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ABSTRACT. This paper is an attempt to create a method and system for generating an
optimal machine-based pattern recognition system. If successful, this allows any given
classifier to improve its classification accuracy by introducing a genetic optimization pre-
processing method combined with a probabilistic ensemble voting system. Several problems
were identified, and the solutions proposed were based on literature review on similar fields
of research. The proposed system utilizes a Fuzzy ARTMAP variant, Biased ARTMAP,
as the core pattern learning and classification method for extracted features due to its abil-
ity for incremental learning and a biasing parameter which improves its online learning
capability over the traditional Fuzzy ARTMAP. One weakness in the ARTMAP system
is the effect of the training data sequence on the ARTMAPs learning processes, and con-
sequently, its classification accuracy. A genetic permutation method is proposed to solve
this problem by optimizing the training data sequence over several generations of genetic
mating and mutation operations. The best training sequences are selected to train mul-
tiple Biased ARTMAPs and combined in a probabilistic voting system to determine the
final class prediction. Classification performance of the voting system can be improved
by implementing a reliability threshold to filter unreliable predictions from the final re-
sults. Genetic optimization of the training process combined with the probabilistic voting
system improved the Biased ARTMAPs classification accuracy to 75% — 87%, up from
67% using only the Biased ARTMAP system.

Keywords: Biased ARTMAP, Pattern recognition, Genetic optimization, Probabilistic
voting

1. Introduction. In 1965, Gordon Moore states that the number of transistors that
can be placed in an integrated circuit doubles roughly every 2-3 years for the next few
decades [1]. This axiom has proved correct, as computing power has increased in leaps
and bounds over the machines of the previous generation. Software developers raced to
design and develop new ways to take advantage of the massive amounts of computing
power that is available at a relatively inexpensive cost. Examples include extremely
realistic computer-generated imagery (CGI) being used to develop high budget movies
and computer games, massively distributed computing networks to compute solutions to
research projects, and even personal computers being used for high-quality work using
consumer-level applications.
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The field of artificial intelligence (AI) benefits greatly from the increase in available
computing power. The increasing complexity in software and application development
forces developers to rely more on automated algorithms to perform complex computa-
tions. One objective in the field of Al is to program machines to imitate human thought
processes. An example is to train a machine in optical character recognition skills [2] to
simulate the method in which humans are able to solve CAPTCHA tests. Similarly, the
field of content-based image retrieval (CBIR) such as facial recognition has a wide array
of potential applications as algorithms become increasingly sophisticated in data mining
methods from still images and video recordings.

One essential component to implement an algorithm with pattern recognition capabil-
ities is the learning process in which the chosen learning/classification unit is trained to
recognize specific patterns. The ARTMAP neural network model, developed by Grossberg
and Carpenter [3], was designed to model some aspects of the human thought processes,
including pattern recognition and classification. ARTMAPs rely on a pattern matching
process which compares an input with the internal memory. When a pattern is success-
fully matched in the memory, the memorized pattern is reinforced using data incorporated
from the incoming pattern. Otherwise, the system uses the input to create a new pattern
in the memory. ARTMAP-based systems are capable of incremental learning which makes
it suitable for real-time applications.

The design of the ARTMAPs learning processes creates a situation in which certain
sequences of data presentation with a specific featural attention can distort the pattern
learning process, reducing the systems recognition effectiveness. Under the controlled
conditions of offline training, repeated presentation of the same training data will even-
tually correct such distortions. Real-time learning provides no such accommodation, and
the network must be capable of learning completely new patterns as they are presented.
In response, a method is devised to overcome the problem of overemphasis on early criti-
cal features using a biasing method [4] to selectively ignore previously activated patterns
whenever the system makes a predictive error. During future pattern searching, these
features which activated a predictive error will be given less priority. The strength of
the biasing is controlled by an attention parameter A, where the unbiased ARTMAP net-
work (A = 0) is identical to a Fuzzy ARTMAP neural network model. For any given
application, an optimal value of A\ can be determined via validation.

Using the Biased ARTMAP, the systems classification performance was thus depen-
dent on two factors: the strength of the biasing from the attention parameter and the
ordering of the training data presentation. For any value of the attention parameter, a
specific sequence of training data presentation exists that will yield the best classification
accuracy. A paper by Kuan et al. [7] studied three operating strategies applied to Fuzzy
ARTMAP networks: an averaging method derives the average classification performance
from a pool of randomly-trained networks; a voting strategy to obtain class predictions
via majority voting from a pool of randomly-trained networks; and an ordering algo-
rithm using max-min clustering method to determine a single training sequence with the
best generalization and classification performance. Our experiment was an attempt to
combine a pre-processing ordering method to overcome the ARTMAPs training sequence
dependency, and a post-processing voting method to overcome the limitations of a single
learning system.

