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ABSTRACT. This paper presents a fast robust object segmentation method for segment-
ing the target object from a noisy image. First, an anchor-node identification process
is employed to select the representative nodes on object’s boundaries as shaping anchor
nodes (SANs) by performing a boundary-point detecting-sifting (BPDS) on SAN-based
scan-lines. Then, an adaptive-thresholding piecewise linking process, named SAN-based
piecewise shape linking (SPSL), is used to render a closed contour passing every SAN
for getting a precise profile for the image object targeted. When linking of the closed con-
tour fails for some SANs near weak-edge object boundary, the resultant disconnections
can be recovered by simply iterative refinement linking. Ezperiment results demonstrate
that the proposed method achieves more accurate object shape detection than other con-
ventional methods in noisy images under different light projections, while the required
process cost is not complicated. Such performance mainly comes from the tight coop-
eration of BPDS and SPSL for the object shape detection task. Consequentially, the
proposed object-segmentation method is drastically fast to offer proper object segmenta-
tion in moisy images.
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1. Introduction. Rapidly segmenting targeted semantic objects in images with various
cluttered backgrounds is a significant and critical stage in raising the application level
of image processing. In the early time, Kass et al. proposed the snake model [1], which
is a pioneer work in tracking the object boundary by exploiting the deformable active
closed curve. Yuen et al. [2] exploited the gradient detection using radiating scan lines
with fixed-angle from the estimated image center to detect the location of object border.
Thus, snaxel initialization can be automatically made up. This way, however, is not suited
to the image with targeted object having irregular inner structured shapes under noisy
background, where the image center may not be in the object body. So, some kernel-
based parametric active contour models were proposed to overcome the interference of
noise and background clutter [3]. Recently, some algorithms [4,5] focus on the accuracy of
edge detection in the object boundary in noisy images. The method proposed in [4] uses
the fuzzy topology to bias the filtered edges for allowing the use of larger gradient kernel,
making the derivative computation less sensitive to noises. Other machine learning based
approaches such as HMM [6], FCM [7], and neural network [8], were also proposed for
image segmentation; however, their computations are often time-consuming and complex
offline-learning parameters were required. Hence, most of the above-mentioned methods
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will not be suitable for efficient or online demand in large-scale image processing appli-
cations. The multi-segment algorithm [5] can drop the false detection resulted by noises
via checking the defined false alarm associated with the probability of gradients aligned
with a segment. For extracting the contour of object, the thresholding, the histogram
analysis, and the linking are frequently considered as basic units unified in obtaining
a systematical solution in image segmentation [9-11]. Based on a traditional algorithm
[12], the work in [13] proposed a sufficient combination of threshold segmentation and
sequential edge linking to extract the region of interest (ROI). Wang et al. [14] addressed
a graph-theoretic algorithm to obtain the perceptually-salient closed border contour by
completing the reductions about the setting of solid edge, detecting of alternate cycles, and
finding of minimum weight perfect matching [15-18]. However, nowadays, the speed and
the robustness to rapidly, automatically segment semantic objects out of noisy images are
much more issued. In this study, an efficient robust object-shape detection/segmentation
processing having high accuracies is proposed using BPDS and SPSL. Therefore, the seg-
mentation processing to efficiently highlight the shape of targeted object can be treated
as necessary and effective pre-processing in significant large-scale signal-processing sys-
tems such as content-based image database [22], object-shape classification [23], special
medical image [24], and highly-growing emerging 2D-to-3D video conversion [25] systems.
In [22], authors addressed a useful specific-purpose fuzzy retrieval system for a variety of
car shapes. The work in [23] addressed a neural-network based shape decision framework.
In the study [24], the authors aim to measure deformation fields for specified biological
tissues from non-rigid objects in MR images. Observing many existing image systems, to
adopt an appropriate efficient segmentation mechanism such as our proposed one, which
comprises BPDS and SPSL, thereafter, abbreviated as BPSL, does capably highly main-
tain or even promote the performance of subsequent applied/developed processes. The
BPDS can hierarchically and progressively collect an appropriated group of SANs. With
SANs on hands, BPSL performs SPSL to rapidly acquire a closed-contour with proper
object-boundary matching. Particularly, the threshold of high-pass filtered pixels can
automatically accommodate itself to the local circumstance around the pair of currently
selected SANs, by which SPSL links a piece of targeted object contour. Thus, such an
adaptive process is very naturally focused on the varying localized scope. The remain-
der of the paper is organized as follows. Section 2 presents the details of BPDS and
SPSL for BPSL, where an extended approach with regular implementation, an advanced
BPSL, is illustrated for coping with the possible complicated cases. Section 3 provides
the simulation results, while concluding remarks are given in Section 4.

