
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 11, November 2012 pp. 7819–7828

DSM: A DATA SERVICE MIDDLEWARE FOR SHARING DATA
IN PEER-TO-PEER COMPUTING ENVIRONMENTS

Sofien Gannouni, Mutaz Beraka and Hassan Mathkour

Computer Science Department
College of Computer and Information Sciences

King Saud University
Riyadh 11451, Kingdom of Saudi Arabia

{ gnnosf; mathkour }@ksu.edu.sa; mutaz999@hotmail.com

Received July 2011; revised February 2012

Abstract. The advances in network computing models evolve the way people share their
resources. The file sharing is a peer-to-peer (P2P) computing model that allows users to
share and exchange files. However, it does not meet the growing need of sharing existing
widespread data-sources. During the last decade, many research and development efforts
have been deployed pertaining to proposing approaches for accessing remote, heteroge-
neous and autonomous data sources. We propose a middleware that allows non-expert
users to share and integrate their data. Data are export and deployed as services. As
such, they are easily discovered, uniformly accessible using standard SOAP requests and
would be integrated through service composition. This paper focuses on the description
of the architecture of the proposed middleware.
Keywords: Data sharing, Data service approach, Data service layer, UDDI registry,
Service composition

1. Introduction. Sharing and integrating existing autonomous, distributed and hetero-
geneous data sources allow companies and individuals to gain a holistic understanding
of data. They have been recognized as of a great importance to small and huge-scale
businesses. Enhancing the accessibility and the reusability of these data entails the de-
velopment of new approaches for data sharing. In the literature, different data shar-
ing approaches have been investigated and applied in different computing environments.
These approaches vary in terms of concepts and technology standards. The most widely
known data sharing approaches are transaction processing monitor [1,2], tuplespace [2,3],
resource description framework [2,4] and data service layer (DSL) [2,5].

Service-oriented computing has emerged as the eminent distributed computing model
for developing reusable loosely coupled service-centric business applications [6,7]. DSL
provides a uniform view of the data in an SOA-based system. It is responsible for ac-
cessing structured, semi-structured and un-structured data sources using Web services or
representational state transfer (REST) style Web services. The main advantage of this
approach is that it reduces the complexity of developing new applications that integrate
data from several data sources [5,8-10].

As the data service layer is a key factor for a successful development of SOA-based
systems various DSLs propose different mechanisms for achieving efficient data access.
Most of the existing DSLs, e.g., [11,12], are dedicated to single site users and do not
satisfy the need of users to access efficiently data at different locations. Some prototypes,
e.g., [13,14], develop solutions for efficient distributed data access, but they do not consider
their users as peers. Implementations of DSL prototypes for Peer to Peer (P2P) computing

7819



7820 S. GANNOUNI, M. BERAKA AND H. MATHKOUR

environment are rare and almost nonexistent. In addition, existing systems, e.g., [15], do
not provide a comprehensive and complete solution for P2P data sharing.
In this paper we present a simple yet efficient data service layer that provides access

to heterogeneous data sources. We propose to export Databases, Excel files, XML files,
CSV files as Services as a possibility to tackle data sharing and integration problems.
Furthermore, we propose an infrastructure that allows peers to customize, compose, and
deploy complex data sources.
The remainder of this paper is structured as follows. Section 2 describes our motivations

to propose and develop a Data Service Middleware (DSM). Section 3 reviews the existing
approaches for remote data sources access and highlights some prototypes that adopt the
Date Service approach. Section 4 describes the architecture of DSM as well as its main
components of DSM. Section 5 summarizes this and highlights future improvements of
the proposed middleware.

