
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 10(A), October 2012 pp. 6707–6718

ADAPTIVE OUTPUT FEEDBACK STABILIZATION USING
MT-FILTERS FOR NONLINEAR SYSTEMS WITH INPUT

AND OUTPUT TIME-DELAY

Liang Liu and Xue-Jun Xie

Institute of Automation
Qufu Normal University

No. 57, West Jingxuan Rd., Qufu 273165, P. R. China
smithll@163.com; xuejunxie@126.com

Received July 2011; revised November 2011

Abstract. This paper investigates the problem of adaptive output feedback stabilization
using MT-filters and the backstepping design method for a class of nonlinear systems with
unknown input and output time-delay. It is shown that all the signals in the closed-loop
system are globally uniformly bounded, and the output can be regulated to zero.
Keywords: Nonlinear systems, Input time-delay, Adaptive output feedback stabiliza-
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1. Introduction. Since time-delay phenomena commonly exist in many practical sys-
tems such as biological reactors, rolling mills, economical systems, and the existence of
time-delay is often a significant cause of instability and deteriorative performance, so the
control design of nonlinear time-delay systems has been received much attention; see, e.g.,
[1, 2, 6, 10, 14, 17-19, 25] and the references therein. In the past decade, some results
have been achieved when solving the stabilizing problem for nonlinear time-delay systems
by using backstepping method. In [5], adaptive neural control cooperating with iterative
backstepping was presented for strict-feedback nonlinear systems with unknown time-
delay. The problem of robust output feedback backstepping control for strict-feedback
nonlinear time-delay systems was considered by [7]. [8] investigated the robust output
tracking control for nonlinear time-delay systems. In the newest two papers, [4, 13] consid-
ered state feedback and output feedback respectively for stochastic high-order nonlinear
time-delay systems.

Up to now, however, most of the existing papers only consider nonlinear systems with
state time-delay. In the only few papers on nonlinear systems with input time-delay, [20]
considered adaptive control of linear systems with unknown input time-delay by using
conventional pole placement adaptive scheme. The input delay compensation for forward
complete and strict-feedforward nonlinear systems was solved by [11]. [21] considered the
adaptive stabilization problem for feedforward nonlinear systems with time-delays. In
[26], nonlinear systems with unknown input time-delay were considered by using K-filters
and backstepping design method.

In the widely cited in-depth monograph [9] on the backstepping design method, Krstić et
al. systematically studied two sets of filters, namely K-filters and MT-filters with different
merits and demerits, and applied them respectively to the design of adaptive output
feedback controllers. The design with MT-filters, which was firstly proposed by [15, 16],
is motivated by the idea of using an adaptive observer for output feedback control.
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Motivated by [26] and the advantages of MT-filters, the purpose of this paper is to
further consider the similar problem as in [26] by using MT-filters and the backstepping
design method. The contributions of this paper are as follows:
(i) Compared with [26], this paper considers more general nonlinear systems with un-

known input time-delay and output time-delay.
(ii) Since the unmodeled dynamics appear in the output of the system, the adaptive laws

obtained by using the conventional MT-filtered transformation eq.(8.156) in [9] are not
available for measurement. In this paper, by introducing a new filtered transformation,
we solve the important problem satisfactorily.
(iii) For this control scheme, we rigorously show that all the signals in the closed-loop

system based on MT-filters are globally uniformly bounded, and the output is regulated
to zero. The effectiveness of the scheme is demonstrated by a simulation example.
The paper is organized as follows. The problem is formulated in Section 2. An adaptive

output feedback controller is designed and analyzed in Section 3 and Section 4, following
a simulation example in Section 5. Section 6 concludes this paper.

2. Problem Formulation. Consider the following nonlinear systems with input time-
delay and output time-delay

y(t) =
B(s)

A(s)
(u(t) + µ1∆1(s)u(t− τ) + µ2∆2(s)u(t))

+
D(s)

A(s)
(f(y(t)) + µ1∆1(s)f(y(t− τ)) + µ2∆2(s)f(y(t))) + µ3∆3(s)y(t), (1)

where u(t) ∈ R, y(t) ∈ R are the system input and output, respectively, s denotes the
differential operator d

dt
, τ is an unknown positive constant time-delay, f(·) ∈ Rn is a

nonlinear function, A(s) = sn + an−1s
n−1 + · · ·+ a0, B(s) = bms

m + bm−1s
m−1 + · · ·+ b0,

D(s) = (sn−1, · · · , s, 1), ∆1(s), ∆2(s) and ∆3(s) are some rational functions of s, µ1, µ2

and µ3 are positive constant scalars.