A genetic permutation algorithm [5] was selected to compute the optimal combination
of training sequences and attention parameter for the Biased ARTMAP for any given
training data set. A genetic algorithm (GA) is a search heuristic which mimics natural
evolution to generate solutions for optimization and search problems. Genetic permu-
tation in this experiment tests a population of randomly generated training sequences
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using the Biased ARTMAP for fitness selection. After each generation, the best training
sequences are kept and used to generate variations for the next iteration of testing. Using
this method, an optimal training sequence can be derived more efficiently than performing
trial-and-error on every possible permutation.

An example of a similar attempt to integrate GA with neural networks to create an
optimized learning and classification system was performed by Hsieh et al. [18] where the
genetic neural networks method was found to be slightly better at predicting a financial
crisis compared with case-based reasoning, backpropagation neural networks, logistic re-
gression analysis, and quadratic discriminant analysis. Another paper by Hengpraprohm
and Chongstitvatana [19] uses a GA variant, Genetic Programming, to optimize the con-
struction of a classifier ensemble using K-means clustering and SNR feature selection.
Each of the constructed classifiers evaluated a different selection of features to improve
ensemble classifier diversity, and used a weighted voting approach to determine the final
class prediction.

This experiment proposed using a probabilistic voting strategy [6] for the classifier en-
semble. Using N classifiers, the Nth best training sequences obtained from the genetic
optimization will each be used to train a different Biased ARTMAP classifier. The pro-
posed voting strategy calculates the recognition rates of plurality voting techniques while
taking into consideration each classifiers measure of reliability, the probability of a deci-
sion to be classified correctly given a specific input pattern. Implementing a minimum
reliability filter can reduce classification error by excluding class predictions which have
a low reliability metric.

To summarize, this paper is a proposed system for pattern learning and recognition,
using Biased ARTMAP as the primary pattern learning and classification method. The
learning phase will be optimized using genetic permutation algorithm to determine the
best combinations of biasing value and presentation sequence of training data. Multiple
classifiers will be trained using the results of the optimization exercise, and used as inde-
pendent voters in a probabilistic voting strategy to determine the final predictions of any
given test input. Reliability of each class prediction can be computed as a single metric,
and unreliable predictions are filtered from the final prediction results using a reliability
threshold. The final incarnation of the classifier ensemble will be used as a prototype
pattern recognition system that is capable of continuous incremental improvement of its
pattern recognition effectiveness via online learning.

Section 2 will elaborate on the theory and specifics on each component in the system,
specifically the genetic permutation process, the Biased ARTMAP method, and the ex-
planation for the probabilistic voting strategy. Section 3 explains the data set used to
test the performance of the system, as well as the experimental methods and the subse-
quent results. Section 4 will outline the conclusions derived from the experimental study
and results, as well as some suggestions on how future incarnations of the system can be
improved.

This paper is motivated by a desire to create an optimal method for offline training of
a classifier, or ensemble of classifiers to be used for real-time pattern classification. Fur-
thermore, the system was designed to be modular, so that the different subsystems (pre-
processing training optimization, pattern classifier, and post-processing voting system)
can be modified and/or completely replaced by superior alternatives. When completed,
this system can be repurposed into a general pattern classification method for future
research as well as a method to compare different schemes for training data ordering,
pattern learning and classification, and voting strategies.
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FiGurE 1. Flowchart of the genetic algorithm for optimal training sequence ordering

2. Genetic Ensemble Biased ARTMAP. The block diagram illustrates the various
modules that make up the Genetic Ensemble Biased ARTMAP system. The system can
be divided into three main modules: the genetic permutation module is considered a pre-
processing step to prepare the training method based on the given training data set; the
Biased ARTMAP module may consist of a single or multiple ARTMAPs, each trained
using a different training method prepared by the genetic optimization process. The
results of the testing prediction from the ARTMAP(s) are combined in a probabilistic
ensemble voting system. Testing predictions can be filtered using a reliability metric
computed using a posteriori probability.

