International Journal of Innovative
Computing, Information and Control ICIC International (©)2012 ISSN 1349-4198
Volume 8, Number 11, November 2012 pp. 7T793-7818

USING MULTI-ANGLES EVOLUTIONARY ALGORITHMS
FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS

PEI-CHIA HUNG!, SHENG-Fuu LIN' AND YUNG-CHI Hsu?

!Department of Electrical and Control Engineering
National Chiao Tung University
No. 1001, Ta Hsueh Rd., Hsinchu 300, Taiwan
mikehome.ece93g@nctu.edu.tw; sflin@mail.nctu.edu.tw

23C Software Design Center
Quanta Computer Inc.
No. 211, Wen Hwa 27! Rd., Kueishan, Taoyuan 33377, Taiwan
ericbogi2001@yahoo.com.tw

Received July 2011; revised November 2011

ABSTRACT. The development of a global-based method for building robust neuro-fuzzy
networks has become an interesting issue. Among the various building methods, the evo-
lutionary algorithms provide robust ways increasing the chances of meeting the optimal
solution. However, evolutionary algorithms may only use a single angle to evaluate the
searching space to obtain the optimal solutions. It implies that they may slowly or even
hardly meet the optimal solution. Thus, the current study provides a novel architec-
ture that uses multiple angles for evaluating the searching space. More specifically, the
novel architecture adopts multiple angles to improve the evolutionary process by dynam-
ically adjusting the searching space. By doing so, the proposed architecture can increase
the chances of meeting the optimal solution. As shown in the results, the proposed ar-
chitecture outperforms other existing evolutionary algorithms. Based on the results, a
framework is proposed to build a benchmark for developing evolutionary algorithms that
consider the multiple angles of the solution space.

Keywords: Neuro-fuzzy network, Evolutionary algorithm, Multiple angles

1. Introduction. The development of modern systems has recently geared towards solv-
ing the complex relationships between input and output patterns [1]. In other words,
modern systems should have the abilities to solve diverse nonlinear problems. However,
classical system designs usually require a mathematical model for solving nonlinear prob-
lems. Such design pattern may strongly depend on the mathematical modeling of plants.
In other words, inaccurate mathematical modeling of plants usually degrades the perfor-
mances of systems, especially for nonlinear and complex problems [2-5]. Thus, the devel-
opment of a model that can efficiently solve complex and nonlinear problems has become
an issue. Among various models, the neuro-fuzzy network is widely used for addressing
nonlinear problems without building complex mathematical models [6]. Tt is due to the
fact that the parameters of neuro-fuzzy network are trained based on a sequence of input
and desired outcome pairs [7]. In other words, the neuro-fuzzy network structure does not
need a mathematical description of the system when modeling the network. Moreover, it
can present the experts’ ambiguity and translate knowledge into computable numerical
data [8]. Overall, the neuro-fuzzy network provides a useful design pattern for building
modern systems that can face the complex and nonlinear relationships between input and
output patterns. Therefore, the development of robust neuro-fuzzy networks that can

7793

7794 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

reach the global solution of various complex and nonlinear applications has become an
issue.

Several studies are aimed to develop a learning structure that can build well perform-
ing neuro-fuzzy networks to address the issue above. The learning structure is mainly
used to develop a suitable way for adjusting the parameters of neuro-fuzzy networks [9].
In other words, the learning structure plays an important role in influencing the perfor-
mance of neuro-fuzzy networks. Thus, the development of useful learning structures is an
important issue when modeling neuro-fuzzy networks. Based on this issue, the research
question is “How do you develop a feasible and robust learning structure to construct the
neuro-fuzzy networks?” More specifically, the research question is strongly related to the
development of global-based learning structures [10] that can help neuro-fuzzy networks
meet the optimal solution. Among the various global-based learning structures, the evo-
lutionary algorithms [11], which have the ability of searching for the global solution, are
widely used as the learning structures of neuro-fuzzy networks. Moreover, since evolu-
tionary algorithms are parallel and global search techniques and they can simultaneously
evaluate many points in the search space, they are more likely to converge towards the
optimal solution than the other global-based learning structures.

The evolutionary algorithms seem to be useful solutions to our research question. How-
ever, traditional evolutionary algorithms only focus on a single angle when evaluating the
searching space for finding the optimal solution [12]. More specifically, such algorithms
may adopt the fixed range of the space to search for the solution. In other words, the
searching space in such algorithms cannot adjust according to the performance of each
candidate solution. For instance, if a candidate solution is near the optimal solution, the
candidate solution may still need to search in the large range of space. Therefore, such
algorithms may slowly meet or even hardly meet the optimal solution.

The current study proposes a novel evolutionary algorithm to provide different strate-
gies when searching for the optimal solution and to address the issues stated above.
More specifically, the current study proposes the multiple angles evolutionary algorithm
(MAEA) to evaluate the searching space using multiple angles to adjust the search space.
In other words, the searching space will be adjusted automatically based on the perfor-
mance of each candidate solution. For instance, if a candidate solution is near the optimal
solution, it can be further searched in the small range of space. On the other hand, if
a candidate solution is far away from the optimal solution, it should be further searched
in the large range of space. In doing so, the parameters of neuro-fuzzy networks can be
trained efficiently and their outputs can have higher confidence than traditional networks.
It implies that the proposed MAEA can provide benefits in searching for the optimal so-
lution. In other words, the MAEA can consider various possible solutions in the early
stages but restrict the searching space to find well performing solutions. Thus, the MAEA
provides an efficient way to meet the optimal solution. Moreover, the MAEA can be use-
ful for finding the optimal solution of complex problems (e.g., sunspot prediction [13],
stock prediction [14], and users’ navigation behavior classification [15]), which have large
range of searching space [13]. Such searching spaces are diverse and present difficulties in
meeting the optimal solution [13]. Thus, it would be better if the searched algorithms can
provide multiple considerations to increase the chances of meeting the optimal solution.
Thus, the proposed MAEA can be beneficial for automatically adjusting the searching
space based on the performance of found candidate solutions. In other words, the MAEA
can explore large spaces to find various candidate solutions in the early stages and then
fine-tune the found solutions in the later stages.

In summary, the current study aims to propose a novel evolutionary algorithm that
can consider multiple angles when evaluating the parameters of neuro-fuzzy networks. In

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7795

doing so, neuro-fuzzy networks can increase their chances of meeting the optimal solution.
This paper is organized as follows. Section 2 introduces the related works. Section
3 describes the methodology development. Section 4 presents the illustrative results.
Section 5 summarizes a framework related to the results. Finally, concluding remarks are
drawn in the last section.

2. Related Works. The related works in neuro-fuzzy networks and evolutionary algo-
rithms are shown in the following subsections.

2.1. Neuro-fuzzy networks. Since neuro-fuzzy networks have been successfully applied
in several fields, such as control applications [2], stock prediction [3], and image process-
ing [5], they have recently become a popular research field. The main contribution of
neuro-fuzzy networks is their application in several classical applications for achieving
their desired solutions. More specifically, classical applications usually need an accurate
mathematical model to achieve their purposes. However, constructing a suitable mathe-
matical model to reach the purposes of real-world applications (e.g., stock application and
biometric application) is difficult. Therefore, neuro-fuzzy networks are suitable solutions
for providing robust models that can address the diverse purposes of different applications
because they can strongly avoid their association with mathematical models, especially
for nonlinear and complex problems [16,17].

A neuro-fuzzy network is composed of a forward and backward structure and it is mainly
used for constructing relationships between input and output patterns. The forward
structure is mainly used for producing the output of the network. More specifically,
it consists of a set of fuzzy if-then rules [18], a fuzzy inference mechanism [19], and a
defuzzifier mechanism [20]. These components are shown in Table 1.

TABLE 1. Components of the forward structure

Component Content
fuzzy if-then rules They consist of an antecedent part, which repre-
sents different degrees (membership degrees). Each
input pattern belongs to a membership function
and its consequent part, which indicates the firing
strength of the fuzzy rule.
fuzzy inference mechanism | It is mainly used to conduct fuzzy results.
defuzzifier mechanism It is used to generate crisp outputs.

The backward structure aims to adjust the parameters of a neuro-fuzzy network (i.e.,
the parameters of the antecedent and consequent parts). In other words, the backward
structure can be treated as the learning structure mentioned in Section 1. Several studies
have recently proposed novel learning algorithms to adjust the parameters of fuzzy if-then
rules automatically [21-24]. Among the proposed algorithms, the back-propagation (BP)
algorithm is the most well-known learning algorithm [23,24]. More specifically, BP is used
to train the parameters of neuro-fuzzy networks using the steepest descent technique to
minimize the error function. Since the BP algorithm can be used to adjust the parameters
of neuro-fuzzy networks, it may easily reach the local minima and even never find the
global solution [25]. In addition, the performance of the BP training is mainly associated
with the initial parameters. Moreover, the development of new mathematical expressions
for each network layer of different neuro-fuzzy network topologies is necessary.