2. The Proposed Method. The first stage of BPSL, BPDS, requires an initial user-
defined rectangle with simple mouse-dragging to roughly cover the area of target object.
Generation of such a rectangle is the only interaction related to the user. Within the rec-
tangle, SANs are searched and then linked to form an initial polygonal snake contour to
efficiently approximate the object-contour edges of interest. By progressively embedding
the single-backup in each of hierarchical stages, which will be detailed later, false-positives
and -negatives of selecting the linked nodes to accomplish the object-contour following
can be effectively suppressed. Because the uncertainties between desired features and
undesired ones always exist in a variety of images, stable, flexible and efficient initializa-
tion will be preferred and more applicable for other segmentation tools such as snakes.
Hence, the BPDS processing is to rapidly estimate limited shape representative positions
emerging likely boundary edge strengths on selective scanning lines. By definition, the
nodes at those positions, i.e., SANs, are the specific starting points for further contour
segmentation processing, such as the initial snaxels in snakes. The BPDS implementation
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comes from the concise postulation: For a line scanning through the object, the variation
of average edge strength across the object border (a boundary between two heterogeneous
regions, e.g., target object and background) shall be relatively distinguishable than that
across the inner of the same region. And, the edge strength of object border pixel is larger
than that of its neighboring pixels or the pixel of similar property observed.

The second stage of BPSL, the SPSL processing, is to accomplish the one-pixel bound-
ary curve extraction. With the SANs collected by BPDS, the possible contour repre-
sentative nodes, the SPSL processing proceeds to link the object contour piece-by-piece,
where each resultant curve segment between two adjacent SANs is regarded as a “linking
piece”. The SPSL contains a linked-node selection rule (LNSR) as well as three operations:
adaptive-thresholding, thinning, and directional region growing (DRG) to progressively
link and tailor each curve segment of the object shape. Particularly, most edge detection
algorithms associated with specific high-pass filtering will in effect encounter a critical
problem of determining suitable or relatively precise thresholds to verify “edge” pixels
on two occluded object’s boundaries. In our adaptive-thresholding, the filtered high-pass
outcomes of two adjacent SANs can provide significant references to set the threshold ap-
propriated to the pixels within an area bounded by these two SANs. Thus, the threshold
applied to the amplitudes of high-pass filtered pixels can automatically adapt according to
the varying local characteristics along tracking the object border. Then, by thinning and
DRG, one-pixel-width contour of targeted object can be revealed within a given area. For
faithfully recovering the disconnections possibly occurring on the output contour while
adopting the prototype BPSL, an iterative refinement linking proposed herein can be
further incorporated into BPSL as an advanced BPSL approach to precisely extract the
object contour. The procedures of BPDS and SPSL are individually described as the
following.

2.1. The BPDS procedure. The BPDS is a hierarchical and progressive procedure
from the analysis-unit level up to the scan-line level, as shown in Figure 1. The routine
of entire BPDS is depicted as follows.

Part 1. Composing the analysis units for the SANs acquisition. The initialization
of the edge analysis unit in terms of specific line fragments is composed by the following
two steps.

Step 1: A user-defined rectangle is first selected to approzimately cover the target object,
and a downsized rectangle is obtained by progressively trimming along its rims and by
iteratively checking the differences of quantized chrominance/luminance strengths nearby
the renewed rims. The downsized rectangle is then equally divided into four quadrants.
Step 2: Fach quadrant is individually scanned with horizontal and vertical scan lines
of even distance gaps. The fragments generated by those mutually orthogonal lines on a
scanning line are defined as the units (U) of this scanning line.

Generally speaking, to entirely and automatically range a proper area bounding the
desired object for segmentation is hard. Hence, in Step 1, the initial user-defined rec-
tangle is a roughly hand-selected (hand-marked) one. The trimming to obtain an initial
rectangle having higher object approximation can directly alleviate the background in-
terferences in the contour segmentation/extraction process. The proposed initialization
is semi-automatic with only a little aid from user interaction to make the analysis of
targeted object be effectively localized and bounded.