2.1. Genetic permutation for optimal pattern ordering. The objective for this
module is to utilize genetic algorithm to derive, through mutation and fitness selection, the
most effective training sequences of any given training data set for the Biased ARTMAP, as
an alternative to trial-and-error testing of every possible permutation. The training data
set, consisting of M features by NP data samples, can be encoded as a single chromosome
consisting of 1 x NP genes. A group of twenty randomly generated chromosomes were
initialized, and were subjected to fitness testing. The least-fit chromosomes were discarded
and a genetic reproduction method was used to repopulate the group. Gene mutation was
also introduced to reduce the probability of early convergence. Over twenty generations,
the chromosomes were serially evolved and mutated from among the survivors of each
generations fitness selection. The final generation consisted of twenty training sequences
which yielded the best classification accuracy when used for training the ARTMAP.
The steps involved in the genetic optimization process are [8]:
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FiGURE 2. Flowchart of the genetic algorithm for optimal training sequence ordering

e Initialization.
The number of genes in each chromosome was set to the number of patterns, NP,
in the given dataset. Each gene was randomly set from integers 1 to NP without
repetition. One chromosome was generated as a single member of the population,
and repeated until the population cap was reached.

e Fitness testing.
To calculate the fitness value of each chromosome, a single-voter Biased ARTMAP
was trained and tested with 5-fold cross-validation using the chromosomes gene se-
quence to determine the training sequence presentation. Fitness value of the chro-
mosome was calculated as the percentage of correctly classified patterns over the
total number of tested patterns. Chromosomes are then sorted according to fitness,
and half of the most fit chromosomes was kept for the next generation.

e Reproduction and mutation operators.
Mating process was performed to repopulate the chromosome pool and replace the
discarded chromosomes with offspring of fit parents. Two chromosomes were ran-
domly chosen from among the survivors to generate the genetic traits for two off-
spring. Common genetic features between the two parents were passed down to
both offspring, while uncommon features were assigned to one or the other offspring.
The process was repeated until the population reaches the cap. Each generated off-
spring was subject to a mutation process, where two genes were randomly chosen
and swapped if a random generated number [0, 1] is less than the user-defined rate
of mutation, p,,. For this experiment, rate of mutation is set to 0.2, which mutates
one gene out of every five.

e Genetic permutation iteration.
The process of fitness testing and selection, mating, and mutation ensured that each
successive population of chromosomes was more fit than the previous generation.
After 20 generations, the resultant is a population of twenty chromosomes for each
value of A tested.
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Parentl: {387152469}
Parent2: {39185476 2}
Common genetic traits: {g i §_ i E =]
Uncommeon genetic traits: {.871..24..9}
{.818..48%7..2}

Generated offspringl: {z 972884 ﬁ 1}
Generated offspring2: {5 4188527 E 9}

FIGURE 3. Genetic reproduction method for generating offspring with in-
herited traits. Example using two 9-gene chromosomes with several shared
genetic traits.

Initial chromosome: {3:§ 7258481}

Two genes were randomly selected and swapped
If a randomly generated number r < p[mutation)

= Y
Mutated chromosome: {3§ 72584 u 1}

FIGURE 4. Simple genetic mutation

TABLE 1. Summary of genetic algorithm parameters imposed on this experiment

Integer coding in the range [1, N P] where NP is the number of
Gene coding optimization variables, in this case, the number of training

samples in the data set.

Percentage of correctly classified data samples using single-voter
Biased ARTMAP.

Population size | 20 chromosomes, each representing one training sequence.

Number of genes | One gene per data sample in the data set (100).

Chromosomes arranged by fitness. 50% of the least fit chromosomes

Fitness function

Selection were discarded.
) Two chromosomes selected at random to generate one offspring.

Reproduction . . .

Repeated until number of offspring replaces all discarded chromosomes.
Mutation Probability for one gene to be swapped with a randomly selected gene.

Set to 0.2.

20 successive iterations of fitness selection, reproduction, and
Convergence

mutation of the initial population of chromosomes.

2.2. Biased ARTMAP.

2.2.1. Adaptive resonance theory. Adaptive resonance theory (ART) was developed as
a theory of human cognitive information processing [3], the design principles of which
led to the development of real-time neural network models that perform supervised and
unsupervised learning, pattern recognition and prediction. The ARTMAP model [9] is
a hierarchical network architecture that can organize stable categorical mappings be-
tween M-dimensional input vectors and N-dimensional output vectors. Characteristics of
ARTMAP neural network models include complement coding and match tracking. Un-
der supervised learning conditions, ARTMAP’s internal control mechanisms create stable
recognition categories of optimal size by maximizing predictive generalization while min-
imizing predictive error.



GENETIC OPTIMIZED ARTMAP LEARNING SYSTEM 7549

complement coded input
A=(AAy | Ay, A, )=(a]a)

ON channel OFF channel

(1-a)..(1-a)...(1-a,))

feature vector

(a,..q, ..a,)=al__Ta =

. |

FiGure 5. Input vector A consists of original feature vector a and its
complement a®. Vector A represents the degree in which a feature i is
present (a;) as well as the degree in which the same feature is absent (1a;)
[4].