To address these disadvantages, the most well-known global learning structures, named
evolutionary algorithms, are proposed to prevent achieving the local optimal solution [26].

7796 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

More specifically, evolutionary algorithms can be used to find the optimal solution when
training the parameters of neuro-fuzzy networks. Moreover, evolutionary algorithms can
also be used in different neuro-fuzzy network topologies. In other words, evolutionary al-
gorithms do not need to develop new mathematical expressions for training the parameters
of the different structures of neuro-fuzzy networks. Therefore, evolutionary algorithms are
better candidates than BP algorithms for training the parameters of neuro-fuzzy networks.
Such arguments can also explain why our research question tends to improve evolutionary
algorithms.

2.2. Evolutionary algorithm. Recently, several evolutionary algorithms, such as the
genetic algorithm (GA) [26], genetic programming [27], evolutionary programming [28],
and evolution strategies [29], have been used to train the parameters of neuro-fuzzy net-
works. Such algorithms not only provide parallel and global search techniques to seek
the solutions but also simultaneously evaluate many points in the search space. In other
words, they have more chances of converging towards the global solution than the BP
algorithm. Thus, several studies have recently tried to apply evolutionary algorithms for
seeking the optimal parameters of neuro-fuzzy networks (i.e., evolutionary fuzzy models)
[30-35]. Among various evolutionary fuzzy models, the most well-known model is genetic
fuzzy models [30-32] that used the genetic algorithms (GAs) [36] to train the parameters
of fuzzy models. For instance, Karr applied GAs to designing a fuzzy controller [30]. As
shown in his work, the GAs were mainly used to seek the optimal parameters of each
membership function. Moreover, Lin and Xu recently applied reinforcement GAs to seek-
ing the parameters of the TSK-type neural fuzzy controller [31]. Their work demonstrated
that the trained TSK-type neural fuzzy controller could obtain better performance than
BP algorithms in several control applications.

Researchers have applied GAs to stabilizing a collection of controllable linear multivari-
able systems. More specifically, eigenvalues are used as a fitness function to consider both
the frequency and time domains. It has been shown that the GAs can outperform other
existing methods, implying that GAs can be applied in various complex applications.
Also, GAs has been used to construct an efficient dynamic channel allocation (DCA)
scheme that mainly plays the role of dynamic inter-cell interference coordination (ICIC)
in wireless communication systems. The proposed GA-based scheme can obtain better
performance than other existing schemes, and can deal with many real world problems.

Even though the aforementioned genetic fuzzy models are useful for seeking the optimal
solution, they still possess some challenges that need to be addressed. The major problem
is the process on how to design the criteria for evaluating or generating the candidates
that can be used to obtain the optimal solution. In other words, the development of
a novel architecture to improve the generations of evolutionary algorithms is necessary.
Thus, several studies tended to develop novel architectures to address such issue. For
instance, Smith et al. proposed a symbiotic evolution to provide multiple considerations
when evaluating the candidate solution [37]. More specifically, the symbiotic evolution
divides the whole solution into several partial solutions, and each partial solution can
be characterized as a specialization. The specialization property can ensure the diver-
sity of evolution. In other words, such diversity can prevent a population from meeting
suboptimal solutions. As shown in their work, the symbiotic evolution can obtain good
performance by evaluating the partial solutions. Similar to the research, Gomez and
Schmidhuber proposed the enforced sub-populations (ESP) that adopts multiple consid-
erations to prevent a population from meeting suboptimal solutions [38]. As shown in
their work, the sub-populations were used to evaluate partial solutions. Their results
indicated that the ESP could obtain better performance than systems with only a single

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7797

consideration. More recently, Lin and Xu have applied GAs to seeking the parameters of
the particular NFN (i.e., TSK-type NFN) [39]. Their work indicated that the well-trained
TSK-type NFN have high performance in several prediction applications.

More recently, a hybrid genetic algorithm is proposed to construct the decision-making
system, which can be used to make decisions for solving a series of problems. The hy-
brid GA not only evaluates the assembly sequences but also searches for the optimal
solution for each sequence. As shown, the optimal decision could be obtained using
the proposed hybrid GA, implying that the modification of the genetic algorithm can
increase the chances of meeting the optimal solution. The development of multiple ob-
jects when evaluating solutions to modify the learning structure further is an issue. The
multiple-objectives genetic algorithm (MOGA) has been employed to examining real-life
daily pairing problems in a Taiwanese short-haul airline. The results indicated that the
MOGA could easily address such multiple-objectives issues by offering robust criteria,
implying that the different considerations are helpful for improving the performances of
diverse problems. Moreover, Bowman et al. adopted the MOGA to design the multiple
consideration base fitness functions [40]. As shown in their work, the MOGA can perform
better than traditional GAs for solving the class responsibility assignment problem in
object-oriented analysis.

In addition, an evolutionary algorithm has been developed to synthesize finite-state
machines. More specifically, they used the proposed evolutionary algorithm not only to
address the state assignment NP-complete problem but also to generate an optimal solu-
tion and implement the state machine. The results demonstrated that the evolutionary
algorithm is helpful for implementing state machines using minimal requirements. More-
over, Lin and Hsu proposed the hybrid evolutionary learning algorithm (HELA) to train
the parameters of wavelet neuro-fuzzy networks [41]. As shown in their work, the HELA
consisted of the structure and parameter learning. The former was used to construct the
number of fuzzy rules, whereas the latter was used to adjust the parameters of wavelet
neuro-fuzzy networks. Their results indicated that the HELA outperforms other existing
evolutionary algorithms.

More recently, evolutionary algorithms are also used to tune the parameters of neural
fuzzy networks. More specifically, they proposed the modified differential evolutionary
(MDE) algorithm to model the recurrent functional neural fuzzy network (RENFN). It
is shown that the new evolutionary algorithm not only speeds up the learning curve
but also improves the prediction accuracy, implying that the evolutionary algorithm is
helpful for efficiently adjusting the parameters of neural fuzzy networks. Furthermore,
an observer-based iterative learning control with/without evolutionary programming al-
gorithm has been designed to face the issue of efficiently converging tracking errors in
nonlinear systems. The proposed evolutionary programming not only efficiently searches
for the optimal solution but also reduces evolutionary time, implying that the evolutionary
algorithm can improve the converged performance of nonlinear systems.

Even though the aforementioned studies demonstrated the performance of their pro-
posed architectures, such algorithms only tended to perform the evolutionary processes
(e.g., reproduction, crossover, and mutation) using a single angle. More specifically, such
algorithms cannot consider different angles to let the individuals take suitable actions
in searching for the solution. In other words, the searching space in such algorithms is
fixed when performing the evolutionary processes. Thus, such algorithms may not offer
a suitable searching space to let the well performing individuals generate better offspring
in each generation. Thus, the current study uses multiple angles to improve the perfor-
mance of evolutionary processes in evolutionary algorithms. In other words, the proposed

7798 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

evolutionary algorithm can adjust the searching space automatically based on the per-
formance of the individuals. In doing so, the well performing individuals can generate
better offspring in a suitable searching space in each generation. In summary, the current
study proposes a multi-angles evolutionary algorithm (MAEA) to adjust the parameters
of neuro-fuzzy networks. The MAEA can accurately identify the relationships between
input and output patterns by considering multiple angles to improve the performance of
evolutionary processes.

3. Methodology. This section introduces the methodology development of the current
study. More specifically, the neuro-fuzzy network and the MAEA are described in the
following subsections.

3.1. Neuro-fuzzy network. Neuro-fuzzy networks are mainly used for representing the
fuzzy if-then rules of network structures. In doing so, the well-known learning algorithms
of artificial neural networks can be applied to train the fuzzy if-then rules. The main
processes of a neuro-fuzzy network consist of the fuzzy rules, reasoning process, and fuzzy
knowledge based. The fuzzy rules, which are defined by the antecedents and consequents,
are used for modeling the relationships between control inputs and outputs. The reasoning
process is mainly used for defining the means of the employed aggregation operators (i.e.,
fuzzy connectives and fuzzy inference method). The fuzzy knowledge based contains the
definition of fuzzy sets stored in the fuzzy database. Moreover, it also contains a collection
of fuzzy rules that constitute the fuzzy rule base. In general, the Mamdani-type [36]
and Takagi-Sugeno-Kang (TSK) type neuro-fuzzy networks [2,28,42] are the most well-
known neuro-fuzzy networks. The minimum fuzzy implication is used for performing the
fuzzy reasoning of the Mamdani-type neuro-fuzzy network. Moreover, the Mamdani-type
neuro-fuzzy network employs the fuzzy inference method, which uses fuzzy sets to define
consequent parts. A Mamdani-type fuzzy rule is shown below.