Remark 2.1. µ1∆1(s)u(t−τ) denotes the unmodeled dynamics from the system input with
time-delay, µ1∆1(s)f(y(t−τ)) is the unmodeled dynamics from the nonlinear function with
output time-delay, µ2∆2(s)u(t), µ2∆2(s)f(y(t)) and µ3∆3(s)y(t) denote the unmodeled
dynamics from the system input, nonlinear function and output, respectively. Obviously,
such unmodeled dynamics are more general than those in [26].

In this paper, we need the following assumptions:
Assumption 1: For system (1), ai and bj (i = 0, · · · , n− 1, j = 0, · · · ,m) are unknown
constants, B(s) is a Hurwitz polynomial, the order n, the relative degree % = n−m, and
the sign of the high frequency gain bm are known.
Assumption 2: ∆1(s), ∆2(s) and ∆3(s) are stable and strictly proper with unity high
frequency gains.

Remark 2.2. Assumption 1 is a general assumption for the adaptive control design of
nonlinear systems as in [9]. The purpose of Assumption 2 is to lead to Af̄ , Ag, Ah in the
realization (34)-(36) of ∆1(s), ∆2(s) and ∆3(s) being Hurwitz.

The objective of this paper is to design an adaptive output feedback controller for
system (1) under Assumptions 1 and 2 such that all the signals in the closed-loop system
are globally uniformly bounded, and the output is regulated to zero.
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3. The Design of Adaptive Controller Based on MT-Filters. To simplify the
procedure, we sometimes denote X(t) by X for any variable X(t).

By Appendix, system (1) can be transformed into the following state-space realization

ẋ = Ax+ F T (u, y)θ + aℵ+ f(y),

y = x1 + ℵ, (2)

where

A =
[
0(n−1)×1 In−1
0 01×(n−1)

]
, F T (u, y) =

[[
0(%−1)×(m+1)

Im+1

]
u,−Iny

]
,

θ = [bT , aT ]T , a = [an−1, · · · , a0]T , b = [bm, · · · , b0]T ,
ℵ = µ1∆1(s)x1(t− τ) + µ2∆2(s)x1 + µ3∆3(s)y. (3)

To estimate the system state, a MT-filter only using input and output is designed as

ξ̇ = Alξ +Blf(y), ξ ∈ Rn−1,

Ω̇T = AlΩ
T +BlF

T (u, y), ΩT ∈ R(n−1)×(n+m+1), (4)

where

Al =
[
−l̄

In−2
01×(n−2)

]
, Bl =

[
−l̄, In−1

]
, l =

[
1, l̄1, · · · , l̄n−1

]T
=

[
1
l̄

]
, (5)

with l̄1, · · · , l̄n−1 being the coefficients of any Hurwitz polynomial L(s) = sn−1 + l̄1s
n−2 +

· · · + l̄n−1. To reduce the order of filters, ΩT is decomposed into ΩT = [vm, · · · , v0,Ξ],
where vi ∈ Rn−1 (i = 0, · · · ,m) is the ith vector of v and Ξ = [δn−1, · · · , δ0] ∈ R(n−1)×n,
δk ∈ Rn−1 (k = 0, · · · , n− 1) is the kth vector of δ. By using

(Al)
ien−1,n−1 = Blen,n−i, i = 0, 1, · · · , n− 1, (6)

λ̇ = Alλ+ en−1,n−1u, λ ∈ Rn−1, (7)

one gets

vi = (Al)
iλ, i = 0, . . . ,m, (8)

where eik denotes the kth coordinate vector in Ri. From

η̇ = Alη + en−1,n−1y, η ∈ Rn−1, (9)

Ξ̇ = AlΞ−Bly, (10)

it is easy to obtain that δk = −(Al)
kη, k = 0, . . . , n− 1.