Part 2. Selecting edge-representative pixels in two levels. The selection of edge-
representative pixels is hierarchically, progressively performed by two-levels, given by:
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L

Ficurk 1. Flowchart of BPDS

Step 1: <the first level selection> On each unit (fragmented piece) along scan-line, find a
unit-representative pizel (URP), which has the mazimal edge-strength' (MES), and obtain
the edge contrast strength (ECS) of this MES by the calibration of edge-strength mean
(ESM) in this scan-line unit. The URP and ECS are obtained for all units along the scan
line (1). Assume that I(x,y) is the gray-level of the pizel at (x,y), and G(x,y) expresses
the high-pass result by the Sobel filter at coordinate (x,y), whose amplitude expressed by
|G (z,y)|, is used to measure the edge strength at (x,y). The MES, the URP, and the ECS
can then, respectively, be represented by

MES = max |G(z,y)], (1)
(z,y)eU
URP = {(x.)[|G(x, )| = MES}, and )
ECS = MES — ESM, )
where ESM = > |G(z,y)| /N, and N is the number of pizels within each unit U.

V(x,y)eU
Step 2: <the second level selection> Among the URPs of one scanning line, look for four
line-representative pizels (LRPs). The first LRP has the largest edge strength, and the
second LRP is the first’s “backup” having the second largest edge strength. Again, search
another type of LRP, where the third LRP has the largest ECS, and the fourth LPR is the
third’s “backup” having the second largest ECS. For the ith scan line, the coordinates and
the edge strengths, respectively, of its four LRPs constitute the URP-characteristic sets as

! The edge-strength could be evaluated by a widely-used edge detector such as Sobel operator in this
work.
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given by

(X, Y)7* = {(z,y) LRP(i,j),j = 0,1,2,3}, and (4)
A(X,Y)FRE = (G (2, y) LRP(i, §)|,j = 0,1,2,3}, (5)

where LRP(i, ) is the jth URP in the ith scan line.

Part 3. Determining SANs on scan lines. The SANs are regarded as the edge
seed points, which play the roles of sourcing nodes for linking the object boundary. The
acquisition procedure of SANs is described as follows.

Step 1: Among the four LRPs of each scan line, the pizel having the maximum absolute
x (ory) coordinate for the horizontal (or vertical) scan line is selected as the first-priority
line-representative pizel (FLRP). Then, a second-priority (the backup of FLRP) line-
representative pizel (BLRP) is set, which has the largest among all summations obtained
by adding the edge strength and the contrast strength together for other remaining three
LRPs, herein, whose locations need not be further considered.

Step 2: For every scanning line, examine whether the FLRP s located nearly on an edge
by comparing its detected-edge strength with a pre-determined threshold value, Teqge, and
if it is, the FLRP is nominated as a SAN. When the FLRP is identified not a close edge
pizel, the same test is then operated on its backup, the BLRP, as well. If the BLRP passes
the test, it will be considered as a SAN in substituting of the FLRP. Otherwise, no SAN
15 found in this scan line to support the initial contour position. Specifically, the condition
of pizel to meet the SAN requirement is given by

SAN € {(xay” |G(5an)FLRP| > Tedge or |G(5an)BLRP| > Tedge > |G(xay)FLRP|} (6)

It is noted that Part 2 and Part 3 mentioned above are performed one quadrant by one
quadrant. After performing the above steps, the set of SANs is obtained by (5) that these
SANSs are treated as the candidates of nodes identifying the object border.

2.2. The SPSL procedure. Without performing additional analyses of local image con-
tents about color, grey-level and texture contrast around each linking SAN, the transversa-
l-cut crossing the narrow zone of targeted object, making the resultant object profile be
truncated, will likely happen in linking those nodes, i.e., SANs, for a closed contour.
Hence, for simply avoiding the transverse cut (jump) across the object in exhibiting de-
fective object shapes, LNSR with two constraints in SPSL for capturing the actually
suitable linking nodes from SANs is proposed as follows.
<Constraint-1> Linking of the SANs will comply with the order of quadrants. So the
linking is not allowed to skip the next indexed quadrant when it progresses up to the bound-
ary of current quadrant unless the next indexed quadrant has no any SAN. In practice,
in searching the next anchor node near the border of the ith and (i + 1)th quadrants, the
SAN in the (i + 1)th quadrant adjacent to last SAN in the ith quadrant shall be covered
first without considering the SANs of the (i + 2)th and the (i + 3)th quadrants.
<Constraint-2> If the x-coordinate (or y-coordinate) of current linking quadrant is
smaller (larger) than that of its next indexed quadrant, the linking of current SAN will obey
the rule of monotonic x-coordinates (or y-coordinate) increasing (decreasing) to search
the next SAN with the shortest horizontal (or vertical) distance to current SAN. Con-
currently, searching the next SAN need not care about if the change of y-coordinates (or
x-coordinates) is positive or not.