2.2.2. Complement coding. Complement coding is a preprocessing step in which an M-
dimensional input feature vector a is recoded into a 2M-dimensional input vector A,
consisting of the original feature vector a, and its complement a.. This method allows
the ARTMAP to encode within its critical feature patterns of memory features that
are consistently present on an equal basis with features that are consistently absent.
Complement coding is implemented by first scaling the initial component features a; of
a feature vector a to [0 <= a; <= 1]. For each feature i, activity a; determines its
complementary activity as (1 — a;).

2.2.3. Search and match tracking. Whenever a new input feature vector A is presented,
the search process attempts to match A to the critical feature pattern of the currently
activated node. Matching criterion is determined by a vigilance parameter p. Setting the
initial baseline vigilance p to zero allows more generalization in the learning process, while
setting a high p ensures a more specific exemplar-like learning. If the system does not
find a match, an uncommitted node is encoded with the current input feature pattern.
If the system matches and correctly predicts an input A, the critical features of the
activated node are weighted heavier. If the prediction is incorrect, p is raised and search
is repeated. This continues until a correct prediction is reached, to which p is reset to
its baseline value for the next input A. Match tracking controls the degree to which
p is increased to implement the design goals of maximum generalization and minimum
predictive error by implementing a degree of flexibility in the matching criterion.

2.2.4. Biasing mechanism. Under online fast learning conditions, the ARTMAPs critical
featural attention may be distorted by certain sequences of input presentation, causing
less-suitable critical features to be overemphasised in future searching procedures. The
Biased ARTMAP variant [12] introduces a new medium-term memory that would enable
the network to shift attention among input features whenever a predictive error was
generated.

For any given input, the Biased ARTMAP tracks attended features that caused pre-
dictive errors and reduces the activations of these features during future searching. The
strength of the biasing is determined by an attention parameter. The optimal attention
parameter for any given input can be determined by validation, but a default value of
10 produced near-optimal results on small-scale and large-scale computational examples.
Biasing the input features will allow the network to activate a previously inactive node
in response to a mismatch reset, instead of reactivating the same node which caused the
mismatch.
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TABLE 2. Biased ARTMAP parameters

Bias parameter. Optimal results in most
A>0 applications with A = 10. Study on
effectiveness of biasing within [0, 10]
Each biasing variable e; represents
strength of bias against feature 7

~ Input vector is modified by biasing
weights

Weights consist of input weights u; and
+ = (@y|09) | its complement v5, modified by biasing
vector

Baseline vigilance set to zero for

pe 0] maximum generalization
T=r—et=w;NA Biased matched vector

Mismatch reset is triggered if
r=01 A = Jz] > 0

Error detection when an active node J
R=1{0,1} o

makes a predictive error

Fast integration of medium-term memory
r>1 variables p and e; after a predictive error

Learning rate parameter set to 1 for fast
pel01] learningg ’

Match tracking parameter. On the time
e=0" scale of search in the medium-term

memory, p will decay by ¢
a=0" Choice parameter

TABLE 3. Initial parameters when a new input is presented

e=0 Initial biasing weights set to zero
~ Initial input vector is unbiased, consisting of
A= A= (a]a®) . : .
original feature vector a and its complement a
p=7p Vigilance set to baseline value
Reset signal r not triggered until predictive error
r=R= .
R is made
wir =1 Initial weights set to 1

The steps involved in a single iteration of the Biased ARTMAP are illustrated as follows:
e New training input.
When a new training input a is presented, initial parameters are set as follows:
e Pattern matching.
For each input pattern A presented, the system chooses a category node J in the
coding field F, from among the nodes j that has not been reset, to maximize the
choice-by-difference Fy-to-F5, signal function:

T; = [ANw;| + (1 = a)(M — |wy) (1)

The matched pattern z = |A A wj| is further modified with a biasing vector into
T =[x — e]*. The biasing vector e; is initialized to zero.
e Search and match tracking.
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FIGURE 6. Match tracking with a biasing module to bias certain features
in feature vector A. Initial values of all biasing vectors e; are set to 0 and
changes whenever predictive error occurs [4].

bias update predic "

b d’: .| - x |1
N —-=—f+ rRr'|:).[ Sy vl mismatch
"2 - plAl=Ix[=0

F . l |
r=1
\ i=[x—e]
f|. x:...v\.«w,l—y.- :
/ :
e -

A Ia i I
21 W IR Ta—

at r tar A=[A—e]

|h1l

FiGURE 7. Biasing vector e; is updated according to the biasing equation.
Degree of biasing is determined by free parameter . Biasing affects all
currently attended input features, which are i =1 and ¢ = 2 [4].