Due to the presence of ℵ in (2), we introduce the following filtered transformation

χ = x−
[

−ℵ
ξ + ΩT θ

]
, (11)

from which, and (2)-(5), a tedious but straightforward calculation leads to

χ̇ = Aχ+ l(ω0 + ωT θ) + (a+ sen1)ℵ,
y = χ1, (12)

where ω0 = ξ1 + f1, ω
T = F T

1 + ΩT
1 , χ1, ξ1, f1, F

T
1 and ΩT

1 represent the first row of χ,
ξ, f , F T and ΩT , respectively. Since θ is unknown, the adaptive observer for χ can be
chosen as

˙̂χ = Aχ̂+K0(y − χ̂1) + l(ω0 + ωT θ̂), (13)

where θ̂ is the estimate of θ, K0 = (A+ c0In)l, and c0 is a positive constant. Defining

ε = χ− χ̂, (14)
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and using y − χ̂1 = χ1 − χ̂1 = eTn1(χ− χ̂), by (12)-(14) and some computations, one gets

ε̇ = A0ε+ lωT θ̃ + (a+ sen1)ℵ, (15)

where θ̃ = θ − θ̂, A0 = A −K0e
T
n1. Obviously, eTn1(sIn − A0)

−1l = 1
(s+c0)

. From (3), and

the definitions of ΩT and ωT , one leads to

ωT = F T
1 + ΩT

1 = [vm1, · · · , v01,Ξ1 − yeTn1], (16)

where vi1 (i = 0, · · · ,m) denotes the first entry of vi and Ξ1 denotes the first row of Ξ.
By (12), (14) and (16), one obtains

ẏ = χ̇1 = χ2 + ω0 + ωT θ + (s+ an−1)ℵ
= χ̂2 + ω0 + ωT θ + ε2 + (s+ an−1)ℵ
= bmvm1 + χ̂2 + ω0 + ω̄T θ + ε2 + (s+ an−1)ℵ, (17)

where ω̄T = [0, vm−1,1, · · · , v01,Ξ1 − yeTn1]. Now we replace (2) with the following new
system, whose states depend on filters (4), (7) and (9), and thus are available for control
design

ẏ = bmvm1 + χ̂2 + ω0 + ω̄T θ + ε2 + (s+ an−1)ℵ,
v̇mi = vm,i+1 − l̄ivm1, i = 1, · · · , %− 2,

v̇m,%−1 = u+ vm% − l̄%−1vm1, (18)

where vmi (i = 1, · · · , %) is the ith element of vm. Define the change of coordinates

z1 = y, zi = vm,i−1 − αi−1, i = 2, . . . , %. (19)

For (18), by using conventional backstepping design method, choosing the control law

u = α% − vm%, α1 = ρ̂ᾱ1, ᾱ1 = −(c1 + d1)z1 − χ̂2 − ω0 − ω̄T θ̂,

α2 = −b̂mz1 −

[
c2 + d2

(
∂α1

∂y

)2
]
z2 +

∂α1

∂ρ̂
˙̂ρ+

∂α1

∂θ̂
Γτ2 + β2,

αi = −zi−1 −

[
ci + di

(
∂αi−1

∂y

)2
]
zi +

∂αi−1

∂ρ̂
˙̂ρ+

∂αi−1

∂θ̂
Γτi −

i−1∑
k=2

σkizk + βi,

βi =
∂αi−1

∂y
(χ̂2 + ω0 + ωT θ̂) +

∂αi−1

∂ξ
(Alξ +Blf(y)) +

m+i−2∑
k=1

∂αi−1

∂λk

(−l̄kλ1 + λk+1)

+
∂αi−1

∂η
(Alη + en−1,n−1y) + l̄i−1vm1 +

∂αi−1

∂χ̂

[
Aχ̂+K0(y − χ̂1) + l(ω0 + ωT θ̂)

]
,

σki =
∂αk−1

∂θ̂
Γ
∂αi−1

∂y
ω, i = 2, . . . , %, (20)

and the adaptive laws

τ0 = r1ωε1,

τ1 = (ω − ρ̂ᾱ1en+m+1,1)z1 + τ0,

τi = τi−1 −
∂αi−1

∂y
ωzi, i = 2, · · · , %,

˙̂
θ = Γτ% = Γ[Wθ(z, t)z + r1ωε1],

˙̂ρ = −γsgn(bm)ᾱ1z1, (21)
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the error system (19) is compactly written as

ż = Az(z, t)z +W T
θ (z, t)θ̃ − bmᾱ1ρ̃e%1 +Wε(z, t)[ε2 + (s+ an−1)ℵ], (22)

where ρ̂ is the estimate of ρ = 1
bm
, Γ, r1, γ are some positive parameters,

Az(z, t) =



−c1 − d1 b̂m 0 · · · 0

−b̂m −c2 − d2

(
∂α1
∂y

)2
1 + σ23 · · · σ2%

0 −1− σ23 −c3 − d3

(
∂α2
∂y

)2
· · · σ3%

...
...