IF z is Ay; and x9 is Ay; ... and x, is A, .
THEN y is C} (1)

The TSK-type neuro-fuzzy network provides more implication and aggregation methods
than the Mamdani-type neuro-fuzzy network. More specifically, the first two parts of the
fuzzy inference process, including fuzzifiering the inputs and applying the fuzzy operator is
similar with those of the Mamdani-type neuro-fuzzy network. Moreover, the consequence
of each rule is a function related to the input variables of such network. The general
adopted function is the linear combination of input variables plus a constant term. A
TSK-type fuzzy rule is as follows:

IF 2 is Ay; and x5 is Ay; ... and x, is A, 5

The parameter wy; in Equation (2) represents the constant term that sums the linear
combination of input variables to generate the consequence of the jth rule node. Moreover,
the parameter w;; represents the ¢th parameter that multiplies the ith input variable to
generate the linear combination of input variables. Since the consequence of a rule is
crisp, the defuzzification step becomes obsolete in the TSK inference scheme. Thus, the
model output is computed instead as the weighted average of the crisp rule outputs, which
is computationally less expensive than calculating the center of gravity.

Recently, many studies [2,28,42] have indicated that TSK-type neuro-fuzzy networks
could achieve superior performance than Mamdani-type neuro-fuzzy networks in both net-
work size and learning accuracy. Thus, the current study adopts a TSK-type neuro-fuzzy
network (TNFN) to reach its objectives. In other words, the multi-angles evolutionary

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7799

algorithm, which will be described in the following section, is used to train the parame-
ters of the TNFN. Figure 1 shows the structure of a TNFN, which is a five-layer network
structure. The function of each layer is shown below.

a. Input Layer. This layer is mainly used to collect the input values and deliver these
values to the next layer. In other words, each node in this layer only transmits the input
value to the next layer. The function of each node in this layer is given by

iV =z, (3)

)

where ugk) denotes the input value of the ¢th node in the kth layer and z; denotes the ith
input dimension.

b. Membership Function Layer. This layer computes for the membership degree
that corresponds to each input node in the Input Layer. The membership degree of each
input node that belongs to a fuzzy set [15] is calculated in this layer. Each node in this
layer corresponds to a linguistic label of a particular input node in the Input Layer. The
current study adopted the most well-known Gaussian membership function in this layer

Mernb er ship
Layer

Consequent Output

Input Layer
I - Laver Laver

Rule Layer

F1GURE 1. Structure of the TSK-type neuro-fuzzy network

7800 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

[43]. Therefore, the function of each node in this layer is given by

2
o
@) [“ m”]

uij = eXp —0—% (4)

where m;; and o;; are the center and the width of the Gaussian membership function of

the 7th input node ugk) in the jth rule, respectively.

c. Rule Layer. This layer determines the firing strength of each rule. In other words, the
fuzzy inference operation determines each node in this layer. The “AND” fuzzy inference
operation was adopted in the current study [16], i.e., the multiplication operation was
used to compute for the firing strength of each rule. The function of each rule is shown

below.
3 2
- TT g

d. Consequent Layer. The nodes in this layer are mainly used to compute for the
consequent part of each rule. In other words, each node in this layer computes based on
the linear combination of input variables. More specifically, the input nodes in this layer
consist of the outputs delivered from the previous layer and the input variables from the
Input Layer (see Figure 1). The function of each node is given by

u§4) = u§-3) (woj + Z wz‘jxi> (6)
i=1

where w;; are the corresponding parameters of the consequent part.

e. Output Layer. FEach node in this layer is mainly used to compute for the crisp
output value. In other words, the defuzzifier operation is performed in this layer. More
specifically, the outputs of the Rule Layer and Consequent Layer are used to compute for

the crisp output value. The function of this layer is given by
R R n
4 3
= = 1=

(5 _
y=uw—"==—0 3) - R (3) <7)
j; U; - U;

where R is the number of fuzzy rules.

J

3.2. Multi-angles evolutionary algorithm (MAEA). This section introduces the
MAEA, including the learning components (see Section 3.2.1) and learning procedure
(see Section 3.2.2).

3.2.1. Learning components. This subsection describes the main components of the pro-

posed MAEA, including coding, fitness evaluation, reproduction, multi-angles crossover
(MAC), and multi-angles mutation (MAM).

1. Coding. Encoding the adjustable parameters into a chromosome is the first issue of
evolutionary algorithms. In other words, the parameters of the TNFN are encoded
into a chromosome during coding. More specifically, the adjustable parameters of
fuzzy rules are translated into a chromosome to obtain the optimal solution. Ac-
cording to Equation (2), the adjustable parameters of a TSK-type fuzzy rule consist
of an antecedent part and a consequence part. Therefore, the parameters of the
antecedent and consequence parts are encoded into a chromosome. Figure 2 shows
the coding schema of a chromosome, where ¢ represents the ith input node in the

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7801

jth rule. The coding type of the chromosomes in the current study is a float point
type.

le ..+ WnR

|01, |11,)|0) ou(ml.j Ty "'|mnR Our|Wor| Wiy | *°

F1GURE 2. The coding schema of a chromosome

. Fitness Evaluation. The fitness evaluation is mainly used for computing for the
performance of each chromosome in the population. In other words, it is the main
process of the evolution because the fitness value plays an important role in deciding
if the optimal solution is found. A well-designed fitness value can help efficiently
evaluate the population. In the current study, the most well-known root mean square
(RMS) errors [44] are used to evaluate the performance of each individual because
they can robustly reflect the performance of the models. In other words, the fitness
function of the MAEA is designed according to the RMS errors. The fitness function
designed in the current study is given by

FitnessValue = = : (8)
>
i=1

!
Ti—T;

+1

n

where x; and x}, represent the ith output and the ith desired output of the TNFN,
respectively. As shown in Equation (8), the high FitnessValue indicates that the
outputs of the TNFN are close to the desired outputs.
. Reproduction. A reproduction keeps the chromosomes that perform well in each
generation [45]. More specifically, the chromosomes with high fitness value will
have more chances of surviving in the next generation than the chromosomes with
low fitness value. In general, the top half of the chromosomes in the population is
used to reproduce the chromosomes in the top half of the population in the next
generation, whereas the other chromosomes are generated using the crossover and
mutation. The concept of the reproduction is to sum up the fitness values of the top
half of chromosomes in the population and then compute for the fitness ratio of each
chromosome based on the summation of the fitness values. Then, the chromosomes
are reproduced according to the fitness ratio. In the current study, the roulette-
wheel selection is used to select the reproduced chromosomes because it is more
robust than other selection methods [45]. Then, the chromosomes with high fitness
ratio will reproduce more than the chromosomes with low fitness ratio, implying that
chromosomes with good performance have more chances of performing crossover and
mutation to generate the good offspring in the next generation.
. Multi-Angles Crossover. After performing the reproduction, the MAEA will per-
form the crossover to generate new chromosomes by exchanging the values between
the different genes of chromosomes. Exchanging the genes between two parents to
generate the offspring is the major task of the crossover [46]. In doing so, the new
combination of chromosomes will be generated in the next generation. In general,
the chromosomes in the top half of the population are used to perform the crossover
and to generate the chromosomes in the other half of the population, implying that
the crossover can seek the different combinations of the chromosomes that perform
well to find the optimal solution.

Even though the crossover offers the aforementioned benefits, only a single angle,
or a single action, can be used to perform the crossover. More specifically, the

7802

P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

crossover in the previous evolutionary algorithms only exchanges the genes that
were randomly selected [29-36,40,41]. In other words, there is no idea to consider
the fitness value to provide the different actions that are used to generate the range
of genes for generating the different combinations of chromosomes. More specifically,
using a random process to generate the searching range of genes may be difficult to
use for finding the optimal solution especially when the solution is near the optimal
solution. For instance, if chromosomes are near the optimal solution, they need to
search for the optimal solution in a small searching range. On the other hand, if
the chromosomes are far away from the optimal solution, they need to search for
the optimal solution in a large searching range. Thus, multiple strategies based
on the fitness value are necessary when performing the crossover. In doing so, the
evolutionary process can increase chances of finding the optimal solution.

Therefore, the proposed MAEA uses the multi-angles crossover (MAC) to consider
the fitness value when performing the crossover. The consideration of the fitness
value to provide different actions when performing the crossover is the main concept
of the MAC. More specifically, the MAC uses the fitness value of parent chromosomes
to determine the number of genes used to generate offspring in the next generation.
In doing so, the parents with low fitness value may seek the optimal solution by
exchanging many genes. On the other hand, the parents with high fitness value may
seek the optimal solution by exchanging a few genes. The details of the MAC are as
follows:

CrossoverSite; = Rand(chrLength) (9)
MaxCroPoints = chrLength x (MaxFitnessvalue — Fitnessvalue) (10)
CrossoverSites = CrossoverSite; + Rand(£MaxCroPoints)
CrossoverSites € [1, chr Length]

where
CrossoverSite; is the first crossover site used to perform the MAC.
CrossoverSites is the second crossover site used to perform the MAC.
Max Fitnessvalue is the maximal value of fitness value
(In this study, the MaxFitnessvalue is 1.00).

chrLength is the length of a chromosome.