If node J fails to meet the matching criterion (\|A‘| > p) then node J is shut off
for the duration of the current search cycle. Input A then chooses another node J.
If node J meets the minimum vigilance parameter, then an output prediction
is made. If the prediction is correct, or if J is an uncommitted node, the system
performs learning. If the prediction is incorrect, vigilance p is increased enough to

reset J. The rate of increase is determined by the match tracking equation:

dp B .
L= —(p-p)+ TR 2)
p is commonly set to zero for maximum generalization during the learning process.
When an incorrect prediction is made, R = 1 When p is raised high enough to
cause node J to mismatch reset (r = 1), p stops increasing, at which point p will be

incrementally larger than the match value ‘| A‘|

On the time-scale of search, p will decay by match tracking parameter (¢ = 107°)
before the next coding node is chosen.
¢ Bias update.
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FIGURE 8. A new category node J = .J; is activated following mismatch

reset. With biasing against features i = 1 and ¢ = 2, now feature ¢ = 3 is

given more attention [4].

When an incorrect prediction (R = 1) and mismatch reset (r = 1) occur, bias
vector components e; (i = 1,2, ...,2M) are increased according to the biasing equa-
tions: N

de; x| 17"
d—tl = —¢€; + FRT )\ |:[1‘Z - 6i]+ - %] - ei] (3)

I' is assumed to be large enough so that e; reaches equilibrium before node J is shut
off, which will switch the predictive error signal R back to zero.
On the time-scale of search, e; decays by ¢ before the next coding node is chosen.
Biasing vector e; is unchanged if

MMz —e]t — lol <0 4
o —e - 1| < ()
or if
e; > A |:[1‘Z — 6i]+ — %] >0 (5)
However, if the matched pattern
z; > el (6)
and ]
A1z — ety — ian 0 7
[CRETE e )

then e; is updated according to the equation:

||
new _ | Yi T om
€ _(1+>\—1> (8)

Perform ARTMAP learning.
The weights of the activated node J is updated according to the weight equation:

7= (1= B + B (wi A A) (9)

With fast learning (8 = 1):

w

wi = wjo-ld AA (10)

The time-scale of learning is assumed to be greater than the medium-term memory
time-scale. Thus, p and e; decay to their initial values as their weights are updated.
Biasing during search affects the choice of the final node J but will not affect learning.
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The next input a is then selected to be presented.

2.3. Probabilistic voting and reliability test. The probabilistic ensemble voting
strategy used here is based on research by Lin et al. [12] and Loo and Rao [6]. N classifiers
(E1, Es, ..., Ey) are employed for an M-class pattern recognition task, in which an input
object X is classified into one of the M classes (Cy,Cy,...,C)y). Classifier E; keeps a
constant recognition rate p; for any input object X:

P(E(X) = C(X)) = pi (11)

C(X) is the true class in which input X belongs to, and E;(X) is the class selected by
classifier F;. All other classes have equal probability of being chosen in case of incorrect
classification.

1—pi o
M-1 "
where (j =1,2,..., M) and C; # C(X). Each classifier is assumed to make its decision
independently. In order to minimize the error rate of the combination system, the class
with the largest a posterior: probability should be selected according to Bayes’ rule. Since
the probability for all other classes to be chosen is equal, the effective decision can be
summarized as:

P(E(X) = C;) =

(12)

Di(X)=InP(C(X)=0C;)+ XY, In (%) 6ij(X) (13)

The above equation is a generic form of plurality voting rule. The class C; that maxi-
mizes D;(X) is selected. Each classifier can have a different weight and each class has a
constant representing its a priori probability. From the above analysis, plurality voting
as shown is equivalent to the Bayesian criterion under the following conditions:

e The classifiers’ decisions are independent of each other.

e Misclassifications are evenly distributed among the M — 1 residual classes.
e In case of a tie, the class with the maximum support is chosen arbitrarily.
e Input objects are evenly distributed among all the classes.

The independence assumption is not easy to meet in practical pattern recognition appli-
cations. More commonly, all of the classifiers are prone to make mistakes simultaneously
on some very difficult samples. Taking this factor into account, a modified model is pro-
posed, composed of both the independent situations: the N classifiers will simultaneously
misrecognize a sample with a probability of ce. Otherwise with a probability of (1 — «),
the N classifiers will perform independently. Under this model, the overall recognition
rate of classifier F; is (1 — a)p;. The p; in the above equation is replaced with (1 — a)p;.