...
. . .

...

0 −σ2% −σ3% · · · −c% − d%

(
∂α%−1

∂y

)2


,

Wε(z, t) =

[
1,−∂α1

∂y
, · · · ,−∂α%−1

∂y

]T
,

W T
θ (z, t) = Wε(z, t)ω

T − ρ̂ᾱ1e%1e
T
n+m+1,1 ∈ R%×(n+m+1). (23)

Remark 3.1. As compared in [9], K-filters and MT-filters have different merits and
demerits, that is, the reduced-order MT-filters are more simpler than the full-order K-
filters, while the anti-disturbance ability of MT-filters is weaker than K-filters.

Remark 3.2. Let us discuss the implementation problem of the adaptive laws of two
design methods in [26] and this paper. If we adopt the same design procedure as in [26]
by using the K-filters, one obtains

˙̂
θ = Γτ% = Γ

(
τ%−1 −

∂α%−1

∂y
ωz%

)
= · · · = Γ

(
(ω − ρ̂ᾱ1en+m+1,1) z1 −

%∑
i=2

∂αi−1

∂y
ωzi

)
,

obviously,
˙̂
θ can be implemented. While for the controller design based on MT-filters, if

we still adopt the conventional MT-filtered transformation χ = x −
[

0
ξ + ΩT θ

]
used in

eq.(8.156) of [9], then from (2), it follows that

χ̇ = Aχ+ l(ω0 + ωT θ) + aℵ,
y = x1 + ℵ = χ1 + ℵ. (24)

By (21), one obtains τ% = τ%−1 − ∂α%−1

∂y
ωz% = · · · = r1ωε1 + (ω − ρ̂ᾱ1en+m+1,1)z1 −

%∑
i=2

∂αi−1

∂y
ωzi, from which and (14), then

ε1 = χ1 − χ̂1 = y − ℵ − χ̂1. (25)

Since ℵ is not available for measurement, by (25), it concludes that ε1 and τ% are not

available for measurement, hence
˙̂
θ = Γτ% is unable to be implemented. This is the main

difference with the design using K-filters, and this important problem is easy to be ne-
glected.

In this paper, similar to [12], by adopting a new filtered transformation (11), one obtains

ε1
(14)
= χ1 − χ̂1

(12)
= y − χ̂1, thus

˙̂
θ = Γτ% can be implemented.

4. Main Result. Introduce the following similarity transformations[
ε1
π

]
=:

[
ε1
Tε

]
=

[
eTn1
T

]
ε, (26)
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χ̂1
ϕ

]
=:

[
χ̂1

T χ̂

]
=

[
eTn1
T

]
χ̂, (27)

where T = [Alen−1,1, In−1] = [Al, en−1,n−1]. From (5), the definitions of K0, A0 and T , it
follows that

T l = 0, TK0 = Al l̄, TA0 = AlT, K0 = c0l +

[
l̄
0

]
. (28)

Combining (15), (26) with (28), one has

π̇ = T ε̇ = Alπ + T (a+ sen1)ℵ
= Alπ + T [āℵ+ (s+ an−1)en1ℵ], (29)

where ā = (0, an−2, · · · , a0)T . By (26), one leads to

ε2 − l̄1ε1 = π1, (30)

from which, (15), and the definitions of K0 and A0, it follows that

ε̇1 = −(c0 + l̄1)ε1 + ε2 + ωT θ̃ + (s+ an−1)ℵ
= −c0ε1 + π1 + ωT θ̃ + (s+ an−1)ℵ. (31)

By the definition of A0, (13) can be written as

˙̂χ = A0χ̂+K0y + l(ω0 + ωT θ̂). (32)