2. Motivations. When we are looking back at the computer industry, we can clearly
identify the growing need of data sources in small and large scale business. As per a recent
survey done by the Ponemon Institute, 90 percent of organizations reported having more
than 100 databases and 23 percent have more than 1,000 [16]. This massive presence of
databases in these organizations is due to the fact that many of the employees of these
organizations have created their own “databases” in response to the requirement of the
tasks they are responsible for. These people require often integrating and sharing their
data sources to gain the holistic understanding of the whole organization’s data.
We propose to export every data source as a Web-service, called a Data-service, which

contains a set operations (capabilities) generated based on the analysis of the data source
schema. The invocation of the operations of a Data-service will lead to the execution of
appropriate data manipulation statements on the corresponding data source. In order to
highlight the benefits of this approach, we discuss the following motivation sample.
Consider three data sources namely a beekeeping database (BK), a fauna and flora data

source (FF) and a climatic data source (CL). The BK data source contains information
about hives and bee colonies (health, species, apiaries production, etc.). The FF data
source provides information about the different types of vegetation of various regions.
The CL data source provides information about climatic prediction (temperature, humid-
ity, etc.). Exporting these data sources as Dataservices will provide uniform access to the
data they store. Thus, the heterogeneity and the location of the data sources become
transparent to the users and retrieving data from these data sources becomes a simple
invocation of the operations of the Data-services. Moreover, the integration of the existing
heterogeneous data sources could be obtained simply through service composition. In-
deed, a beekeeper may compose new Data-service that aggregates capabilities of the BK’s
corresponding Data-service and capabilities of the FF’s corresponding Data-service. The
composite Data-service allows the beekeeper to optimize his production by identifying
areas of overgrazing with potential seasonal bee flora interest. The beekeeper may also
compose a new Data-service that aggregates capabilities of BK, FF and CL data sources’
corresponding Data-services. The new composite Data-service provides useful data that
would help beekeeper in (dis) placement of hives according to Botanico-climatic conditions
of the moment.
The underpinning for an organization’s use of the proposed approach is the ability

to discover existing data sources, to have a uniform access to the data sources and to
save time in the development of new business applications by enabling the integration of
existing data sources through service composition. [9] reported that up to 70 percent of



A DATA SERVICE MIDDLEWARE FOR SHARING DATA 7821

the time spent to develop applications that integrate data from different data sources is
consecrate to accessing distributed data.

3. Related Work. During the last decade, much research and development effort has
been put into proposed approaches for accessing remote, heterogeneous and autonomous
data sources. In our review of the literature, we identify the following approaches: Trans-
action Processing Monitors, Tuplespace, Resource Description Framework and Data Ser-
vice.

3.1. Transaction processing monitors. A TPM provides an infrastructure for build-
ing and administering complex transaction processing systems with a large number of
clients and multiple servers [2,17]. It supports mainly services for submitting user queries,
routing them through servers for processing, coordinating the two-phase commit when the
transactions are running over multiple servers and ensuring that each transaction satisfies
the Atomicity, Consistency, Isolation, Durability (ACID) prosperities [1,2]. These prop-
erties guarantee the database’s consistency over time and guard against hardware and
software errors [2].

3.2. Tuplespace. Tuplespace was initially proposed to support the Linda parallel pro-
gramming language [18,19], which was developed by David Gelernter and Nicholas Car-
riero at Yale University [2]. It provides a set of primitive operations to insert, fetch and
retrieve data from a shared space that stores user data [2]. It may be considered a form
of distributed shared memory which allows the data providers to post their data as tuples
in the shared space, and the data consumers to fetch and retrieve data which matches a
certain pattern from that space [2].

3.3. Resource description framework. RDF is a Semantic Web technology that sup-
ports the exchange of data and knowledge on the Web [2]. It is a standard format
developed by W3C for representing and storing any kind of data as Web resources on
the Web [4,20]. In practice, RDF resources are identified by Uniform Resource Identifiers
(URIs) on the Web [21]. This URI reference is formed by a URI namespace and a local
name [3,21].

3.4. Data service approach. The Data Service Approach is the most widely used ap-
proach nowadays for data exchange. It embodies the Service-Oriented Architecture (SOA)
principles to expose data stored in heterogeneous and autonomous data sources [2]. It
supplies a Data Service Layer (DSL) as a mechanism for masking heterogeneity between
data sources such as databases, files or spreadsheets, and make them available as Web
services or as set of Representational State Transfer (REST) style Web services. The
main advantage of this approach is that it reduces the complexity of developing new ap-
plications that integrate data from several data sources [5,9,10]. The following prototypes
adopt the data service approach:

• The AquaLogic Data Service Platform (ALDSP) is dedicated for the design and
maintenance of a data service layer [11]. It provides a declarative technique to create
and implement data services for composite applications within an enterprise.

