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ABSTRACT. In this paper, we propose the use of neural network based technologies to
carry out the dynamic reprogramming of wireless sensor networks as an alternative to
traditional methodology. An analysis and comparison of the energy costs involved in
reprogramming wireless sensor networks was done using rule-based programming (TP),
standard feedforward neural networks (FF'), and the C-Mantec (CM) algorithm, a novel
method based on constructive neural networks. The simulation results, first performed on
an array of sensor networks under the COOJA simulator (considering best, medium and
worst case scenarios for three benchmark problems) and finally evaluated on a case of
study with identical conditions, show that the use of neural network based methodologies
(FF & CM) produces a significant saving in resources, measured by the number of packets
transmitted, the energy consumed and the time needed to reprogram the sensors.
Keywords: Wireless sensor networks, Constructive neural networks, Dynamic repro-
gramming, Feedforward neural networks

1. Introduction. Wireless Sensor Networks (WSNs) are a new form of distributed com-
puting where sensors (tiny, low-cost and low-power nodes, colloquially referred to as
“motes”) deployed in the environment communicate wirelessly to gather and report in-
formation about physical phenomena [47]. WSNs have been successfully used for various
application areas, such as environmental monitoring, object and event detection, military
surveillance, precision agriculture [18] where thousands of motes are deployed. One of the
most important issues in the context of the WSNs is energy consumption, which must
be minimized, in order to increase longevity. The energy consumption centered in the
communication process between sensor nodes is one of the most delicate issues when a
WSN system is going to be developed [1,22]. A bad management of the energy resources
could cause the partitioning of the network, a quicker reduction in the life of the network
and a poor performance. Due to the importance of this issue, a large number of articles
have been presented by the scientific community dealing with the problematic of energy
consumption. Most of the approaches that have been presented focus on protocols related
with routing [16,28], duty cycle [9], cluster formation [20,21] and data aggregation [32].
In the context of intelligent systems and innovative computing can be found several
texts dealing with different problematics related to WSNs as is amply described in [12].
Specifically, there are several texts where the Artificial Neural Networks (ANN) have
been used to solve typical problems of WSNs such as path discovering [4,19,33], node
clustering [3,7], cluster-head selection [6], data aggregation [25,29,37,46], data association,
data classification [25,26,29,48] and data prediciton [25,31,35] focusing on maximizing the
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node’s battery life. However, there is no reference given in the literature to the use of
ANN in order to deal with the reprogramming problem, in terms of energy consumption,
of a WSN.

Recent technological advances have permitted the incorporation of dynamic (over-the-
air) reprogramming of sensor nodes of a WSN, instead of the manual reprogramming
[24,34,45,49] where developers have to interact physically with the sensor nodes. Re-
programming is necessary and desirable in WSNs in order to remove bugs, to add new
functionality or to change some conditions on the developed software. Even if a WSN is
initially well designed and may appear that it will not need further reprogramming, expe-
rience has shown that real performance is different from simulations and testbeds phases
and thus reprogramming is indeed necessary in most cases. For example, let us suppose
that a set of nodes sense temperatures and they rely the data to the base station when this
temperature is higher than a parameter value. If we need to change the parameter value
or we want to take into account the humidity level together with the temperature to send
the data, then a new image code must be installed in the nodes. In the case of traditional
programming, programmers must take the node from the deployment, reinstall the code
and set the node again. The dynamic reprogramming allows programmers to transmit
the new image through a wireless link to the sensor nodes improving the repogramming
time. This process is known as code dissemination and its main drawback is the energy
consumption required to transmit the entire new or modified code image to the sensor
nodes. Moreover, this drawback is accentuated when the code image that is being sent
contains minimum changes in comparison to the previous code.

This paper describes the possibility of incorporating neural network based models into
WSNs to dynamically reprogram sensor nodes minimising the energy consumption and the
reprogramming time. Therefore, our work aims to use feedforward architectures trained
by back-propagation algorithm and a novel Constructive Neural Network (CNN) algorithm
as embedded classifiers into the sensor nodes software. Concretely, the COOJA sensor
network simulator [13] has been used to compare the performance of TP reprogramming
to neural network based technologies (FF & CM), analyzing the time and energy resources
involved in the reprogramming process.