Constraint-1 is illustrated by Figure 2, where the “m” SAN is linked to the “n” SAN
rather than the “k” SAN as the required linking direction is counterclockwise, although
the latter has a very short distance to the “m” SAN.
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i+l 1

FI1GURE 2. The linking of three given SANs under Constraint-1 of SPSL

Hence, Constraint-1 supports a simple yet effective means to segment the targeted ob-
ject without truncation of object’s portion. With the direct linking of SANs by above
two rules, a closed polygon can be obtained as one immediate approximation of targeted
object shape. The polygon could be linearly inflated from its center to become an initial
snake contour to start snakes evolution. By such initialization, one can effectively allevi-
ate the possibilities of initial snaxels falling within the targeted object and simultaneously
facilitate the rapid convergence of snake contour to the object border. In this study, with-
out performing any additional active model evolution, the latter of SPSL straightforward
achieves a perceptually nature contour for representing the object shape. The flowchart
of SPSL in acquiring one-pixel-width representative boundary curve is shown by Figure
3. With SANs on hand, SPSL performs detection and linking of the object contour frag-
ment by fragment to obtain a one-pixel-width representative boundary of the object. The
SPSL processing mainly includes adaptive-threshold truncation, thinning, and directional
region growing, which is shown as follows.

Step 1: Set either clockwise or counterclockwise direction as the tracking direction. And
then pick a SAN, whose x (ory) coordinate is the maximal/minimal, as a piecewise-linking
start point (PLSP).

Step 2: Along the tracking direction, search the SAN closest to PLSP as the piecewise-
linking end point (PLEP). Ezxploit the current PLSP and PLEP as the diagonal corners
of a rectangular mask in covering the pixels between them. And then, perform high-pass
filtering using the Sobel filter throughout the pixels within this mask.

Step 3: An adaptive threshold is set as the distance-dependent weighting sum of high-pass
filtered results of the PLSP and PLEP. The adaptive weights are inversely proportion to
the distances of the two terminal points, the PLSP and the PLEP. Through truncation by
thresholding, the filtered grey-level ptigerea(x,y) at (x,y) lying between the PLSP and the
PLEP, whose high-pass filtered results are pfiered(Ts, Ys) and priered(Te, Ye), respectively,

becomes plfz'ltered(x ,y) by

17 if pfiltered(ma y) Z wpfiltered(l‘m ys) + (1 - w)pfiltered(l‘ea ye) -0 (7)

plfiltered(m’y):{ 0, otherwise
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FiGURE 3. Flowchart of the SPSL processing

where Plriyerea(t,y) = 1 indicates that the position (v,y) is a contour candidate, w =
(2—e)® +(y—ye)”

V(a—z:)*+y—ys)*+V/ (0—2e) +y—ye)>
deviation of filtered SAN grey levels.

Step 4: Perform the thinning processing [21] on all contour candidates in the rectangular
mask with corners specified by currently paired PLSP and PLEP. If a one-pixel width curve
with terminals points, i.e., current PLSP and PLEP, can be directly obtained, the SPSL
proceeds to Step 5. Otherwise, the one-pizel width segment connection will be performed
by DRG from the breaking point of the curve stretched by current PLSP to that by current
PLEP.

Step 5: If the current PLEP equals or adequately approximates the first PLSP, the SPSL
stops. Otherwise, let the current PLEP act as the new PLSP and the SPSL proceeds to
Step 2 to build the next object-contour segment.

In (7), wpritterea(Ts,ys) + (1 — w)Pritterea(Te, Ye) is a complementary sum, where w is
naturally adaptive according to the distances from the PLSP and the PLEP. In Step 4,
because the PLEP is kept as the aim in every rectangular mask with diagonal corners of
PLSP and PLEP pair, by DRG, the region growing to link two close breaking fragments
can be easily obtained under an easy direction control. Unlike traditional region growing,
the DRG processing merely has to determine the nearest one from three neighboring
points in the direction of the PLEP among the 8-connectivity neighbors of the current
linking node as the next linking node. The selection of three neighboring points from
8-connectivity points will depend on the relative orientation (the located quadrant) of the
target point vs. the current linking (the referred origin) node so that the three points are

and ¢ is an empirical value associated with the standard




6910 D.-Y. CHAN, R. C. HSU, T.-Y. CHIU AND C.-C. LIN

limited as one of 4 corners in the 3 x 3 block centered at the current linking node. Thus, by
the directional pixel growing, the connection of breaking curves in a limited area (between
PLSP and PLEP), where the edges may be strength-inconsistent, inadequate, or messy,
is efficient. Therefore, with the effect of adaptive thresholding in Step 3, progressively
connecting object-contour segments for a representative one-pixel-width object profile can
be easily completed without taking care of possible troublesome branching.