Using a quantitative analysis of the probabilistic voting systems performance, the fol-
lowing observations were made:

e The voting systems recognition rate increases or remains constant when additional
classifiers or data samples were given, due to the implementation of reverse proba-
bilistic rule whenever recognition rate falls below average. Average recognition rate

is given as p = ﬁ, where M is the number of classes in the data set. If p # ﬁ,

recognition rate will approach 1 with a sufficiently large N. Reverse probabilistic

rule is employed whenever p < ﬁ When p = ﬁ, class selection is random if there
is a tie between multiple eligible classes.

e When individual classifiers perform above average (p > %), recognition rates in-
creases with a larger M. With more classes, the erroneous predictions will be scat-
tered equally among M — 1 incorrect classes, giving the chance for the correct class

to stand out.
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e If multiple comparable classifiers have the same recognition rates, combining three
or more classifiers may give better results. Increasing the number of classifiers be-
yond three will increase computational complexity and may not be required. If the
classifiers have different recognition rates, weights are assigned to the best classifier,
in which case combining multiple classifiers may be redundant as the final decision
can be dominated by only the best performing classifier.

The study by Loo and Rao [6] implements a method to measure the reliability of a
class prediction computed from the probabilistic voting results. Reliability of a class
prediction is computed by defining the a posteriori probability of the winning class given
the predictions of N classifiers. Classification reliability in this case is decided by the
vote difference between the winning class and the other classes. The desired reliability
of a classification system can be enforced by requiring that each and every input objects
winning class to have at least » more votes than the closest competing class, failure of
which the classification of the input object is rejected due to unreliability of the prediction.
A system with r = 0 is known as simple probabilistic voting, while » > 0 is strict
probabilistic voting. Thus, the classification performance of a system may be artificially
increased by setting a high reliability threshold r at the expense of rejecting a higher
number of input data samples.

3. The Experiment. The experiment is tested using the dataset collected by Wagner
et al. [13]. To induce the subject to feel different emotions, four music songs were used,
selected by the subjects themselves, in respect of the targeted emotion classes of anger,
joy, pleasure, and sadness. An advantage of this method is that most people associate
different moods with specific songs.

While the subject listens to the music, biosensors are used to measure electromyogram
(EMG), electrocardiogram (ECG), skin conductivity (SC) and respiratory change (RSP).
Overall, 25 recordings for each emotion class were collected, for a total of 100 training
data samples per emotion class, each being a four-channel digital signal recording. A label
set is created to segment the data into a four-emotion classification problem: (1: Anger)
(2: Joy) (3: Pleasure) (4: Sadness).

Before the signals can be analyzed, feature extraction was performed to reduce the
dimensionality of the raw signal measurements into several parameters representative of
the entire signal. This has the advantage of reducing the computational costs. Feature
extraction was performed using an algorithm designed by Wagner et al. [14]. A total of
211 features were extracted from each recording, including several features not available

(energetic)
high arousal

anger Joy
thappy)
positive

(anxious)
negative

sadness I pleasure

low arousal
(calm)

FIGURE 9. Targeted emotion classes in regard to a common representation
of four distinct human emotions in two dimensions of arousal and valence

[13]
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in the original toolbox algorithm. The features of principal dynamic modes [15, 16] were
included to provide nonlinear analysis to the overall feature set.

A genetic optimization algorithm was employed to optimize the training sequence to
be presented to the Biased ARTMAP. The initial 20 chromosomes were generated at
random, each one encoded as a single complete training sequence. Fitness testing was
performed using a single-voter Biased ARTMAP, with fitness defined as percentage of
correct classifications. The population was sorted by fitness, and 50% of the least fit
chromosomes were discarded from the population. The remaining chromosomes were
used to generate new chromosomes to replace the discarded chromosomes using mating
and mutation operations. Rate of mutation was set to 20% of the total number of genes
in each chromosome.

The genetic selection process was iterated for 20 generations, and repeated with a
random population for each value of the attention parameter from 0 to 10. This genetic
optimization exercise generated a total of 220 chromosomes, which were then arranged in
order of fitness. The chromosome with the best fitness was used for training the first voter,
and each subsequent voter was trained using the next-best chromosome. Each ARTMAP
was configured for fast learning and maximum generalization.

Training and testing was performed using leave-one-out method, and the final class
prediction was determined by probabilistic ensemble voting. The classification perfor-
mance of the classifier ensemble was defined as the percentage of correctly classified data
samples.

3.1. Experiment results. The first test compares the classification performance of the
Biased ARTMAP against Fuzzy ARTMAP. The final generated population was used for
generating a bootstrapped mean of the ARTMAPs classification performance. Bootstrap-
ping was performed using 1000 resamplings with 95% confidence.

For this case, the classification performance was not significantly impacted by modify-
ing the biasing parameter. One hypothesis is that genetic ordering compensation inad-
vertently solves the problem of early featural distortion which the Biased ARTMAP was
designed to solve. Nevertheless, the above results were obtained from offline learning, and
the biasing technique will be more useful during online learning.