(12)

MaxCroPoints is the range used to decide the C'rossoverSites.

As shown in Equation (10), MaxCroPoints and FitnessValue have an inverse re-
lationship, implying that the MAC can exchange many genes of the two parent
chromosomes with low performance to generate the offspring. On the other hand,
the MAC can exchange a few genes of the two parent chromosomes with high perfor-
mance (see Equations (9)-(11)). The current study adopts the two-point crossover to
exchange the genes between CrossoverSite; and CrossoverSite; from the two parents
[47]. Figure 3 shows the two-point crossover. The MAEA can robustly produce the
different combinations of the chromosomes according to their FitnessValue to seek
the optimal solution when performing the MAC.

. Multi-Angles Mutation. Even though the crossover can generate different com-

binations of the chromosomes by exchanging the existing genes, it cannot generate
a new value. In this case, the evolution may only depend on the initial value of
the chromosomes, and thus it may never find the optimal solution. Thus, attending
new values in existing chromosomes to extend the searching space for seeking the

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7803

CrossoverSite1 CrossoverSite2

My |01 |11151|O 51| ®*9 71 (T ;| @@ 5|0, 0l Wor | Wiq| W, | **Y Wi
A I
\J

01,0 (111105 ®*4 1705 |0 5 | ®4 /15| Tp| Wor | Wy | **4 Wy | **Y Wir

FIGURE 3. The two-point crossover

optimal solution is necessary. The mutation is a way to address such issue. The
mutation is mainly used for generating a new gene that replaces the existing gene in
chromosomes [48]. In doing so, the chromosomes can extend their searching space
to seek the optimal solution.

Aside from the MAC, the MAEA also uses the MAM to consider the fitness value
when performing the mutation and to provide an efficient way of performing the
mutation. Providing multiple strategies to adjust the searching space is the main
concept of the MAM. More specifically, the MAM can consider the fitness value not
only to determine the number of mutation genes but also to define the range values
used to update the mutation genes. In doing so, the searching space may self-adapt
according to the fitness value. For example, the chromosomes with low fitness value
may seek the optimal solution by considering many mutation points and updating
each mutation point using a large value range. On the other hand, the chromosomes
with high fitness value may seek the optimal solution by considering few mutation
points and updating each mutation point using a small value range. The details of
the MAM are as follows:

CurMazxMutPoints = MaxMutPoints x (FitnessRange)
FitnessRange = Max FitnessV alue — FitnessV alue
MutPoints = Rand(CurMaxMut Points)

MutSite, = Rand(chrLength),p =1,2,3,--- MutPoints
Chratusite, = Chrafussite, + MutValue

MutSite, = Rand(chrLength),p =1,2,3,--- MutPoints

where

MaxMut Points represents the predefined maximal mutation points.
CurMaxMutPoints is the maximal mutation points in current generation.
MutPoints is the number of mutation sites used to perform the MAM.

MutSite, is the pth mutation site of the mutated chromosome. (19)
Chripusite, is the MutSiteyth gene of the mutated chromosome.

RangeV alue is the predefined value related to the input space.

The aforementioned equations indicate that the MutPoints and FitnessValue have
an inverse relationship (see Equations (13)-(15)). Moreover, the MutValue and Fit-
nessValue also have an inverse relationship (see Equations (16)-(18)), implying that
the MAM can roughly adjust many genes of the chromosome with low performance
and finely adjust few genes of the chromosomes with high performance. In doing so,

7804 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

the MAEA can robustly adjust the parameters of the TNFN when performing the
mutation.

In summary, the proposed MAEA can contribute in the consideration of the different
angles for evaluating the chromosomes. More specifically, the crossover and mutation
processes are modified in the proposed MAEA. These processes were redesigned to meet
the proposed fitness value. The number of crossover points may be changed according
to the fitness value of an individual. The mutation point and mutated value may be
changed according to the fitness value of an individual. Details on the unique benefits of
each method are shown in Table 2.

TABLE 2. The unique benefits of the proposed MAEA

Features Benefits

MAC 1. Considers the multiple angles to perform crossover.

2. The individual with low fitness value may exchange many points
to find the optimal solution.

3. The individual with high fitness value may exchange a few points
to find the optimal solution.

MAE 1. Considers the multiple angles to perform mutation.

2. The individual with low fitness value may choose many points to
mutate to find the optimal solution.

3. The individual with high fitness value may choose a few points to
mutate to find the optimal solution.

4. The individual with low fitness value may mutate a point in a
large range to find the optimal solution.

5. The individual with high fitness value may mutate a point in a
small range to find the optimal solution.

3.2.2. Learning procedure. This section introduces the learning procedure of the MAEA
(see Equation (4)). As can be seen in Figure 4, the procedure of the MAEA consists of
eight steps as follows:

1. The initial population, which consists of several chromosomes, is generated based on
the coding schema (see Figure 2). Each gene of a chromosome is generated randomly
according to the predefined RangeValue.

2. The Fitness Evaluation is performed to evaluate the performance of each chromosome
in the population. In other words, Equation (8) is used to compute for the fitness
value of each chromosome.

3. The MAEA then judges if the evolutionary process is finished based on a predefined
criterion. In general, the criterion is defined according to a predefined generation
time or predefined desired fitness value [49,50]. In the current study, the predefined
generation time is used to judge if the evolutionary process is finished.

4. If the evolutionary process is not yet finished, the MAEA performs the reproduction
to keep the well performing chromosomes on the top half of the population.

5. After performing the reproduction, the MAEA then performs the crossover step.
More specifically, a rate will be generated randomly to judge if the crossover is
performed based on the predefined CrossoverRate. If the crossover is necessary, the
evolutionary process will continue to step 6; otherwise, it will skip to step 7.

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7805

6. If the random rate is greater than CrossoverRate, the MAC is performed. The
parents used for performing the MAC are chosen randomly from the top half of the
population.

7. The MAEA then performs the mutation step. Similar to the crossover step, a rate
will be generated randomly to judge if the mutation is performed based on the
predefined MutationRate. If the mutation is necessary, the evolutionary process will
go to step 8; otherwise, the evolutionary process will go back to step 2 until the
predefined criterion is reached.

8. The MAM is performed in this step. More specifically, the chromosome is selected
from the newly generated chromosomes randomly. Then, the MAM is performed
based on the selected chromosomes. The evolutionary process then goes back to

step 2 to evaluate the mutated chromosomes.
Step 1

FIGURE 4. Procedures of the MAEA

4. Tllustrative Examples. This section discusses the two simulations used for investi-
gating the performance of the proposed MAEA. In the first example, a simple chaotic
signal [51] is applied not only to investigate the benefits of the MAEA but also to demon-
strate the performance of each component. In the second example, a complex chaotic time
series [52] was applied to evaluate the robustness and efficiency of the proposed MAEA.

4.1. Prediction of a simple chaotic signal. In this example, a time series prediction
problem is used to evaluate the performance of the proposed MAEA. More specifically,
a simple chaotic signal related to a one-step-ahead prediction [51] is used to investigate
the performance of the proposed MAEA because such chaotic signal is easy to implement
and it can easily obtain a good prediction performance. Thus, the simple chaotic signal
can be used as a benchmark for evaluating not only the benefits of the MAEA but also
the performance of each component. The MAEA is used to train the parameters of the
TNFN, which is used to predict the chaotic signal. Thus, the chaotic signal should be
identified first. The function related to the chaotic signal can be described as follows [51]:

z(k+1) =azx(k)(1 —z(k)) (20)

According to Equation (20), the time series is generated based on the value of the
parameter 1. More specifically, the time series plays an important role in influencing the
generated time series. For instance, the system has a single fixed point at the origin when
T < 1. In this case, the time series becomes constant. On the other hand, the system
generates a periodic attractor when 7' > 3. Moreover, the system becomes chaotic when

7806 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

T > 3.6. In general, this example chooses T' of 3.8 for generating the chaotic signal [36].
Moreover, the first 60 pairs (i.e., (1)-z(60)), which are generated using the initial value
of 0.001 (i.e., (1) = 0.001), are used as the training patterns for modeling the TNFN.
The other 100 pairs (i.e., 2(1)-2(100)), which are generated using the initial value of 0.9,
are used as the testing data set to validate the well-trained TNFN.