With the use of (27), (28) and (32), we have

ϕ̇ = T ˙̂χ = Alϕ+ Ally. (33)

By Assumption 2, it is obvious that ∆1(s)x1, ∆2(s)x1 and ∆3(s)y can be achieved by

˙̄f = Af̄ f̄ + bf̄x1, ∆1(s)x1 = (1, 0, · · · , 0)f̄ , (34)

ġ = Agg + bgx1, ∆2(s)x1 = (1, 0, · · · , 0)g, (35)

ḣ = Ahh+ bhy, ∆3(s)y = (1, 0, · · · , 0)h, (36)

and Af̄ , Ag and Ah are Hurwitz matrices.

Lemma 4.1. The effects of the unmodeled dynamics are bounded by

|x1|2 ≤ 4(1 + 2µ2)|Φ|2 + 4µ2|Φ(t− τ)|2,
|ℵ|2 ≤ 6µ2|Φ|2 + 3µ2|Φ(t− τ)|2,
|(s+ an−1)ℵ|2 ≤ 3µ2(k̄1|x1(t− τ)|2 + (k̄2 + 4k̃1µ

2)|Φ(t− τ)|2

+(k̂1 + k̃2 + 4k̃1 + 8k̃1µ
2)|Φ|2),

where Φ = [zT , ε1, π
T , f̄T , gT , hT ]T , µ =: max{µ1, µ2, µ3}, k̄1, k̄2, k̃1, k̃2 and k̂1 are positive

constants independent of µ1, µ2 and µ3.

Proof: See the Appendix.
We state the main result in this paper.

Theorem 4.1. Consider the adaptive control systems consisting of the system (1), MT-
filters (4), (7), (10), and the adaptive controller (20), (21). Under Assumptions 1 and 2,
there always exists a positive constant µ∗ such that for any µ ∈ [0, µ∗) and all initial values,
all the signals in the closed-loop system are globally uniformly bounded and limt→∞ |y(t)| =
0, where µ is defined as in Lemma 4.1.
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Proof: Consider the following Lyapunov function

V̄ =
1

2

(
|z|2 + θ̃TΓ−1θ̃ + |bm|γ−1ρ̃2 + r1ε

2
1

)
+ r2π

TPlπ

+lf̄ f̄
TPf̄ f̄ + lgg

TPgg + lhh
TPhh, (37)

where r1, r2, lf̄ , lg, lh are some parameters to be determined, θ̃ = θ − θ̂, ρ̃ = ρ − ρ̂, and
Pl, Pf̄ , Pg and Ph satisfy

AT
l Pl + PlAl = −I, AT

f̄ Pf̄ + Pf̄Af̄ = −I,

AT
g Pg + PgAg = −I, AT

hPh + PhAh = −I. (38)

The time derivative of V̄ along (21)-(23), (29), (31) and (34)-(36) is given by

˙̄V = −
%∑

i=1

ciz
2
i − d1z

2
1 −

%∑
i=2

di

(
∂αi−1

∂y

)2

z2i + [ε2 + (s+ an−1)ℵ]z1

− [ε2 + (s+ an−1)ℵ]
%∑

i=2

(
∂αi−1

∂y

)
zi − c0r1ε

2
1 + r1ε1[π1 + (s+ an−1)ℵ]

− r2|π|2 + 2r2π
TPlT [āℵ+ (s+ an−1)ℵen1]− lf̄ |f̄ |2 + 2lf̄ f̄

TPf̄bf̄x1

− lg|g|2 + 2lgg
TPgbgx1 − lh|h|2 + 2lhh

TPhbhz1

= − d1z
2
1 + [ε2 + (s+ an−1)ℵ]z1 −

%∑
i=2

di

(
∂αi−1

∂y

)2

z2i − [ε2 + (s+ an−1)ℵ]

·
%∑

i=2

(
∂αi−1

∂y

)
zi −

1

2
c0r1ε

2
1 + r1ε1[π1 + (s+ an−1)ℵ]−

1

2
r2|π|2 + 2r2π

TPlT

· [āℵ+ (s+ an−1)ℵen1]−
1

4
lf̄ |f̄ |2 + 2lf̄ f̄

TPf̄bf̄z1 −
1

8
c1z

2
1 −

1

4
lf̄ |f̄ |2 − 2lf̄ f̄

TPf̄bf̄ℵ

− 1

4
lg|g|2 + 2lgg

TPgbgz1 −
1

8
c1z

2
1 −

1

4
lg|g|2 − 2lgg

TPgbgℵ − 1

2
lh|h|2 + 2lhh

TPhbhz1

− 1

4
c1z

2
1 −

%∑
i=2

ciz
2
i −

1

2
c0r1ε

2
1 −

1

2
r2|π|2 −

1

2
lf̄ |f̄ |2 −

1

2
lg|g|2 −

1

2
lh|h|2 −

1

2
c1z

2
1 .