TABLE 4. Classification performance of ARTMAPs with different biasing intensity

Attention parameter A | Minimum | Maximum | Bootstrapped mean
0 (Fuzzy ARTMAP) 59 76 66.06 7%
1 59 75 66.7571 5
2 61 76 66.97. 154
3 59 78 67.11. 559
4 59 77 66.9075 00
5 62 76 67.061 504
6 54 78 67.28.571
7 60 76 67.11, 15
8 60 77 67.05, 70
9 61 76 66.567 1 59
10 59 77 66.157 50
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Bootstrapped mean classification accuracy for A=0:10, 95% confidence
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FIGURE 10. Bootstrapped mean classification accuracy for each biasing parameter

TABLE 5. Classification accuracy of fuzzy ARTMAP A = 0 with proba-
bilistic ensemble voting and reliability threshold

Voters | Reliability R=0] R=05 R=09 R =0.99
1 76.00 (0) 76.00 (0) | NaN (100) | NaN (100)
2 73.00 (0) 80.00 (20) | 80.00 (20) | NaN (100)
3 76.00 (0) 76.76 (1) | 85.13 (26) | 85.13 (26)
5 70.00 (0) 70.40 (2) | 77.64 (15) | 78.31 (17)
7 71.00 (0) 7142 (2) | 76.13 (12) | 78.57 (16)
10 73.00 (0) 7422 (3) | 73.95 (4) | 73.33 (10)

TABLE 6. Classification accuracy of Biased ARTMAP A = 0 : 10 with
probabilistic ensemble voting and reliability threshold

Voters | Reliability R = 0 R=0.5 R=0.9 R =0.99
1 78.00 (0) 78.00 (0) NaN (100) | NaN (100)
2 78.00 (0) 82.95 (12) | 82.95 (12) | NaN (100)
3 79.00 (0) 79.00 (0) 87.17 (22) 87.17 (22)
5 79.00 (0) 79.38 (3) 84.44 (10) 84.88 (14)
7 75.00 (0) 74.48 (2) 77.77 (10) 78.65 (11)
10 79.00 (0) 79.78 (6) 80.64 (7) 80.89 (11)

A probabilistic ensemble voting system was applied, in which N voters were individ-
ually trained by N of the best training sequences from the combined population of 220
chromosomes. Testing was performed on the voting system based on probabilistic ma-
jority rules to determine the final class prediction of the test data. Testing was repeated
using a reliability metric to evaluate each class prediction. Class predictions which did
not meet the reliability threshold were removed from the final accuracy calculation.

The number in brackets represents the percentage of class predictions which were re-
jected due to low reliability. In particular, predictions from a voting system with few
voting members are considered less reliable due to lack of information compared with
systems with more voting members. However, this experiment also indicates that while
predictive accuracy increased when a more stringent reliability threshold was applied, in-
creasing the number of voters did not elicit an improvement. This may be explained by
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TABLE 7. Comparison of different classification methods

Classification method Predictive accuracy (%)
Linear discriminant analysis 66.00
k'™ nearest neighbour 72.005 150
Multilayer perceptron 83.00
Genetic Ensemble Fuzzy ARTMAP | 85.13 (3-voter, 90% reliability)
Genetic Ensemble Biased ARTMAP | 87.17 (3-voter, 90% reliability)

Classification Performance (%)
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FI1GURE 11. Classifier predictive accuracy comparison

the method in which each voter was trained. Each additional voter besides the first was
trained using training sequences which were increasingly less accurate, effectively affect-
ing the systems predictive accuracy by adding an increasing amount of noisy data. Even
so, each additional voter served to contribute additional information into the ensemble
classifier by improving recognition rates of reliable training data.

The above results were then compared against similar pattern classification methods:
linear discriminant analysis (LDA), k-nearest neighbor (kNN), and multilayer perceptron
(MLP). For kNN, a series of training and testing was performed for a range of values
for k£, in the range [1, 10]. A bootstrapped mean was generated from the results. For
MLP, the main initial network parameters are the number of hidden layers (set to 9), the
rate of learning (set to 1), and the number of training iterations (set to 100). For Fuzzy
ARTMAP and Biased ARTMAP, the results were using the classification performance
from the best combination of voter ensemble, reliability threshold and training sequence.

Both ARTMAPs show comparable classification performance with the multilayer per-
ceptron (MLP). However, ARTMAPs have several distinct advantages over the MLP clas-
sification method, including the ability for incremental learning to evolve the classification
system over time, and a faster convergence during training and testing.