• DBProxy [13] is a data replication system which maintains and replicates business
application data over the network. In DBProxy, both client queries and business
back-end data are partially cached in one or more proxies. Client queries can be
executed on the local database of the server.

• ESDS [14] is a distributed data service scheme called Edge Server Data Service which
integrates DSL and network data management technologies together to allow users
at different locations to access data efficiently.



7822 S. GANNOUNI, M. BERAKA AND H. MATHKOUR

• WSO2 [15] is software built on top of WSO2 Carbon, a lightweight high-performance
platform for taking data stored in data sources and making them available as Web
services. It uses Axis2 as the underlying SOAP processing engine [15]. WSO2 sup-
ports relational databases, CSV files and Microsoft Excel files. In addition, WSO2
supports security using WS-security standards and reliability using WS-Reliable
Messaging standard [15].

4. Overview of the Main Architecture of DSM. DSM is a Service-Oriented Mid-
dleware that embodies the principles of SOA for sharing data in a P2P environment. It
allows peers to export their data as services and to have access to those of others using
the data services they publish. It provides a set of rich and easy to use services allowing
non-expert users to share their data with each other. Moreover, it offers a semi-dynamic
service composition engine allowing users to integrate data from different resources by
composing new data services.

Figure 1. Main architecture of DSM

As shown in Figure 1, the main architecture of DSM consists of the following compo-
nents:

• Profile Publisher (PP): PP is responsible for creating and updating the profile
of a peer. Only users having profiles are allowed to publish and/or use data services.

• Data Provider (DP): DP is responsible for exposing (exporting) users’ data
sources as data services and publishing them in a UDDI registry.

• Data Discovery (DD): DD is responsible for discovering data services based on
user’s search criteria.

• Data Consumer (DC): DC is responsible for invoking the discovered data-services
which provide access to their corresponding back-end remote data sources.

• Data Service Layer (DSL): DSL is responsible for providing access to the local
data sources (excel files, XML data, relational databases, etc.).

• Data Service Composition Engine (DSCE): DSCE is responsible for generat-
ing and describing a new business process that integrates existing endpoints into a
new endpoint. It is also responsible for interpreting the business logic of the process
to get the XML result of the invocation.

• UDDI Registry Client : It provides access to basic UDDI functionalities.
• SOAP Msg Handler (SMH): SMH is responsible for reading and writing SOAP
messages, sending and receiving these messages. Moreover, it is responsible for
parsing SOAP XML responses to extract embedded data.

4.1. Data service layer (DSL). The DSL allows exporting part-of or the whole user’s
data sources. It generates new data-services based on the scheme of the user’s data sources
It preserves the local data sources’ autonomy of design, association and execution.
As depicted in Figure 2, the DSL consists mainly of the three following sub-components:



A DATA SERVICE MIDDLEWARE FOR SHARING DATA 7823

Figure 2. Architecture
of DSL

Figure 3. Architecture of
the data provider component

• Local Data Source Access (LDSAccess): LDSAccess is responsible for provid-
ing uniform access to heterogeneous data sources. It allows discovering the metadata
of the user’s data sources and retrieving data from them.

• Local Data Source Adapter (LDSAdapter): LDSAdapter is responsible for
translating the meta-data discovery requests and the data retrieve queries submitted
by the LDSAccess into statements appropriate to the local data sources.

• Data Service Generator (DSG): DSG is responsible for generating a new data-
service based on the schema of the user’s data source. Firstly, it translates the data
source’s schema into an XML format. Next, it parses the XML format of the schema
and generates a Java class which contains a set of appropriate operations that provide
access to the data source tables and columns. Finally, it uses Web services and EJB
annotations to annotate the generated Java class.