The rest of the paper is structured as follows. Section 2 describes the three benchmark
datasets used to carry out the simulations considering three possible real scenarios where
WSNs are perfectly used. Moreover, the different methods applied (TP, FF & CM)
within the COOJA simulator used to simulate the best, medium and worst cases of
the reprogramming task are described at the same time that the results obtained in
each benchmark for the different applied methods are presented taking into account the
time and energy resources. Section 3 describes in detail a case of study carried out on
the problem of falling detection [8,23] to confirm the results obtained from the three
benchmark datasets. Finally, in Section 4 we provide some conclusions based on the
analysis of the results obtained for the three benchmark datasets and the case of study
shown in Section 2.3 and Section 3.2 respectively.

2. Methods and Bechmark Testing.

2.1. Benchmark datasets. In [2,41], two real WSNs systems are described in order
to monitor certain readings, one related to high-quality wine production and the other
to congestive heart failure in patients. As there is no available data corresponding to
these problems, the data used in this work were obtained from a very well known public
database easily accessible from the Internet!.

"http:/ /archive.ics.uci.edu/ml/datasets.html
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Three “real-life” problems, which could be modelled through WSNs, were used for the
analysis. Each benchmark dataset fits well with the two real WSNs systems presented
and models a problem which could be implemented on the nodes of a WSN through a
procedure that essentially consists in receiving several parameters and making a decision
based on them.

The details of the datasets are as follows:

Red wine quality case test.

Red wine quality can be monitored using 11 parameters (alcohol, pH, fixed acidity,
residual sugar, density, etc.) present in this dataset. In this case, a WSN can be
deployed in a large wine-cellar to control the wine fermentation process. At a given
moment, it may be necessary to modify the algorithm in charge of deciding the
quality of the wine stored n each of the thousands of barrels allocated in the wine-
cellar and, for this purpose, reprogramming the nodes will become necessary.
Parkinson status test.

This dataset consists of 197 records from 31 patients for which a set of 22 param-
eters has been measured with the aim of predicting the advance of Parkinson using
speech readings [42]. Most of these parameters could be measured through small
wireless sensor networks, known as body sensor networks, deployed on the body of a
person. The information collected is sent to a main node also fixed to the person’s
body which is capable of analyzing the information. As not all the parameters might
be sensed by the body sensor network, normally the main node sends the information
gathered to the control center in charge of further analysis of the information and
supervising the entire process. For example, let us imagine an Old Age Pensioner
(OAP) Day Care Center with 10 people per floor, as depicted schematically in Fig-
ure 1. Each person’s body sensors report the person’s information periodically via
wireless transmission to the control center and reciprocally the control center can
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FIGURE 1. Schematic representation of a day care center where a body
sensor network might be used to monitor the disease status of the patients
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process this information and send complementary data, that cannot be sensed di-

rectly, such as age, or height, to the person’s sensor. Then the progress of Parkinson

of the patient can finally be computed at the main node of the body sensor network.
e Pima indians diabetes data set.

This well known dataset consists in 768 registers from subjects belonging to the
population of Pima Indians. The data can be used to predict whether a person
can be considered diabetic or healthy. As in the case of Parkinson dataset, similar
body sensors could be used to control the patient’s status, that for this case could
be, for example, at their home in a determined neighbourhood instead of at a Day

Care Center. The information can also be transmitted via a wireless connection to
a control node for further analysis.

2.2. Methods. Figure 2 describes the two different and paralell approaches that have
been followed in this work: Traditional Dynamic Reprogramming (TDR) and Neural
Network Dynamic Reprogramming (NNDR) of wireless sensors (Section 2.2.1). COOJA
simulator (Section 2.2.3) has been used in order to simulate a real reprogramming en-
vironment and carry out all the experiments. On the left hand side of Figure 2, the
traditional reprogramming approach that implies modifying the software implementation
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Ficure 2. Workflow representation of the traditional programming ap-
proach (left side) and our proposal using a neural network based method-
ology (right side) in the reprogramming process of WSNs. Results are
obtained in terms of time, energy costs and number of packets sent in the
reprogramming process using the COOJA simulator.
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is described. On the right hand side, our proposal using a neural network based method-
ology is described showing how it reduces the energy costs involved in the reprogramming
process of wireless sensor networks and, therefore, increases the network life. We do not
give explicit details about standard feedforward networks here because they are a well
known methodology for the design of classifiers.