2.3. Extension to an advanced SPSL approach for complicated cases. Because
the abovementioned SPSL is a one-pass linking processing, linking partial pairs of PLSPs
and PLEPs might not be successful for complicated cases, for example, that the target
surface has high complex variations or non-uniform light projections. So, if necessary, the
SPSL need to be extended as an advanced BSPL, abbreviated hereafter as ABSPL, to
solve this problem. The ABSPL procedure can be easily attained by straightforwardly
modifying BPSL as a BPSL approach of recursive type with a regular structure. The
ABSPL proposed herein is a multi-pass recursive algorithm depicted by two stages as
below.

<Stage 1> After SPSL, the localized focus regions covering every two disconnected SANs
in the pieces of extracted contour are re-scanned with higher scan-line resolutions. In a
focus region, by performing BPDS, two new modified SANs are then found to replace the
pair of the unsuccessfully-linking SANs in the previous pass, and the higher-resolution
SANs between the above two SANs are also yielded.

<Stage 2> Operate SPSL on the new SANs to connect every disconnected piece. Check
whether there are still disconnected pieces or not in the extracted contour. If it does, go
to Stage 1 to perform the next pass of ABSPL once-more in contracted focus regions.
Otherwise, a closed contour achieved by ABSPL 1is identified for representing the shape of
target object.

Because the refinement in ABSPL is localized and its iteration is hierarchical based
on fast increased scan-line resolution of SPSL, the incurred computational cost relative
to BPSL is very limited yet can be traded for a rather trustworthy performance gain.
In short, ABSPL can efficiently correct the partial errors and raise the precision for the
segmented outcome resulting from BPSL.

2.4. Discussions. For simplicity, the contour representative (initial boundary) SANs,
which are obtained by the BPDS with LNSR-based selection, can be directly linked up
to acquire a polygon to approximate or characterize the object profile. Alternatively,
the precision (accuracy) increase of image segmentation can be traded with the compu-
tational speed for making the results of BPSL less conservative. Herein, we enumerate
two approaches. The first approach is to modify the original scheme “BPDS + SSPL”
as “BPDS + (texture-dependent SSPL)”, and the second is “BPDS with (LNSR-based
selection) + snakes”. The former additionally includes an online verge-texture judgment
along SSPL to drop the weak SAN candidates. In the latter approach, the processing of
BPDS with LNSR-based selection, plays the role of automatically picking up initial snax-
els for performing Snakes [1,19], within a given target zone. This can enable the evolving
snake contour be more promptly and accurately converged over traditional snakes [1]
without specific initialization. In short, due to the high convenience of modification or
combination-variation for specified improvements, our proposed scheme, BPDS + SSPL,
could be considered as a new basic image-processing function just like “opening” and
“closing” morphological functions for object contour segmentation.

3. Experimental Results. Here are the experimental results of this study.
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3.1. The results of initial boundary SANs obtained by BPDS + (LNSR-based
selection). In this study, four artificial images, which are two round object image with
different levels of noise, a U-shape object image with noise, and the blurred image of the
noisy round object image, are created and shown in Figure 4(a), Figure 4(b), Figure 4(c),
and Figure 4(d), respectively, to first evaluate the performance of BPDS + (LNSR-based
selection). The nodes obtained by the BPDS + (LNSR-based selection) can be simply
connected as a approximated object-profile polygon, which could be further processed
by either snake evolution or the SPSL. So, they are named initial boundary SANs or
contour representative SANs. Because the position of true edge points are known when
the artificial images of round object and U-shape object are created, these images can be
used to test the accuracy and error rate of the SANs selected by BPDS and the contour
extracted by the SPSL. To test the robustness and effectiveness of the proposed method

()

FIGURE 4. Experimental results of SAN selection by the BPDS and snaxel
imitialization of the method of Yuen et al. Artificial images of a round
object with noise (a) SNR = 23.8dB and (b) 20.3dB, (c) a U-shape object
with noise, and (d) a blurred image of the noisy image in (b). Figures 4(e)-
4(h) are the BPDS results of the image in (a), (b), (¢), and (d), respectively.
Figures 4(i)-4(1) are the results of the method of Yuen et al. for the image
in Figures 4(a)-4(d), respectively.
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under noise influence, different levels of zero mean white Gaussian noise are added to the
original artificial images of the round and U-shape object as,