4.2. Data provider (DP). The DP component is responsible for deploying the data
service generated by the DSL under the application server and publishing its description
in a UDDI registry. DP performs the following tasks to expose a data source as a data
service:

(1) Call the DSL adapter to create a new data service class that describes the data source.
(2) Prepare XML data-service descriptor which contains information about the generated

data service such as the service name, its description and useful binding information.
(3) Generate a new EJB module which includes the necessary files and artifacts for this

service.
(4) Deploys the generated EJB module under the application server.
(5) Publish the data service through the UDDI registry using the UDDI registry client.
(6) Write information about the status of the deployment and publishing processes into

a log file.

As shown in Figure 3, DP consists of the following three sub-components:

• XML Data Service Converter : It is responsible for converting unstructured
information into an agreed XML format. This format allows other components to
parse data easily in a structured manner.

• EJB Module Builder : It is responsible for generating a new EJB module with
the necessary files and artifacts.

• EJB Deplorer : It is responsible for deploying (un-deploying) the generated EJB
module under the application server using Ant-API.

4.3. UDDI registry client (URC). URC component is responsible for accessing any
UDDI v3 compliant server using a valid security token (publisher profile). It allows peers



7824 S. GANNOUNI, M. BERAKA AND H. MATHKOUR

to use their publisher profiles (username and password) to create, update and delete
business entities, to publish and/or remove data services under a specific business entity,
and to discover data services that are published by other peers.

4.4. SOAP Meg. handler (SMH). SMH is responsible for reading and writing SOAP
messages. It sends and receives these messages through the Internet using SOAP with
Attachments API for Java (SAAJ). Moreover, it parses SOAP XML responses to extract
data. Figure 4 presents the different sub-components of SMH.

4.5. Data discovery (DD). The Data Discovery (DD) component is responsible for
discovering the data-services published by the other peers. It uses the UDDI registry
client to retrieve the data services’ descriptors according to the user’s criteria and values.
As shown in Figure 5, DD consists of the following three sub-components:

• Request Builder : This is responsible for building a search request based on the
user’s criteria and querying the data services repository (UDDI Registry) using URC.
The result is a list of XML data-services’ descriptors.

• UDDI Registry Client Connector : This is responsible for sending the request
to the UDDI Registry Client and for receiving the result.

• XML Data Service Parser : This is responsible for parsing the XML data-
services’ descriptors to retrieve the information about each data service, such as the
name, the description and the URL of the WSDL document.

Figure 4. Architecture of SOAP message handler

Figure 5. Architecture of DD



A DATA SERVICE MIDDLEWARE FOR SHARING DATA 7825

Figure 6. Architecture of DC

4.6. Data consumer (DC). The DC component is responsible for enabling access to the
back-end remote data sources through the invocation of the operations of the published
data-services. Firstly, DC defines and submits the user’s search criteria to the Data
Discovery component. It receives back and parses the result of the discovery phase.
Further, it allows the user to specify the operations to invoke and adds them to a remote
invocation list. Finally, DC passes this latter list to the data service composition engine
for processing and parses the result returned back. DC parses the XML results and returns
back the data to the user.

As depicted in Figure 6, DC consists of the following six sub-components:

• WSDL Component : It is responsible for retrieving and parsing the WSDL (data-
service descriptor) document associated to the data service.

• Endpoint Component : This is responsible for extracting useful information from
the parsed document and for creating a new endpoint object.

• Endpoint Checker : It is responsible for checking the completion and the correct-
ness of the information on an endpoint as well as the correctness of selected methods.

• Data Parser and Retriever : This is responsible for parsing the XML results
returned back by the DSCE engine.

4.7. Data-service composition engine (DSCE). DSCE is responsible for composing
new data-services from capabilities (operations) of existing data-services by providing a
description of their corresponding business process. It is also responsible for parsing,
interpreting and supplying the result of a business process description.

As described in Figure 7, DSCE consists of the two following main components:

• Business Process Generator (BPG): It is responsible for composing a new
data-service as an aggregation of a set of existing data services. It generates for the
composite data-service a new business process, written in Data-Service Composition
Language (DSCL) which is derived from BPEL, based on the list of selected end-
points, target methods within these endpoints, execution constraints and invocation
options.