In addition, deciding the predefined parameters of the MAEA has always been an issue.
Thus, the current study adopts a parameter exploration, which was first proposed by
De Jong [53], to decide the suitable predefined parameters. The parameter exploration
is useful when the dataset is not large. Thus, it is suitable for this example because
the dataset generated from Equation (20) is not large. For this reason, the parameter
exploration was applied to decide the predefined parameters of the proposed MAEA. More
specifically, the parameter exploration uses the different ranges of the value to evaluate
the performance of the MAEA and to judge if the value is suitable. For instance, the
number of fuzzy rules ranges from 3 to 15 in increments of 1, the number of chromosomes
in a population (population size) ranges from 10 to 120 in increments of 10, the crossover
rate ranges from 0.20 to 1.00 in increments of 0.05, and the mutation rate ranges from
0.0 to 0.3 in exponential increments. The other parameters of the MAEA are defined
similar to the procedures above. The parameters are defined according to the parameters
that can enable the MAEA to obtain the best fitness value in small generation times.
Table 3 shows the definition of the parameters of the proposed MAEA obtained after
performing parameter exploration. Even though the parameter exploration can provide
a systematic way for investigating the different ranges of each parameter, it may have
difficulties in deciding the benchmark of the range in each parameter. In other words,
performing parameter exploration is necessary for deciding the range of the parameters
of different applications. Thus, providing a self-adapting architecture can be considered
in future works to decide the suitable range of each parameter in the proposed MAEA.

TABLE 3. The predefined parameters of the MAEA

Parameters Value

The number of rules 4

The number of chromosomes in a population 30

The number of generation times 100
MazxMutationNum)
RangeValue for weight [1.500, —1.500]
RangeValue for membership functions [3.000, —3.000]
Mutation rate 0.3
Crossover rate 0.5

After deciding the parameters, the MAEA was then used to perform the evolutionary
process. The simulation was conducted for 30 runs and each run started with the same
initial parameters. The simulation was used to evaluate the performance of the proposed
algorithm in 30 runs. In doing so, reliable evidence on the performance of the proposed
MAEA was obtained.

Figure 5(a) shows the learning curves of the 30 runs performed using the MAEA. The
fitness value was translated to represent the RMS error [44] using the following equation
to easily investigate the performance of each learning curve:

RM Serror = (21)

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7807

As can be seen in Figure 5(a), each learning curve can reach the low RMS error, which
was close to 0.002, implying that the proposed MAEA can obtain good performance
in 30 runs. A tradition genetic algorithm (GA) [27] was compared with the MAEA to
further demonstrate the performance of the proposed MAEA. Similar to the MAEA, the
parameters of the traditional GA were defined using parameter exploration. Moreover,
the traditional GA was used to perform a simulation for 30 runs. Figure 5(b) shows
the 30 learning curves of the traditional GA. Comparing the learning curves in Figure
5(a) to those in Figure 5(b), the proposed MAEA was shown able to outperform the
traditional GA dramatically because the proposed MAEA can consider multiple angles
when performing the crossover (i.e., MAC) and mutation (i.e., MAM) processes, which can
adjust the search space and range according to the fitness value of chromosomes. Thus,
the MAEA can generate efficient candidate solutions. In addition, the learning curves in
Figure 5(a) decreased faster compared to those of in Figure 5(b), demonstrating that the
MAEA can increase its chances of searching the better solution in each generation using
the proposed MAC and MAM.

3 T T T T T T T T T 0.07

RMS errars
RMS errors

L L L L L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 G0 90 100 0 10 20 30 40 50 60 70 &0 90 100
Generations Generations

(a) (b)

FIGURE 5. The learning curves of (a) the MAEA and (b) the traditional GA

0.05

—+— Desired output
0.04

—— The output obtained by MAEA
1 F -

0.03F

0.02F

0.01F

Output
o
o

Error
=)
L g L

& 001F

-0.02-

-0.03-

-0.04 -

0 L L L L L L L L L 005 L L L L L L L L L
0 10 20 30 40 50 60 70 G0 90 100 0 10 20 30 40 50 60 70 &0 90 100

Time Time

(a) (b)

FIGURE 6. The testing prediction results (a) and errors (b) of the MAEA

7808 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

0.05

—#— Desired output
—=— The output obtained by the traditional GA 004r

0.03F
Dy @ #

0.02F

Mg MM e Bt
U_ -

-0.01F

08

06F

Qutput
Error

04
-0.02 -

-0.03-
02 &

-0.04 -

L L L L L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 &0 90 100 0 10 20 30 40 50 60 70 80 90 100
Time Time

(a) (b)

FIGURE 7. The testing prediction results (a) and errors (b) of the tradi-
tional GA

The testing results were investigated to further validate the argument stated above.
Figure 6 shows the testing results (see Figure 6(a)) and testing errors (see Figure 6(b))
between the desired outputs of the MAEA and the outputs obtained using the well-
trained TNFN. Figure 7 shows the testing results and errors of the traditional GA. As
can be seen in Figures 6 and 7, the MAEA outperforms the traditional GA, implying that
the proposed MAEA can adjust the parameters of the TNFN more efficiently than the
traditional GA.

In addition, the other existing well-known genetic algorithms mentioned in Section 2
[27,34-36,41] were compared with the MAEA to provide reliable evidence on the perfor-
mance of the MAEA. Similar to the MAEA, the parameters of the other algorithms were
defined using parameter exploration. Moreover, each algorithm was used to perform a
simulation for 30 runs. The simulation environment is shown in Table 4.

TABLE 4. The simulation environment

Equipment Dec.
CPU Intel Core 15 2.6GHz
RAM 4GB
oS Windows 7
Software Java (SE 6)
Mode Command mode

The aforementioned computing issues indicated that the proposed MAEA and the other
methods run in the standard framework for the simulation. In other words, the computing
results were run in a fair computing environment, implying that the proposed MAEA can
easily be implemented since it can be run in a common environment.

The performances of the compared genetic algorithms in the training step, including
the mean and standard deviation values of the RMS errors and CPU time are shown in
Table 5. As can be seen in the table, the MAEA outperformed the other algorithms.
Since the performance of the evolutionary algorithms proposed in [36,41] are close to the
MAEA, they are too complex to implement. Moreover, such evolutionary process is time
consuming. The results shown in Table 5 indicate that the MAEA not only spends smaller
CPU time but also obtains lower RMS errors than other algorithms.

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7809

TABLE 5. The performance comparison of various existing models

RMS errors (Training) RMS errors (Testing) CPU Time (Training)

Method Mean Deviation Mean Deviation Mean Deviation

(second) (second)
MAEA | 0.00098 0.00015 0.00103 0.00018 1.32 0.15
[27] 0.01042 0.003 0.01107 0.007 2.13 0.24
[34] 0.00663 0.0022 0.00684 0.0024 4.18 0.63
[35] 0.00418 0.0018 0.00446 0.0021 4.03 0.49
[36] 0.00174 0.00034 0.00191 0.00047 12.73 2.16
[41] 0.00151 0.00058 0.00163 0.00063 10.17 3.81

In short, the MAEA demonstrated higher performance than the other existing algo-
rithms via the MAC and MAM. More specifically, the MAC and MAM consider multiple
angles to perform the crossover and mutation to let the evolutionary process seek in not
only a large searching space or range when the solution is far away from the optimal
solution but also in a small space or range when the solution is near the optimal solution.
Thus, the MAEA performs better than other existing evolutionary algorithms.

Even though the aforementioned results indicate that the MAEA can robustly adjust
the parameters of the TNFN and obtain the highest performance among various exist-
ing evolutionary algorithms, only the whole MAEA is used to evaluate its performance.
In other words, each component of the MAEA, including the MAC and MAM, cannot
be evaluated independently. Therefore, the contribution of each component cannot be
demonstrated. Thus, the current study investigates each component of the MAEA to
demonstrate the performance of the MAEA.

Three types of models, including MAEA, MAEA-MAC, and MAEA-MAM, as shown
in Table 6, were used to evaluate the training and testing performances. The MAEA-
MAC adopts the traditional two-point crossover [47] instead of the proposed MAC in the
MAEA to exchange the genes between offspring. In other words, only the proposed MAM
was used to consider the multiple angles for mutating the chromosomes. The MSE-MAM
used the traditional unit mutation [58] to mutate the unit gene of a single chromosome.
Thus, only the proposed MAC was used in the crossover.

TABLE 6. The training and testing results of different components

RMS errors RMS errors CPU Time
(Training) (Testing) (Training)
Method Mean Deviation
Mean Deviation Mean Deviation
(second) (second)
MAEA 0.00098 0.00015 0.00103 0.00018 1.32 0.15
MAEA-MAC | 0.00117 0.00020 0.00126 0.00023 1.35 0.17
MAEA-MAM | 0.00131 0.00026 0.00143 0.00031 1.41 0.21

As can be seen in the training and testing results in Table 6, the MAEA-MAC out-
performed the MAEA-MAM. In other words, the MAC can obtain better performance
than the MAM because it uses the crossover as its main evolutionary process for finding
the optimal solution [54], and thus the modifications in the crossover step can obtain
much more benefits than those in the mutation step. However, as can be seen in Table 6,
the MAEA, which combines both the MAC and MAM, can obtain the best performance
among the three types of models. Thus, each component of the MAEA was shown to be
necessary in improving the performance of meeting optimal solution.