I,=1,+ N(0,0), (8)

where I, is the original image, N(0,0) is a White Gaussian noise with zero mean and
variance o, and I, is the noise-corrupted image. The signal-to-noise ratio of the noisy
images of Figrue 4(a), Figure 4(b), and Figure 4(c) is 23.9dB, 20.3dB, and 20.3dB, respec-
tively. The blurred image of round object in Figure 4(d) is created by smoothing the noisy
round object image of Figrue 4(b) with a 3 x 3 window, which is used to evaluate how well
the proposed method can find out the initial snaxels and exact contour for image under
blurred effect. The experimental results of SAN selection by the first stage of BSPL, the
BPDS, are compared with the method of Yuen et al. [2]. In the method of Yuen et al.,
the center of gravity of the tested image is first computed and scan lines, whose number
is in power of 2, with equal degrees are emitted from the center of gravity to search the
most distant point with the largest high-pass filtered magnitude, i.e., the candidate initial
snaxel, along the scan line. Figures 4(e)-4(h), respectively, show the BPDS results of the
round object image with noise SNR = 23.9dB in Figure 4(a) and SNR = 20.3dB in Figure
4(b), the U-shape object image with noise SNR = 20.3dB in Figure 4(c), and the blurred
image of the noisy round object image of Figure 4(b) in Figure 4(c), while Figures 4(i),
4(j), 4(k), and 4(1), respectively, show the snaxel initialization results of Yuen’s method
for the images in Figures 4(a)-4(d). Visual inspection shows that most of the SANs found
by BPDS for four test images are fitted to the curvature and distance of the artificial
image’s contour which constitutes a better definition of contour pixel initialization than
the method of Yuen et al., where some false initialization of contour pixels are obtained
and spread far off the boundary of the test images.

To quantitatively compare the accuracy of BPDS and the method of Yuen et al., the
true positive, which is defined as the ratio of true detected initial boundary pixels to total
detected initial boundary pixels, is used as the comparing parameter and Table 1 shows
the results.

According to Table 1, the BPDS obtained better accuracy in selecting initial boundary
pixels than the method of Yuen et al., for all four artificial images. The BPDS significantly
outperforms the comparing method especially for the artificial noisy U-shape object im-
age. This can be understood that our proposed BPDS method searches possible SANs

TABLE 1. Accuracy comparison of the BPDS and the method of Yuen et
al. of the initial boundary pixel selection in terms of true positive, i.e., true
detected initial boundary pixels/total detected initial boundary pixels

Method
The BPDS | Method of Yuen et al.

Image
A round object image with 30/34 = 88.2% 22/32 = 68.7%
noise, SNR = 23.9dB
A round object image with 28/34 = 79.4% 19/32 = 59.3%
noise, SNR = 20.3dB
A U-shape object image with |28/34 = 82.3% 11/32 = 34%
noise, SNR = 20.3dB
The blurred image of the noisy | 25/34 = 73.5% 8/32 = 25%
round object image with SNR
= 20.3dB
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TABLE 2. Statistical comparison of the initial boundary pixels selected
by the BPDS and method of Yuen et al. in terms of mean distance and
standard deviation between each pair of selected neighboring boundary pix-

els
Method Meth f
etho BPDS ethod o
Images Yuen et al.

Parameter d o

A round object image with |15.24|3.26 |21.08 | 5.12
noise, SNR = 23.9dB

A round object image with | 16.7 |3.63|27.14 | 6.57
noise, SNR = 20.3dB

A U-shape object image with | 21.86 | 8.92 | 39.67 | 21.25
noise, SNR = 20.3dB

The blurred image of the noisy | 17.31 | 4.21 | 21.13 | 4.19
round object image with SNR
= 20.3dB

|
Q

within each unit along both horizontal and vertical scan-lines with the weak edge evidence
screening and supporting such that the initial boundary pixels can be robustly detected
even for object of irregular shape with noise. On the other hand, the method of Yuen et al.
first computes the CoG of image and then searches the initial snaxels along the scan-lines
emitting from the CoG such that it might fail to detected some boundary pixels when
the CoG is not inside the object for object with irregular shape and deep concavities,
such as the U-shape object. To evaluate the relative locations of initial boundary pixels
selected by the BPDS and the method of Yuen et al., and further evaluate their influence
on the convergence of snake, mean distances, d, and standard deviation, o, between each
neighboring initial boundary pixels are computed as shown in Table 2 for four artificial
images. The values of mean distance and standard deviation of each pair of neighboring
boundary pixels selected by the BPDS are far smaller than these of the method of Yuen
et al., which indicates that the initial boundary pixels selected by BPDS are evenly and
closely located around the boundary of the object. By inspecting Figure 4 and Table 1,
and Table 2, one can find that Yuen et al. method searches farthest edge pixels along
each angle-fixed scan-line; hence it lacks flexibility and is easily affected by noise. The
BPDS on the contrary finds the initial boundary pixels by searching the scan-lines along
both the horizontal and the vertical direction with a hierarchical screening and supporting
concept, which leads to better accuracy in selecting initial boundary pixels.