2.2.1. TDR and NNDR of wireless sensors. The design of classifiers is usually imple-
mented in WSNs through a set of IF-THEN conditional sentences. For each dataset
tested, a set of conditional sentences was extracted from the rules obtained by the ap-
plication of an inductive algorithm. In TDR, a change in the classifier rules, even if the
modifications are minimal, involves sending the new entire code image again, with the
corresponding extra energy expenditure.

The use of a neural network based classifier involves creating and training the archi-
tectures to obtain a set of synaptic weights. This set of weights, together with the initial
code needed to compute the output of the classifier, have to be sent to the sensor nodes
the first time the nodes are programmed. In NNDR, further changes in the classifier only
involves sending the new values for the synaptic weights, reducing the amount of bytes
to be transmitted with the corresponding saving in energy consumption. However, it
has to be noted that it would be possible to figure out a way of avoiding the process of
sending the whole code in TDR. Nevertheless, first, the standard way of reprogramming
the sensors nowadays consists in transmitting the whole code; and second, a rules based
classifier is more sensitive to changes in the set of input patterns than neural network
models.

To exemplify the difference between TDR and NNDR, imagine the scenario of one of
the benchmark dataset described in Section 2.1, where patients in a Day Care Center are
physically distributed in different rooms. In Table 1, an example of the code needed to
reprogram the nodes’ software is shown for the case of the Pima Diabetes database. To
the left of the table, the case of TP is illustrated using a set of conditional sentences,
extracted from a rule generator algorithm, highlighting that normally all the code has to
be transmitted every time a reprogramming of the sensor is required. The case of using
neural network based programming (FF & CM) is illustrated on the right by a short code
that essentially instructs the sensor to compute a matrix product between a set of inputs
and the synaptic weight values stored. For the case of using neural networks, only the
synaptic weight values can be modified, as the software code for the sensor does not need
modifications.

2.2.2. C-Mantec constructive neural network algorithm. C-Mantec (Competitive Majority
Network Trained by Error Correction) is a novel neural network constructive algorithm
that utilizes competition between neurons and a modified perceptron learning rule to build
compact architectures with good prediction capabilities. The novelty of C-Mantec is that
the neurons compete for learning the new incoming data, and this process permits the
creation of very compact neural architectures. At the single neuronal level, the algorithm
uses the thermal perceptron rule, introduced by M. Frean in 1992 [15], that improves
the convergence of the standard perceptron for non-linearly separable problems. The
activation state (S) of this perceptron depends on the N input signals, 1;, and on the
actual value of the NV synaptic weights (w;) and the bias (b) as follows:

(1)

g_Jrom, iex0
|0 (OFF), otherwise
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TABLE 1. A comparison between traditional programming and neural net-
works code illustrated for the “Pima Indians diabetes” data set. Conditional
sentences extracted from a rule generator algorithm are normally used in
TP (left). A short code is needed to implement the neural network models,
in which only the synaptic weights values should be transmitted every time
an updating of the code has to be done (right).

aditional progra ing re work progra i
Traditional programmin Neural network programinin,

if (plasma_glucose_concentration <= 0.6181) {
if (age <= 0.1333) {
DiagnosticResult (* “healthy” ):

}
else {
if (body_mass_index <= 0.3994) {
DiagnosticResult (* “healthy” );
}
else {
if (diastolic_blood_pressure <= 0.7377) {
if (plasma_glucose.concentration <= 0.5377) {
DiagnosticResult (**healthy” };
}
else {
DiagnosticResult { **diabetes”);
} iagnosticResult (**diabetes”); if (NN_Estimulation(inputs)) {
) DiagnosticResult ( * *diabetes”);
1
else { else {
H Prusnostiefiesuit (a1 DiagnosticResult ( **healthy” );
b
}
}
else {

it (plasma_glucose_concentration <= 0.8342) {
if (age <= 0.05) {
DiagnosticResult (* “healthy” ):

}
else {
DiagnosticResult (* “diabetes” );

}

4

else {
DiagnosticResult (‘ ‘diabetes” ):

}

}

where ¢ is the synaptic potential of the neuron defined as:

N
¢ = Zwﬂ/)i —b (2)
i=1

In the thermal perceptron rule, the modification of the synaptic weights, Aw;, is done
on-line (after the presentation of a single input pattern) according to the following equa-
tion:

Aw; = (t = S)iTac (3)
where ¢ is the target value of the presented input, and ¢ represents the value of input unit
i connected to the output by weight w;. The difference to the standard perceptron learning
rule is that the thermal perceptron incorporates the factor T't,.. This factor, whose value
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is computed as shown in Equation (4), depends on the value of the synaptic potential and
on an artificially introduced temperature (7') that is decreased as the learning process
advances.