7810 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

Compared with other existing methods, the MAEA has the following features:

1. The MAEA can increase its chances of meeting the optimal solution because it uses
multiple angles for considering different strategies that can find the optimal solution.

2. The MAEA can reduce the evolutionary generations because it can seek the solution
efficiently. More specifically, the MAEA can explore in a large searching space when
the individuals perform poorly. Moreover, it can also reduce the searching space if
the individuals perform well.

3. The MAEA can obtain smooth learning curves because it can perform MAC and
MAM, which consider various candidate solutions efficiently. More specifically, the
MAC and MAM can explore large ranges of searching space when the candidate
solutions are far away from the optimal solution but they investigate in a small
searching space when the solutions are near the optimal solution. Such consideration
is helpful for evolutionary algorithms when considering various candidate solutions
that can find the optimal solution in the early stages. Moreover, the MAC and MAM
can also focus on particular potential solutions to meet the optimal solution in the
latter stages.

4. The population size of the proposed MAEA can be reduced because the algorithm
provides an efficient way of meeting the optimal solution, as shown in the parameter
exploration. Therefore, only few chromosomes are necessary to perform evolution.

4.2. Prediction of the chaotic time series. Even though the benefits of the MAEA
were demonstrated in Section 4.1, the example is too simple to demonstrate the robustness
and efficiency of the MAEA. Thus, in this section, another complex chaotic time series
problem, named the Mackey-Glass chaotic time series [52], is used to demonstrate the
robustness and efficiency of the MAEA. The following equation describes the function
related to such kind of chaotic signal.

de(t) 0.2z(t—7)
dt - 1+z9(t—7)
As shown in Equation (22), x(t) was considered to generate the chaotic time series

using the delay differential equation. The following equations were used to generate and
identify the input and output patterns [52].

Input Pattern = [x(t — 18),z(t — 12), z(t — 6), z(1)] (23)
Output Pattern = x(t + 6) (24)

— 0.1z(t) (22)

According to Equations (23) and (24), each training pattern consists of an input pattern
and an output pattern. The input pattern consists of four past values of z(t), and the
output pattern represents the value x(t + At), where At is a time prediction value. In
general, the chaotic time series can be generated using 7 = 17 and z(0) = 1.2 [36].
Moreover, the first 500 pairs (i.e., (1)-2(500)) are used as training patterns to model the
TNFN, whereas the other 500 pairs (i.e., (501)-2(1000)) are used as the testing data set
to validate the well-trained TNFN.

In this example, the normalized root mean square error (NRMS error) [55] was used to
evaluate the performance of the MAEA and provide reliable simulation results because
the NRMS error is a benchmark when evaluating the Mackey-Glass chaotic time series
[36,55]. More specifically, the NRMS error can be computed based on the RMS error.
The NRMS error can be calculated as follows:

N, 1/2
NRMSE - - iZ(Yl(HG) ~ Y4t +6)?| (25)

O t

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7811

where o, is the estimated variance of the data, N; is the number of the training data,
YA(t + 6) = z(t + 6) is the desired value, Y;(t + 6) is the predicted value obtained from
the model.

In addition, the parameter exploration shown in Section 4.1 was also applied to decide
the predefined parameters of the proposed MAEA (see Table 7). Moreover, the simulation
was conducted for 30 runs and each run started with the same initial parameters.

TABLE 7. The predefined parameters of the MAEA

Parameters Value

The number of rules 6

The number of chromosomes in a population 30

The number of generation times 300
MazMutationNum 9
RangeValue for weight [5.000, —5.000]
RangeValue for membership functions [2.500, —2.500]
Mutation rate 0.2
Crossover rate 0.4

Figure 8(a) shows the learning curves of the MAEA, where each curve can reach the low
NRMS error, which was close to 0.005, implying that the proposed MAEA can continue
its good performance when solving such complex problem. Moreover, the traditional
GA [27] was compared with the MAEA. Figure 8(b) shows the 30 learning curves of the
traditional GA, which further demonstrates that the proposed MAEA can outperform
the traditional GA dramatically since the MAC and MAM are helpful for improving
performance (see Figures 7(a) and 8(b). Moreover, the testing results of the MAEA (see
Figure 9) and traditional GA (see Figure 10) were investigated to further investigate the
argument stated above. As can be seen in Figures 9 and 10 the testing results of the
MAEA outperformed the results of the GA, implying that the MAEA performs robustly
and efficiently when solving different complex time series problems.

In addition, other existing well-known genetic algorithms (i.e., [27,34-36,41]) were com-
pared with the MAEA to provide reliable evidence on the aforementioned argument. The
performances of the compared genetic algorithms in both training and testing steps, in-
cluding the mean and standard deviation values of NRMS errors and CPU time are shown

0.035 T T T T T 0.08

0081
007
0.06F
0.05¢

U,Odi
T

0.03

NRMS errors
NRMS error

0.02F

! ! ! L L 0.01 ! L L L L
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Generations Generations

(a) (b)

FIGURE 8. The learning curves of (a) the MAEA and (b) the traditional GA

7812 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

0.05

—#— Desired output
—— The output obtained by MAEA | | 0.04 1

0031
0.021

00

001F -

-0.02F

Output
Errar

0.8

06

-0.03F
04r
-0.04

02 L ! ! ! ! L L L L 005 ! L ! L L L L L L
500 550 600 650 YOO 750 800 850 900 950 1000 500 550 600 650 FOO 750 800 @50 900 950 1000

Time Time

(a) (b)

FIGURE 9. The testing prediction results (a) and errors (b) of the MAEA

0.15

—#— Desired Output
—— The output obtained by the traditional GA | |

01F

0.05F

OQutput

Error
o
—

-0.05F

02 01
500 550 600 650 700 V50 800 850 900 950 1000 500 550 600 650 700 750 8O0 @50 900 950 1000
Time Time

(a) (b)

FIGURE 10. The testing prediction results (a) and errors (b) of the tradi-
tional GA

TABLE 8. The performance comparison of various existing models

RMS errors (Training) RMS errors (Testing) CPU Time (Training)
Method B
.. .. Mean Deviation
Mean Deviation Mean Deviation
(second) (second)
MAEA | 0.0038 0.00065 0.0041 0.00073 41.28 2.47
[27] 0.032 0.00684 0.041 0.00767 62.85 3.50
[34] 0.025 0.0091 0.034 0.0101 78.42 6.34
[35] 0.023 0.0083 0.029 0.0091 75.30 5.83
[36] 0.0089 0.0012 0.0093 0.0015 258.81 97.52
[41] 0.0076 0.0014 0.0082 0.0016 196.26 89.73

in Table 8. The MAEA not only spends smaller CPU time but also obtains lower NRMS
errors than other algorithms in both training and testing steps.

In summary, the proposed MAEA has higher performance via the MAC and MAM
than other existing evolutionary algorithms. Moreover, the MAEA is suitable for solving

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7813

different complex problems. In other words, the MAEA can robustly and efficiently adjust
the parameters of the TNFN to face different complex problems, implying that multiple
angles are useful for seeking the suitable searching space or range that can increase the
chances of meeting the optimal solution. Thus, the MAEA can obtain better performance
than other existing evolutionary algorithms.

4.3. Prediction of the sunspot number. The sunspot numbers from 1700 to 2004
exhibit nonlinear, non-stationary, and non-Gaussian cycles. In other words, the sunspot
numbers are complex and even difficult to predict [13], and thus they can demonstrate if
the proposed MAEA is suitable for practical applications. The input patterns used for
predicting the sunspot in the proposed MAEA can be described as follows:

zi(t) = y*(t — 1), wherei=1,2,3. (26)

where t represents the year and y?(t) is the sunspot numbers at the tth year. In this
example, the first 180 years (from 1705 to 1884) of the sunspot numbers are used as
training data set while the remaining 119 years (from 1885 to 2004) of the sunspot numbers
are used as testing data set. The simulation was conducted for 30 runs and each run
started with the same initial parameters. Figure 11 shows the learning curves of the
MAEA in 30 runs. As can be seen in the figure, each curve can reach the low RMS
error, which was close to 7.06, implying that the proposed MAEA can still keep reaching
the good performance when solving practical applications. Moreover, Figure 12 shows
the prediction results of the MAEA, further implying that the proposed MAEA can still
obtain robust and efficient results in such practical application.