To further demonstrate the influence of the set of initial boundary pixels, selected
by the BPDS and by the method of Yuen et al., in obtaining a closed object contour,
the initialization results are further utilized for running snake. In executing snake, the
locations of initial boundary pixels are gradually changed and controlled to close to the
object contour; therefore the closer the selected initial boundary pixels are to the real
object contour, the faster the snake converges and the higher the precision for the closed
contour extracted with respect to the object’s real contours. The extracted contour of
snake utilized the initial boundary pixels, i.e., SANs, selected by BPDS and the method
of Yuen et al. for the four artificial images as shown in Figure 5. The first and second
rows of Figure 5, respectively, show the snake results utilizing the initial boundary pixels
obtained by the BPDS and the method of Yuen et al. for the four artificial images.



6914 D.-Y. CHAN, R. C. HSU, T.-Y. CHIU AND C.-C. LIN

(h)

FIGURE 5. Snake result of four artificial images using initial snaxels selected
by BPDS and by the method of Yuen et al. Snake results of noisy round
object image with SNR = 23.9dB (a) and 20.3dB (b), noisy U-shape object
image (c), and the blurred noisy round object image (d) using BPDS se-
lected SANs. Snake results of noisy round object image with SNR = 23.9dB
(e) and 20.3dB (f), noisy U-shape object image (g), and the blurred noisy
round object image (h) using initial snaxels selected by the method of Yuen
et al.

Experimental results again demonstrate that the object contour extracted by snake for
the four artificial object images utilizing the initial boundary pixels, i.e., SANs, selected
by BPDS is much closer to the real object’s contour than those of the Yuen et al. method
because a lot of the initial boundary pixels selected by the method of Yuen et al. are far
from the true boundary such that an expanded closed object contour with extrusion is
obtained when the snake converges.

To quantitatively compare the influence of the set of initial boundary pixels, selected
by different initialization methods, in obtaining a closed object contour by the snake, the
false positive is used as the comparing parameter and is defined as the ratio of the number
of false detected initial boundary pixels to the number of total detected boundary pixels.
The results of false positive of the four comparing methods for the four artificial images
are shown in Table 3. According to Table 3, the BPDS have the smallest false positive
than the method of Yuen et al. for extracting a contour by running the snake for the four
artificial images.

3.2. SAN-based piecewise shape linking (SPSL) results. To investigate the ac-
curacy and effectiveness of SPSL for contour linking, experimental results of SPSL, the
conventional snake, and two other snake methods (GVF snake [26], NGVF snake [27])
for the four artificial images in Figure 4 are first compared using the same set of initial
boundary pixels selected by the BPDS as in Figures 4(e)-4(h). Figure 6 shows the results
of contour linking, for the four artificial images by the BPDS and other snake methods.
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TABLE 3. False positive of the extracted contours by the snake (i.e., the
number of false detected initial boundary pixels/the number of total de-
tected boundary pixels) using initial boundary pixels selected by different
methods for the two artificial images

Initialization Method
BPDS Method of Yuen et al.

Image
A round object image with noise, | 19/564 = 3.36% 337/564 = 59.7%
SNR = 23.9dB
A round object image with noise, | 21/564 = 3.7% 374/564 = 66.3%
SNR = 20.3dB
A U-shape object image with| 68/628 = 10.8% 472/628 = 75.1%
noise, SNR = 20.3dB
The blurred image of the noisy | 104/564 = 18.4% 395/564 = 70%
round object image with SNR =
20.3dB

The first row of Figure 6, Figures 6(a)-6(d), respectively, demonstrates the contour ex-
tracted for the artificial noisy round object image with SNR = 23.9dB, 20.3dB, noisy
U-shape object image, and the blurred noisy round object image by the SPSL, while the
2nd, the 3rd, the 4th row of Figure 6, respectively, show the contour linking results of the
four artificial images by the conventional snake, GVF snake and the NGVF snake. Exper-
imental results of Figures 6(a)-6(d) exhibit that the SPSL links the real object boundary
piece-by-piece in constructing an accurate closed object contour matching to the object’s
true contour with better precision than other snake’s methods with which there are some
detected pixels deviating from the true boundary.