(39)

Choosing
1

d0
=

%∑
i=1

1

di
, lf̄ ≤ c1

32|Pf̄bf̄ |2
, lg ≤ c1

32|Pgbg|2
, lh ≤ c1

8|Phbh|2
, and using the

complete square inequality, one gets

˙̄V ≤ 1

4d0
[ε2 + (s+ an−1)ℵ]2 +

r1
2c0

[π1 + (s+ an−1)ℵ]2 + 2r2|PlT |2[āℵ+ (s+ an−1)ℵen1]2

+ 4lf̄ |Pf̄bf̄ |2|ℵ|2 + 4lg|Pgbg|2|ℵ|2 −
1

2
c1z

2
1 −

%∑
i=2

ciz
2
i −

1

2
c0r1ε

2
1 −

1

2
r2|π|2

− 1

2
lf̄ |f̄ |2 −

1

2
lg|g|2 −

1

2
lh|h|2

≤ 1

2d0
ε22 + ka|(s+ an−1)ℵ|2 +

r1
c0
π2
1 + kb|ℵ|2 −

1

2
c1z

2
1 −

%∑
i=2

ciz
2
i −

1

2
c0r1ε

2
1

− 1

2
r2|π|2 −

1

2
lf̄ |f̄ |2 −

1

2
lg|g|2 −

1

2
lh|h|2,

(40)
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where ka =
1

2d0
+ r1

c0
+4r2|PlT |2, kb = 4r2|PlT |2|ā|2+4lf̄ |Pf̄bf̄ |2+4lg|Pgbg|2. By (30), (40),

and choosing r1 ≥ 4l̄21
c0d0

, r2 ≥ 4r1
c0

+ 4
d0
, one has

˙̄V ≤ ka|(s+ an−1)ℵ|2 + kb|ℵ|2 −
r1c0
4

ε21 −
r2
4
π2 − 1

2
c1z

2
1 −

%∑
i=2

ciz
2
i

−1

2
lf̄ |f̄ |2 −

1

2
lg|g|2 −

1

2
lh|h|2. (41)

Defining q = min
{

c1
4
, c2, · · · , c%, r1c04

, r2
4
,
lf̄
2
, lg
2
, lh

2

}
, from Lemma 4.1, it follows that

˙̄V ≤ −q|Φ|2 − 1

4
c1z

2
1 + 3kak̄1µ

2|x1(t− τ)|2 + ((3kak̄2 + 3kb)µ
2 + 12kak̃1µ

4)|Φ(t− τ)|2

+((3kak̂1 + 3kak̃2 + 12kak̃1 + 6kb)µ
2 + 24kak̃1µ

4)|Φ|2. (42)

Considering the following Lyapunov function for the total system

V = V̄ + 3kak̄1µ
2

∫ t

t−τ

|x1(σ)|2dσ + ((3kak̄2 + 3kb)µ
2

+12ka(k̃1 + k̄1)µ
4)

∫ t

t−τ

|Φ(σ)|2dσ, (43)

and using (42) and Lemma 4.1, one obtains

V̇ ≤ −q|Φ|2 − 1

4
c1z

2
1 + 3kak̄1µ

2|x1|2 + ((3kak̂1 + 3kak̃2 + 12kak̃1 + 6kb)µ
2 + 24kak̃1µ

4)

·|Φ|2 + ((3kak̄2 + 3kb)µ
2 + 12ka(k̃1 + k̄1)µ

4)|Φ|2 − 12kak̄1µ
4|Φ(t− τ)|2

≤ −(q − κ2µ
2 − κ1µ

4)|Φ|2 − 1

4
c1z

2
1 , (44)

where κ1 = 36ka(k̃1 + k̄1), κ2 = 3kak̂1 + 3kak̃2 + 12kak̃1 + 6kb + 3kak̄2 + 3kb + 12kak̄1.
Since q, κ1 and κ2 are some constants independent of µ, there exists a constant µ∗ =√

