailable for a random period of time. This random period of repair team absence (we
call it as repair team vacation) can represent the time when the repair team is performing
some secondary task. In future work, we will concern the development of availability and
optimal design for repairable series-parallel system with failure dependency and repair
teams vacation.
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