Table 4 shows the quantitative comparison in terms of true positive by testing SPSL
and different snake methods utilizing the initial boundary pixels selected by the BPDS
for the four artificial images. The true positive is defined as the ratio of the number
of true detected boundary pixels to the total number of detected boundary pixels. By
examining Table 4, the true positives of contour extraction result by SPSL are in com-
parable with that of NGVF but are 2 ~ 4% better than those of conventional and GVF
snake methods. It again demonstrates the advantage of SPSL in integrating the adaptive-
thresholding, thinning, and directional region growing for contour linking, which provides
more local structure information when compared with snake methods, which relies on
energy-minimizing spline guided by internal forces and attracted by external forces in
determining contour evolution.

3.3. BPSL results. To finally demonstrate the effectiveness and efficiency of the BPSL
in contour extraction for real images, the BPSL are applied to several real world images
and the extraction results of those real images for are shown in Figure 7. Figure 7(a)
and Figure 7(b), respectively, show the image of an skyscraper and a noisy vase image
with SNR = 26.4dB, while Figure 7(c) and Figure 7(d), respectively, show the image of
two object image from regions of interest in medical image. Figures 7(e)-7(h) shows the
results of the proposed BSPL, i.e., BPDS + SPSL, for the four real world images. By
examining on the contour extraction results of Figure 7, one can see that the closed object
contour of each image is extracted by BPSL. Visual inspection of Figures 7(e)-7(h) again
exhibits that BSPL performs well for real images even the image is corrupted with noises.
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FIGURE 6. Experimental results of SPSL, in comparison with the results of
the conventional snake, GVF snake, and NGVF snake for the four artificial
images using the same SANs detected by the BPDS in Figures 4(e)-4(h).
Figures 6(a)-6(d) the contour linked by SPSL, Figures 6(e)-6(h) the contour
obtained by the conventional snake, Figures 6(i)-6(1) the contour obtained
by the GVF snake, and Figures 6(m)-6(p) the contour obtained by the
NGVF snake.
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TABLE 4. Quantitative comparison in terms of true positive (i.e., the num-
ber of true detected boundary pixels/the total number of detected boundary
pixels) for SPSL and different snake methods utilizing the initial boundary
pixels selected by the BPDS for the four artificial images

Method SPSL Snake GVF snake | NGVF snake
Image
Round object (with  [553/564 = 98.04%[545/564 = 96.63%547/564 = 96.98%] 555/564 = 98.4%
SNR = 23.9dB)
Round object (with  [550/564 = 97.51%543/564 = 96.21%[531/564 = 94.14%547/564 = 96.98%
SNR = 20.3dB)
U-shape Object 572/628 = 91.08%[560/628 = 89.17%]567/628 = 90.28%[576/628 = 91.71%
Blurred round object [81/564 = 85.28%[460/564 = 81.56%/468/564 = 82.97%475/564 = 84.21%

(f)

FIGURE 7. (a) A real image of a skyscraper. (b) A noisy vase image with
SNR = 26.4dB. (c¢) medical object image (1), (d) medical object image (2).
(e), (f), (g), and (h), respectively, show the contour extraction results for
image object in (a), (b), (c), and (d).

4. Conclusions. A robust contour extraction method denoted as BPSL is proposed in
this study. The BPDS and the SPSL are two main ingredients of BPSL that both meth-
ods appear simple yet effective in practical implementation for object contour extraction.
Through the BPDS, a polygon given by resulted SANs can be obtained to roughly ap-
proximate the profile of a targeted object. The SANs obtained by the BPDS can act as
the fixed boundary-tracking points for the SPSL or alternatively as the initial snaxels for
the snake processing to further precisely delineate the object shape for a closed object
contour. The consecutive integration of the BPDS and the SPSL offers a solid construc-
tion in tracking object’s boundary. The high-pass filter responses of SANs can provide
quite valuable references in the thresholding of edge-detection. Experimental results of
the BPDS is compared with that of an existing snake initialization method, which exhibits
that under the same corrupted noises, the BPDS finds out better initialization of snaxels
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and the SPSL obtains a final closed contour for image object with a higher definition
of contour than several snake methods, and most importantly that the BPSL converges
faster than the existing methods of snake. Consequentially, the main advantages of the
proposed object contour extraction are having low computational complexity and with
robustness in accomplishing immediate object-segmentation from noisy images. However,
up to now, the popularity of content-based image database is still limited by the speed of
identifying object in region of interest (ROI). Hence, the BPSL function could be a quite
useful pre-processing apparatus to identify the shape of ROI for multimedia applications.
Due to the high regular and concise structure, the BPSL processor is hardware-efficient.
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