The resultant genetically-trained Biased ARTMAP voting system can be viewed as a
prototype emotion recognition system that translates input features extracted from four
biosignal channels (ECG, EMG, RSP and SC) into one of four emotion class predictions
(Anger, Joy, Pleasure, Sadness) with approximately 85% accuracy as shown with the
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above results. Predictions with a high degree of reliability may be flagged and used to
further train the Biased ARTMAP to increase its predictive capability.

3.2. EEG-based affect recognition. The complete Genetic Ensemble Biased ARTM
AP system was trained and tested offline using a different database consisting of elec-
troencephalogram (EEG) data. The database consists of alphal, alpha2, betal, and beta2
channel measurements from two subjects. Measurements were obtained using a Neurosky
headset at a 1Hz sampling rate. Subjects were shown a series of pictures selected from
the International Affective Picture System (IAPS) [17] to elicit one of four affect condi-
tions: Positive Valence, Negative Valence, High Arousal, and Low Arousal. A total of
12 pictures were selected for each affect condition, and were displayed one after another
with duration of 14 seconds per picture. The subject was given a 5-minute interval before
proceeding to the next series of pictures for affect elicitation. EEG measurements were
obtained for the entire duration when the pictures were displayed. Feature extraction was
performed on the EEG signal measurements to reduce dimensionality of the data.

The database was divided into two sets, Positive-Negative Valence and High-Low
Arousal, effectively creating two sets of binary classification problems. Each database
consists of 48 data samples (12 pictures x 4 channels) with 16 features each. Genetic or-
dering was performed for each data set, using Biased ARTMAP for fitness-testing. Mating
and mutation operators were used to select training sequences for each successive gener-
ation of chromosomes. The best training sequences were selected to train an ensemble
Biased ARTMAP probabilistic voting system. Training and testing was performed using
leave-one-out.

TABLE 8. Performance classification of genetic ensemble biased ARTMAP

in distinguishing between high v. low arousal EEG, and positive v. negative
valence EEG

High vs Low Reliability=0 R=0.5 R=0.9 R=0.99
1-voter 86.67 (0) 86.67 (0) NaN (100) NaN (100)
5-voters 77.78 (0) 77.78 (0) 86.67 (0) 86.67 (0)
10-voters 75.55 (0) 75.55 (0) 80.00 (0) 80.00 (0)

Positive vs Negative | Reliability=0| R=0.5 R=0.9 R=0.99

1-voter 75.55 (0) 75.55 (0) | NaN (100) | NaN (100)
b-voters 68.89 (0) 68.89 (0) | 100.00 (20) | 100.00 (20)
10-voters 66.67 (0) 66.67 (0) | 71.11 (0) 71.11 (0)

FIGURE 12. Positioning of the Neurosky headset to measure EEG in the
highlighted area
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As with the previous data set, imposing a high reliability threshold on systems with
fewer voters was counter-productive. For the 5-voter Positive-Negative data set, the 100%
classification accuracy occurred when paired with a high data rejection rate (20% of the
training samples), compared with 71.11% predictive accuracy with no data rejection when
using 10 voters. This demonstrates a trade-off between classification accuracy and data
reliability, and is entirely subjective as to which method is more practical. This also
demonstrates that increasing the number of voters also increased the reliability of each
prediction as more information was introduced into the voting system.

A potential application is to combine the EEG affect classification system with the ECG
emotion classification system to create a single affect recognition system. By assigning
a number of classifiers to evaluate EEG, and another group of classifiers to evaluate
ECG, the combined classifier ensemble will possess a higher diversity than both of the
classification systems used singularly.

4. Conclusions and Future Work. The experiment results showed no significant ben-
efits of using Biased ARTMAP over Fuzzy ARTMAP, with or without the use of genetic
optimization. The presented results also showed degradation in the classification accuracy
when more than one voter was introduced into the probabilistic ensemble voting system.
The genetic optimization method produced significant improvement in classification ac-
curacy. The probabilistic ensemble voting system was able to evaluate individual class
predictions using a single reliability metric. Setting different levels of reliability filtering
allows classifier accuracy to be improved by rejecting class predictions with low reliability.

This experiment raised several new suggestions where the system could be improved. A
different method could be employed to select training sequences for optimal voting results,
as selecting the best individual fitness results to be combined into a voting strategy does
not guarantee improvement in the classification performance. This is most likely due to the
lack of diversity in the generated population caused by the genetic permutation method.
Further analysis of ensemble voting effectiveness should include diversity measurements
to select a wider selection of training sequences. In addition, this experiment did not
adequately present the effectiveness of using Biased ARTMAP over Fuzzy ARTMAP
under supervised training conditions as well as under online learning conditions.
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