• Business Process Interpreter (BPI): It is responsible for parsing, interpret-
ing and executing the logic of a DSCL business process to perform remote method
invocation sequentially or in parallel based on the execution mode and activities
precedence graph. BPI consists of the following sub-components:



7826 S. GANNOUNI, M. BERAKA AND H. MATHKOUR

Figure 7. Architecture of DSCE

– DSCL Parser : It is responsible for parsing the XML description of a DSCL
business process to extract useful information about the business process. It
does not supply information on the logic of the business process. Based on the
extracted information, it creates a process information object.

– Business Logic Interpreter : It is responsible for interpreting and executing
the logic of the business process. This sub-component uses the process informa-
tion object generated by the parser to get the required information to perform
the invoke activity such the method name, input parameters, output parameters
and messages of that method.

– Sequential Invocation : It offers the ability to perform a set of invocation
activities of a business process in a sequential mode.

– Parallel Invocation : It provides the ability to perform a set of invocation ac-
tivities of a business process in a parallel manner using the Fork-Join capabilities
of Java.

4.8. Profile publisher (PP). To enforce proper access to the UDDI registry and prevent
it from non-authorized access, we provide an authentication system, which is a Web service
integrated with jUDDI. We implement a suitable authentication mechanism that meets
our requirement of having a valid authentication token for each request sent to jUDDI.
Obtaining this token requires the correct credentials. However, the Profile Publisher is a
Web-service client that is responsible for performing the following operations:

• Register a new peer in the UDDI registry by creating a new profile.
• Check that the credentials of the peer profile publisher are correct before allowing
the peer to perform operations such as publishing and inquiring.

• Modify profile information such as the password and email or IP address.

5. Conclusions and Future Work. We have proposed and successfully developed a
novel middleware named Data Service Middleware (DSM) that enables users to share
their data sources in a P2P environment. It relies on a service-oriented approach to
export users’ data sources as data-services, discover and invoke those services. It also
relies on a process-oriented approach to provide service composition capabilities in order
to support virtual data integration. The underpinning for an organization’s use of the
proposed middleware is the ability to discover existing data sources, to have a uniform
access to them regardless their heterogeneity and their location and to save time in the
development of new business applications by enabling the integration of existing data
sources through service composition.



A DATA SERVICE MIDDLEWARE FOR SHARING DATA 7827

DSM consists of three main components: the Data-Provider, the Data-Discovery and
the Data-Consumer. The Data Provider enables the users to export and publish their data
sources as a data-services in a UDDI registry. The Data Discovery component allows the
peers to discover published data-services. The Data Consumer enables the peer to invoke
operations of the discovered services. The invocation of an operation of data-service will
lead to the execution of appropriate data manipulation statement on the corresponding
back-end data source. Moreover, the Data consumer allows the users to integrate (virtual
integration) data from heterogeneous data sources by enabling the user to compose new
data-services that aggregates operations of different data-services. The execution of the
composite data-services could be done in sequential or in parallel mode.

DSM solves the heterogeneity between data sources by implementing an abstract data
layer called DSL which provides uniform access to the data sources. Furthermore, it
adopts a standard platform-independent technology (Web-services technology) to export
those data sources as data-services. DSM meets the current demands of data sharing in a
P2P environment by providing a set of well-defined, ready-made and easy-to-use services
that allow non-expert users to publish, discover and use data-services without writing any
additional code and with less effort.

For the time being, we assume that the schemes of the data sources are stable and do not
change. Therefore, if changes are made to these schemes, the corresponding data-services
are no more appropriate and require to be updated. Changing these services may cause
some peers to crash. We intend to support a multi-versioning system that ensures service
availability for peers, who already derived new services from those updated ones. We
intend also to introduce a caching mechanism into DSM in order to reduce the execution
time of users’ requests and increase the data availability when back-end data sources
experience some deficiencies.

Acknowledgment. This work was supported by the Research Center, College of Com-
puter and Information Sciences, King Saud University. The authors are grateful for this
support. They also gratefully acknowledge the helpful comments and suggestions of the
reviewers, which have improved the presentation.