40

35

RMS error

Generations

FicUurE 11. The learning curves of the MAEA in the prediction of the
sunspot number

In addition, similar to the previous two examples, other existing well-known genetic
algorithms (i.e., [27,34-36,41]) were compared with the MAEA to provide reliable evidence
on the argument that the MAEA is suitable for practical applications. The performances
of these compared genetic algorithms in both training and testing steps, including the
mean and standard deviation values of RMS errors and CPU time are shown in Table 9.
The MAEA not only spends smaller CPU time but also obtains lower RMS errors than
other algorithms in both training and testing steps. Moreover, two performance indices,
as shown in Table 10, were used to further investigate the training and forecasting error

7814

P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

200

180

160

140

& 120
& 100 X
3

O g |
60
40
20

mmmmmmmmmmmmmmmmm

HHHHHHHHHHHHHHHHH

30

20 +

.1||||||| Sl ~’|m:.!§.:
, ||lIII|I|||I|||||||||||I|liii||iiii||||||i|||||||||ii|||I|||I|||I|||I|||I|||I||||I|||I|||I |
_ Iii|i|||I|||I|||||||||||I||||I|||I|||I|||I|||I|||I||||I|||I|||I|||I|||I|||I|||I||||I|||I|||I

FIGURE 12. The prediction results (a) and errors (b) of the MAEA

TABLE 9. The performance comparison of various existing models in the

prediction of sunspot number

RMS errors (Training) RMS errors (Testing) CPU Time (Training)

Method —
. . . . Mean Deviation
Mean Deviation Mean Deviation
(second) (second)
MAEA | 5.43 0.46 5.78 0.73 93.57 3.53
[27] 28.37 3.35 32.78 4.12 143.54 6.83
[34] 19.51 1.86 20.94 2.23 257.13 8.72
[35] 14.76 1.31 16.78 1.76 216.87 9.69
[36] 11.86 0.95 12.57 1.12 398.59 25.46
[41] 9.12 0.83 10.36 1.03 363.74 19.57

TABLE 10. Training and forecasting error comparison of various existing

models in the prediction of sunspot number

Training error Forecasting error

Method Mean Deviation Mean Deviation
MAEA | 4.13 0.31 6.74 0.48
27] 12.92 1.87 18.76 2.05
34] 10.65 1.10 15.68 1.89
[35] 8.45 0.98 13.68 1.63
36] 7.83 0.86 12.58 1.05
[41] 7.12 0.81 11.96 0.98

of the aforementioned methods. The two performance indices are:

1884 | 4
t)—y(t
Training error: Z W
t=1705

2004 | g
1) —yl(t
Forecasting error: E M

119
t=1885

(27)

(28)

where y%(t) represents the desired sunspot numbers at the tth year and y(¢) indicates
the output of the MAEA at the tth year. Table 10 shows that the proposed MAEA can

obtain better performance in both of the training and testing cases.

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7815

In summary, this example demonstrated that the MAEA can be successfully applied to
practical applications because the performances of the predicted sunspots are better than
other existing models. Moreover, the MAEA can also reduce the time spent in seeking the
optimal solution, implying that the MAEA is helpful for not only increasing the chances
of meeting the optimal solution but also for reducing the time consumed.

5. The Development of the Framework. This study shows that the proposed MAEA
is a suitable algorithm for improving the performance of neuro-fuzzy networks by consid-
ering multiple angles to adjust the searching space and range. Moreover, it also indicates
that the MAEA can perform better than existing evolutionary algorithms. In brief, the
MAEA can be used to reach the objectives of the current study. Based on the results, a
framework was developed to provide a guideline for implementing the evolutionary algo-
rithm, which can apply multiple angles to increasing the chances of meeting the optimal
solution when constructing neuro-fuzzy networks. Figure 13 shows the details of the
framework.

I

| Multiple Angles Evaluation l
Evaluator Criterion

| I
I Traini‘ng Pfltt‘ems N Nelll‘D-fl‘l_ZZ}-' L E'(L‘rl?lti anary Mgl l
| Capturer networks Process I
! b
| Real l
l Applications
| I

F1GURE 13. The framework of the multi-angles evolutionary algorithm

As can be seen in Figure 13, the training patterns capturer is mainly used to capture the
input and output patterns, which are used to train neuro-fuzzy networks. The neuro-fuzzy
networks are mainly used to obtain the relationships between the captured input patterns
and the outcomes. The evolutionary process is used to help the neuro-fuzzy networks
find the optimal relationship between the captured input patterns and the outcomes.
More specifically, the multiple angles evaluator is mainly used to judge if the neuro-
fuzzy networks are good enough and the evaluation criterion is used to define multiple
angles, which are then used to adjust the searching space and range when performing the
evolutionary process.

After finishing the evolutionary process, the recorder is used to store the best solution
(e.g., the best combination of the parameters of the TNFN). The recorder saves the
fruitful results of the evolutionary process. Moreover, it can also help in the constructing
the neuro-fuzzy networks that are used to address real applications.

In summary, the framework is helpful for developing an architecture that can help
neuro-fuzzy networks meet the optimal solution. More specifically, the framework can
use multiple angles to adjust the searching space and range automatically and to let the
evolutionary process seek the optimal solution in a suitable searching space and range. In
doing so, the performance of the evolutionary process can be improved. Thus, the frame-
work can be treated as a benchmark when developing the feasible and robust evolutionary
algorithm for seeking the optimal solution of neuro-fuzzy networks.

7816 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

6. Conclusions. This study aims to develop a feasible and robust architecture to seek the
optimal solution when constructing neuro-fuzzy networks. Thus, the MAEA was proposed
to consider multiple angles when adjusting the searching space to improve the performance
of evolutionary process. Moreover, the MAEA was used to adjust the parameters of the
TNFEFN. As shown in the results, the MAEA can efficiently adjust the parameters of the
TNFN to find the suitable relationship between the input patterns and the outcomes
by considering multiple angles. Thus, a framework was proposed based on the results
to provide a guideline for the development of a novel architecture that can increase the
chances of meeting the optimal solution by considering multiple angles.

Even though the MAEA can efficiently seek the optimal solution by considering multiple
angles, some limitations should be considered in future works. More specifically, some
parameters of the MAEA, including the crossover and mutation rate, population size,
generation times, number of fuzzy rules, and value ranges should be predefined. Thus, an
automatic and robust way of defining such parameters is necessary. Besides, the MAEA
was only used to adjust the parameters of the TNFNs. The other issues of future works
need to apply the MAEA to other applications (e.g., neural networks [12], fuzzy controllers
[30], and stock predictors [3]) to demonstrate that the proposed framework is suitable for
various fields. Moreover, since the proposed MAC and MAM play important roles in
the MAEA, the manner by which the performance can be improved in future works is
necessary. For instance, the self-adapter architecture [39] may be used to automatically
decide the suitable point or updated value based on the performance of each individual.
In doing so, the performances of the crossover and mutation processes may be improved.

REFERENCES

[1] E. Frias-Martinez, S. Y. Chen and X. Liu, Survey of data mining approaches to user modeling for
adaptive hypermedia, IEEE Trans. SMC: Part C; vol.36, no.6, pp.734-749, 2006.
[2] C. J. Lin and Y. J. Xu, The design of TSK-type fuzzy controllers using a new hybrid learning
approach, International Journal of Adaptive Control and Signal Processing, vol.20, pp.1-25, 2006.
[3] J. Tan and C. Quek, A BCM theory of meta-plasticity for online self-reorganizing fuzzy-associative
learning, IEEE Trans. Neural Networks, vol.21, no.6, pp.985-103, 2010.
[4] S. K. Ng and H. J. Chizeck, Fuzzy model identification for classification of gait events in paraplegics,
IEEFE Trans. Fuzzy Systems, vol.5, no.4, pp.536-544, 1997.
[5] C.J.Lin, H. C. Chuang and Y. J. Xu, Face detection in color images using efficient genetic algorithms,
Optical Engineering, vol.45, no.4, 2006.
[6] J. Zhang and J. Morris, Neuro-fuzzy networks for process modeling and model-based control, IEE
Colloquium on Neural and Fuzzy Systems: Design, Hardware and Applications, 1997.
[7] J. Zhang, Modeling and optimal control of batch processes using recurrent neuro-fuzzy networks,
IEEFE Trans. Fuzzy Systems, vol.13, no.4, pp.417-427, 2005.
[8] G. G. Towell and J. W. Shavlik, Extracting refined rules from knowledge-based neural networks,
Machine Learning, vol.13, pp.71-101, 1993.
[9] S. Mitra and Y. Hayashi, Neuro-fuzzy rule generation: Survey in soft computing framework, IEEE
Trans. Neural Networks, vol.11, no.3, pp.748-768, 2000.
[10] Z. Zhang, H. Zha and M. Zhang, Spectral methods for semi-supervised manifold learning, IEEE Int’]
Joint Conf. on Computer Vision and Pattern Recognition, pp.1-6, 2008.
[11] C.Y.Hsu, Y. C. Hsu and S. F. Lin, Reinforcement evolutionary learning using data mining algorithm
with TSK-type fuzzy controllers, Appl. Soft Comput., vol.11, no.3, pp.3247-3259, 2011.
[12] D. B. Fogel, L. J. Fogel and V. W. Porto, Evolutionary methods for training neural networks, IEEE
Int’l Joint Conf. on Neural Networks for Ocean Engineering, pp.317-327, 1991.
[13] C. J. Lin and Y. J. Xu, A self-adaptive neural fuzzy network with group-based symbiotic evolution
and its prediction applications, Fuzzy Sets and Systems, vol.157, no.8, pp.1036-1056, 2006.
[14] S. H. Liao, H. H. Ho and H. W. Lin, Mining stock category association and cluster on Taiwan stock
market, Expert Systems with Applications, vol.35, pp.19-29, 2008.