1
2κ1

√
κ2
2 + 4κ1q − κ2

2κ1
, such that for any µ ∈ [0, µ∗) and all initial values,

V̇ ≤ −1

4
c1z

2
1 , (45)

from which and (43), we conclude that all the signals in the closed-loop system are globally
uniformly bounded, and limt→∞ |y(t)| = 0 by Barbǎlat lemma in [9].

5. A Simulation Example. Consider the following nonlinear time-delay systems

y(t) =
b

s2 + a1s+ a0

(
u(t) +

µ1

s+ 1
u(t− τ) +

µ2

s+ 1
u(t)

)
+

[s, 1]

s2 + a1s+ a0

([
0

y(t) sin y(t)

]
+

µ1

s+ 1

[
0

y(t− τ) sin y(t− τ)

]
+

µ2

s+ 1

[
0

y(t) sin y(t)

])
+

µ3

s+ 1
y(t). (46)

(46) can be transformed into the following state-space realization

ẋ = Ax−
[
a1
a0

]
x1 +

[
0
b

]
u+ f(y)

y = x1 + ℵ, (47)

where x =
[
x1
x2

]
, A =

[
0 1
0 0

]
, f(y) =

[
0

y sin y

]
, ℵ = µ1

s+1
x1(t− τ) + µ2

s+1
x1 +

µ3

s+1
y.
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MT-filters are chosen as

ξ̇ = −lξ + y sin y, η̇ = −lη + y, λ̇ = −lλ+ u. (48)

The change of coordinates are z1 = y, z2 = λ− α1. The observer is given by

˙̂χ =
[
0 1
0 0

]
χ̂+

[
c0 + l
c0l

]
(y − χ̂1) +

[
1
l

]
(ξ + ωT θ̂), (49)

where ωT = [λ, lη − y,−η]. The control law is

α1 = ρ̂ᾱ1, ᾱ1 = −(c1 + d1)z1 − χ̂2 − ξ − ω̄T θ̂,

u = −θ̂1z1 −

[
c2 + d2

(
∂α1

∂y

)2
]
z2 +

∂α1

∂ρ̂
˙̂ρ+

∂α1

∂θ̂

˙̂
θ

+
∂α1

∂y
(χ̂2 + ξ + ωT θ) +

∂α1

∂η
η̇ +

∂α1

∂ξ
ξ̇ +

∂α1

∂χ̂2

˙̂χ2 + lλ. (50)

The parameter adaptive laws are chosen as

˙̂
θ = Γ

(
z1 + r1z1 − r1χ̂1 −

∂α1

∂y
z2

)
ω − Γ[ρ̂ᾱ1z1, 0, 0]

T ,

˙̂ρ = −γsgn(b)ᾱ1z1, (51)

where θ̂ = [b̂, â1, â0]
T and ρ̂ are the estimates of θ = [b, a1, a0]

T and ρ = 1
b
, respectively.

In simulation, we choose τ = 1s, the system parameters a1 = 1, a0 = 2, b = 1, the
design parameters c0 = 0.8, l = 2, c1 = 2, c2 = 1, d1 = 0.2, d2 = 0.3, µ1 = 0.3, µ2 = 0.2,
µ3 = 0.4, r1 = 0.5, γ = 0.6, Γ = 1, and the initial values x1(0) = 1, x2(0) = −1,

χ̂1(0) = 0.4, χ̂2(0) = 0.3, λ(0) = η(0) = 0, ξ(0) = 1, ρ̂(0) = 0.1, θ̂(0) = [0.8, 0.6, 0.5]T .
Figure 1 gives the responses of the closed-loop system with MT-filters.
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Figure 1. The responses of the closed-loop system
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6. Conclusions. This paper investigates adaptive output feedback problem using MT-
filters and the backstepping design method for nonlinear systems with unknown input
and output time-delay.
There are still two remaining problems to be investigated: One is to extend the method

to more general systems, such as stochastic nonlinear time-delay systems with SiISS in-
verse dynamics in [22-24], stochastic high-order nonlinear systems [13] with input time-
delay. The other is to find a practical example on system (1).
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Appendix.