REFERENCES

[1] G. Alonso, Transaction Processing Monitors, Computer Science Department, Swiss Federal Insti-
tute of Technology (ETHZ), http://masteritgov.dia.uniroma3.it/didattica/MW/Middleware-04-TP-
Monitors.ppt, 2011.

[2] S. Gannouni, H. Mathkour and M. Beraka, A comparative survey of data sharing approaches and
their applications in distributed computing environments, Journal of Theoretical and Applied Infor-
mation Technology, vol.33, no.1, pp.42-57, 2011.

[3] S. Capizzi, A Tuple Space Implementation for Large-Scale Infrastructures, Ph.D. Thesis, Universit‘a
di Bologna, Padova, 2008.

[4] N. Alexander and S. Ravada, RDF object type and reification in the database, Proc. of the 22nd
International Conf. on Data Engineering, pp.93-103, 2006.

[5] J. Bloomberg and J. Goodson, Best practices for SOA: Building a data service layer, SOA World
Magazine, vol.8, no.5, 2008.

[6] M.-H. Lin, H.-Y. Kung, W.-K. Lai, Y.-H. Lan and C.-S. Shieh, A SOAP-based domain web service
middleware: Design and implementation, ICIC Express Letters, Part B: Applications, vol.2, no.2,
pp.279-286, 2011.

[7] C.-C. Chang and C.-D. Tsai, Web service aggregation of cloud computing: An international journal
of research and surveys, ICIC Express Letters, Part B: Applications, vol.2, no.3, pp.711-715, 2011.

[8] R. Seeley, SOA Principles Apply to Data Access and Management, http://www.SearchWeb Ser-
vices.com, 2007.

[9] K. Goundar, S. Singh and X. Ye, An investigation into concurrency control mechanisms in data
service layers, Proc. of the 14th Asia-Pacific Software Engineering Conference, 2007.



7828 S. GANNOUNI, M. BERAKA AND H. MATHKOUR

[10] M. Nikoo, The Data Layer – Build or Buy? Dunstan Thomas Consulting, 2003.
[11] M. Carey, Data delivery in a service oriented world: The BEA AquaLogic data services platform,

Proc. of the 2006 ACM SIGMOD International Conference on Management of Data, Chicago, IL,
USA, pp.695-705, 2006.

[12] Composite Software Composite Data Services Architecture, http://www.compositesw.com/index.ph
p/products/compositeapplication-data-service, 2012.

[13] K. Amiri, S. Park and R. Tewari, A self-managing data cache for edge-of-network web applications,
Proc. of the 11th International Conference on Information and Knowledge Management, McLean,
pp.177-185, 2002.

[14] R. Yin and X. Ye, An efficient data service layer, Proc. of the 11th International Conference on Par-
allel and Distributed Computing, Applications and Technologies, Wuhan, China, pp.249-254, 2010.

[15] S. Rubasinghe and A. Anandagoda, WSO2 Data Services White Paper, 2008.
[16] A. T. Manes, SOA Principles Apply to Data Access and Management, http://searchsoa.techtarget.

com/news/article/0,289142,sid26 gci1266439,00.html, 2007.
[17] S. Gannouni, H. Mathkour and M. Beraka, Comparison criteria for data sharing approaches, Proc. of

the 6th International Conference on Computer Sciences and Convergence Information Technology,
Rep. of South Korea, 2011.

[18] A. Omicini and E. Denti, From tuple spaces to tuple centres, Science of Computer Programming,
vol.41, no.3, pp.277-294, 2001.

[19] Dr.-Ing and K. Herrmann, Asynchronous Middleware Tuple Spaces, Distributed Systems Depart-
ment, Institute of Parallel and Distributed Systems, University of Stuttgart, 2009.

[20] M. H. Needleman, RDF: The resource description framework, Serials Review, vol.27, no.1, pp.58-61,
2001.

[21] S. Zhou, Exposing relational database as RDF, Proc. of the 2nd International Conf. on Industrial
and Information Systems, Dalian, China, vol.2, pp.237-240, 2010.