[15]

USING MAEAS FOR TRAINING TSK-TYPE NEURO-FUZZY NETWORKS 7817

C. Hou, C. Hsieh, Y. C. Hsu and S. Y. Chen, Multiple considerations for identifying disorienta-
tion problems within web-based learning: A neural network approach, Asia-Pacific Conference on
Technology Enhanced Learning, 2011.

K. S. Narendra and K. Parthasarathy, Identification and control of dynamical systems using neural
networks, IEEFE Trans. Neural Networks, vol.1, pp.4-27, 1990.

C. F. Juang and C. T. Lin, A recurrent self-organizing neural fuzzy inference network, IEEE Trans.
Neural Networks, vol.10, no.4, pp.828-845, 1999.

H. Ishibuchi and M. Nii, Generating fuzzy if-then rules from trained neural networks: Linguistic
analysis of neural networks, IEEE Int’l Joint Conf. on Neural Networks, vol.2, pp.1133-1138, 1996.
H. Seki and M. Mizumoto, Fuzzy functional inference method, IEEE Int’l Joint Conf. on Fuzzy
Systems, pp.1-6, 2010.

B. Mendil and K. Benmahammed, Generalized adaptive defuzzifier, IEEE Int’l Joint Conf. on Fuzzy
Systems, vol.2, pp.1680-1683, 1998.

C. F. Juang and C. T. Lin, An on-line self-constructing neural fuzzy inference network and its
applications, IEEFE Trans. Fuzzy Systems, vol.6, no.1, pp.12-31, 1998.

J. S. R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Systems Man
Cybern., vol.23, pp.665-685, 1993.

F. J. Lin, C. H. Lin and P. H. Shen, Self-constructing fuzzy neural network speed controller for
permanent-magnet synchronous motor drive, IEEE Trans. Fuzzy Systems, vol.9, no.5, pp.751-759,
2001.

F. D. Zahlay, K. S. R. Rao and T. B. Ibrahim, A new intelligent autoreclosing scheme using artificial
neural network and taguchi’s methodology, IEEE Trans. Industry Applications, vol.47, no.1, pp.306-
313, 2011.

C. J. Lin, Y. J. Xu and C. Y. Lee, An efficient genetic algorithm for TSK-type neural fuzzy identifier
design, Int’l Conf. on Industrial and Engineering Applications of Artificial Intelligence and Fxpert
Systems, Lecture Notes in Artificial Intelligence, vol.3533, pp.551-553, 2005.

D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley,
MA, 1989.

J. K. Koza, Genetic Programming: On the Programming of Computers by means of Natural Selection,
MIT Press, Cambridge, MA, 1992.

L. J. Fogel, Evolutionary programming in perspective: The top-down view, in Computational Intel-
ligence: Imitating Life, J. M. Zurada, R. J. Marks IT and C. Goldberg (eds.), Piscataway, NJ, IEEE
Press, 1994.

I. Rechenberg, Evolution strategy, in Computational Intelligence: Imitating Life, J. M. Zurada, R.
J. Marks IT and C. Goldberg (eds.), Piscataway, NJ, IEEE Press, 1994.

C. L. Karr, Design of an adaptive fuzzy logic controller using a genetic algorithm, Proc. of the 4th
Int. Conf. Genetic Algorithms, pp.450-457, 1991.

C. J. Lin and Y. J. Xu, A novel genetic reinforcement learning for nonlinear fuzzy control problems,
Neurocomputing, vol.69, no.16-18, pp.2078-2089, 2006.

C. T. Lin and C. P. Jou, GA-based fuzzy reinforcement learning for control of a magnetic bearing
system, IEEE Trans. Systems Man Cybern. Part B, vol.30, no.2, pp.276-289, 2000.

C. F. Juang, J. Y. Lin and C. T. Lin, Genetic reinforcement learning through symbiotic evolution for
fuzzy controller design, IEEE Trans. Systems Man, Cybern. Part B, vol.30, no.2, pp.290-302, 2000.
F. J. Gomez, Robust Non-linear Control through Neuroevolution, Ph.D. Thesis, The University of
Texas at Austin, 2003.

C.J.Lin, Y. J. Xu and C. Y. Lee, A self-constructing neural fuzzy network with dynamic-form sym-
biotic evolution, Int’l Conf. Machine Learning; Models, Technologies and Applications, Las Vegas,
USA, 2005.

J. H. Holland, Adaptation in Neural and Artificial System, MIT Press, Cambridge, MA, USA, 1992.
R. E. Smith, S. Forrest and A. S. Perelson, Searching for diverse, cooperative populations with
genetic algorithms, Evol. Comput., vol.1, no.2, pp.127-149, 1993.

F. Gomez and J. Schmidhuber, Co-evolving recurrent neurons learn deep memory POMDPs, Proc.
of Conf. Genetic and Evolutionary Computation, Washington, DC, USA, pp.491-498, 2005.

C. J. Lin and Y. J. Xu, A self-adaptive neural fuzzy network with group-based symbiotic evolution
and its prediction applications, Fuzzy Sets and Systems, vol.157, no.8, pp.1036-1056, 2006.

M. Bowman, L. C. Briand and Y. Labiche, Solving the class responsibility assignment problem in
object-oriented analysis with multi-objective genetic algorithms, IEEE Trans. Software Engineering,
vol.36, no.6, pp.817-837, 2010.

7818 P.-C. HUNG, S.-F. LIN AND Y.-C. HSU

[41] C. J. Lin and Y. C. Hsu, Reinforcement hybrid evolutionary learning for recurrent wavelet-based
neuro-fuzzy systems, IEEE Trans. on Fuzzy Systems, vol.15, no.4, pp.729-745, 2007.

[42] C.J. Lin and Y. J. Xu, Efficient reinforcement learning through dynamical symbiotic evolution for
TSK-type fuzzy controller design, International Journal of General Systems, vol.34, no.5, pp.559-578,
2005.

[43] Y. Hao, Deriving analytical input & output relationship for fuzzy controllers using arbitrary input
fuzzy sets and Zadeh fuzzy AND operator, IEEE Trans. Fuzzy Syst., vol.14, no.5, pp.654-662, 2006.

[44] C. Reyes, T. Hilaire, S. Paul and C. F. Mecklenbrauker, Evaluation of the root mean square error
performance of the past-consensus algorithm, International ITG Workshop on Smart Antennas,
pp-156-160, 2010.

[45] Y. P. Zou, Z. K. Mi and M. H. Xu, Dynamic load balancing based on roulette wheel selection, Proc.
of IEEFE Int. Conf. Communications, Circuits and Systems, Guilin, China, vol.3, pp.1732-1734, 2006.

[46] P. M. Godley, D. E. Cairns, J. Cowie and J. McCall, Fitness directed intervention crossover ap-
proaches applied to bio-scheduling problems, Proc. of IEEE Int. Symposium on Computational In-
telligence in Bioinformatics and Computational Biology, Sun Valley, USA, pp.120-127, 2008.

[47] G. R. Raidl, G. Koller and B. A. Julstrom, Biased mutation operators for subgraph-selection prob-
lems, IEEE Trans. Evolutionary Computation, vol.10, no.2, pp.145-156, 2006.

[48] H.J. Lee, Y. S. Ma and Y. R. Kwon, Empirical evaluation of orthogonality of class mutation operator,
Proc. of IEEE Int. Conf. Software Engineering, pp.512-518, 2004.

[49] C. J. Lin and C. T. Lin, An ART-based fuzzy adaptive learning control network, IEEE Trans. Fuzzy
Systs., vol.5, no.4, pp.477-496, 1997.

[50] X. Xu and H. G. He, Residual-gradient-based neural reinforcement learning for the optimal control
of an acrobat, Proc. of IEEFE Int. Conf. Intelligent Control, pp.27-30, 2002.

[51] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent System,
Prentice-Hall, Englewood Cliffs, NJ, 1996.

[52] R. S. Cowder III, Predicting the Mackey-Glass Time Series with Cascade-Correlation Learning, D.
Touretzky, G. Hinton and T. Sejnowski (eds.), 1990.

[53] K. A. De Jong, Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. Thesis, The
University of Michigan, 1975.

[54] C. Pitangui and G. Zaverucha, Improved natural crossover operators in GBIVIL, Proc. of IEEE Int.
Conf. Evolutionary Computation, pp.2157-2164, 2008.

[55] J. H. Nie and T. H. Lee, Rule-based modeling: Fast construction and optimal manipulation, IEEE
Trans. Systems Man Cybern. Part A, vol.26, no.6, pp.728-738, 1996.