Proof of (2) and (3): Define x1(t) = B(s)
A(s)

u(t) + D(s)
A(s)

f(y(t)), ℵ(t) = µ1∆1(s)x1(t −
τ) + µ2∆2(s)x1(t) + µ3∆3(s)y(t). By (1), one has

y(t) = x1(t) + µ1∆1(s)x1(t− τ) + µ2∆2(s)x1(t) + µ3∆3(s)y(t) = x1(t) + ℵ(t). (52)

With the help of A(s), B(s) and D(s) in (1), there exist minimal realization matrices

Ā =
[
−a

In−1
01×(n−1)

]
, b̄ =

[
0
b

]
, cT = [1, 0, · · · , 0], a = [an−1, · · · , a0]T , b = [bm, · · · , b0]T

such that cT (sI−Ā)−1b̄ = B(s)
A(s)

, cT (sI−Ā)−1 = D(s)
A(s)

. By [3], obviously, x1 can be achieved

by ẋ = Āx+ b̄u+ f(y), x1 = cTx. From (3), it follows that

ẋ = Āx+ b̄u+ f(y)

= Ax− ax1 + b̄u+ f(y)

= Ax− ay + aℵ+ b̄u+ f(y)

= Ax+ F T (u, y)θ + aℵ+ f(y).

Proof of Lemma 4.1: By the definition of Φ, (34)-(36), it is easy to conclude that

|∆1(s)x1(t− τ)|2 ≤ |Φ(t− τ)|2, |∆2(s)x1(t)|2 ≤ |Φ(t)|2,
|∆3(s)y(t)|2 ≤ |Φ(t)|2. (53)

By (34) and (53), one has

|(s+ an−1)∆1(s)x1(t− τ)|2

= |(1, 0, · · · , 0)(Af̄ f̄(t− τ) + bf̄x1(t− τ)) + an−1∆1(s)x1(t− τ)|2

≤ k̄1|x1(t− τ)|2 + k̄2|Φ(t− τ)|2, (54)

where k̄1 and k̄2 are positive constants independent of µ1, µ2 and µ3. Similar to (54), one
obtains

|(s+ an−1)∆2(s)x1(t)|2 ≤ k̃1|x1(t)|2 + k̃2|Φ(t)|2,
|(s+ an−1)∆3(s)y(t)|2 ≤ k̂1|Φ(t)|2. (55)

By (2) and (53), one gets

|x1(t)|2 = |y(t)− µ1∆1(s)x1(t− τ)− µ2∆2(s)x1(t)− µ3∆3(s)y(t)|2

≤ 4(|y(t)|2 + |µ1∆1(s)x1(t− τ)|2 + |µ2∆2(s)x1(t)|2 + |µ3∆3(s)y(t)|2)
≤ 4(|Φ(t)|2 + µ2

1|Φ(t− τ)|2 + µ2
2|Φ(t)|2 + µ2

3|Φ(t)|2)
≤ 4(1 + 2µ2)|Φ(t)|2 + 4µ2|Φ(t− τ)|2, (56)
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where µ = max{µ1, µ2, µ3}. From (3) and (53)-(55), it follows that

|ℵ(t)|2 ≤ 3(|µ1∆1(s)x1(t− τ)|2 + |µ2∆2(s)x1(t)|2 + |µ3∆3(s)y(t)|2)
≤ 3(µ2

1|Φ(t− τ)|2 + µ2
2|Φ(t)|2 + µ2

3|Φ(t)|2)
≤ 6µ2|Φ(t)|2 + 3µ2|Φ(t− τ)|2, (57)

and

|(s+ an−1)ℵ(t)|2 ≤ 3(|µ1(s+ an−1)∆1(s)x1(t− τ)|2 + |µ2(s+ an−1)∆2(s)x1(t)|2

+|µ3(s+ an−1)∆3(s)y(t)|2)
≤ 3µ2(k̄1|x1(t− τ)|2 + (k̄2 + 4k̃1µ

2)|Φ(t− τ)|2

+(k̂1 + k̃2 + 4k̃1 + 8k̃1µ
2)|Φ(t)|2). (58)