T
Tfac = To exp (—%) (4)

C-Mantec, as a CNN algorithm, has in addition the advantage of generating online the
topology of the network by adding new neurons during the training phase, resulting in
faster training times and more compact architectures [14,17,27,30,38,44].

The topology of a C-Mantec created network consists of a single hidden layer of ther-
mal perceptrons that maps the information to an output neuron that uses a majority
function. The choice of the output function as a majority gate is motivated by previous
experiments in which very good computational capabilities have been observed for the
majority function among the set of linearly separable functions [39]. The results so far
obtained with the algorithm [38,40,43] show that it generates very compact neural ar-
chitectures with state-of-the-art generalization capabilities. It has to be noted that the
algorithm incorporates a built-in filtering stage that prevent overfitting of noisy examples.

The C-Mantec algorithm has 3 parameters to be set at the time of starting the learning
procedure. Several experiments have shown that the algorithm is very robust against
changes of the parameter values and thus C-Mantec operates fairly well in a wide range
of values. The three parameters of the algorithm to be set are:

e /... maximum number of iterations allowed for each neuron present in the hidden
layer per learning cycle.

® G4 growing factor that determines when to stop a learning cycle and include a
new neuron in the hidden layer.

® [iemp: determines in which case an input example is considered as noise and removed
from the training dataset according to Equation (5):

VX € {X1,..., Xy}, delete(X)|NTL > (pt + Flitempo) (5)

where N represents the number of input patterns of the dataset, NT'L is the number
of times that the pattern X has been learned on the current learning cycle, and the
pair {p, 0} corresponds to the mean and variance of the normal distribution that
represents the number of times that each pattern of the dataset has been learned
during the learning cycle.

A summary of the C-Mantec pseudo-code algorithm is described in Table 2. This
learning procedure is essentially based on the idea that patterns are learned by those
neurons, the thermal perceptrons in the hidden layer of the neural architecture, whose
output differs from the target value (wrongly classified the input) and for which its internal
temperature is higher than the set value of G . In the case in which more than one
thermal perceptron in the hidden layer satisfies these conditions at a given iteration,
the perceptron that has the highest temperature is the selected candidate to learn the
incoming pattern. A new single neuron is added to the network when there is no a
thermal perceptron that complies with these conditions and a new learning cycle starts.
The learning process ends when there are no more patterns to be learned, as all of them
are classified correctly or are outside of the initial dataset because are considered noisy
by an internal built-in filter.

2.2.3. COOJA simulator. As mentioned before, COOJA sensor network simulator has
been used to carry out all the experiments. COOJA is a power profiling tool that enables
accurate network-scale energy measurements in a simulated environment. In order to
carry out the simulations, we used Contiki [10] which is an open source, highly portable,
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TABLE 2. Brief pseudo-code summary of the C-Mantec learning algorithm

C-Mantec learning algorithm
1| Initialize the parameters of the algorithm;
2
3 | while (exists patterns to be learned) {
4 input a random pattern ;
5 if (pattern target value == network ouput) {
§ remove temporarily the pattern from the dataset:
!
8 else {
9 the pattern has to be learned by the network:;
10 select the wrong neuron with highest temperature:
11 if (Tfac »>= Gfact) {
12 the neuron will learn the pattern;
13 update its synaptic weights according to the thermal perceptron rule;
14 +
15 else {
16 a new neuron is added to the network;
17 this new neuron learns the pattern;
18 iteration counters are reset;
19 noisy patterns are deleted from the training dataset:
20 reset the set of patterns;
21 }
22 }
23|}

multi-tasking operating system for memory-efficient networked embedded systems and
wireless sensor networks. The sensor network reprogramming was simulated thanks to
a routing protocol called mesh which is provided by Contiki. This protocol allows the
communication of two sensor nodes in a multi-hop way.

A square grid topology with 25 nodes (5 x 5) has been used to carry out the repro-
gramming experiments with the three different analyzed models (TP, CM and FF). This
is a quite standard configuration and it could also represent very well the environment
in which the chosen datasets presented in Section 2.1 could be implemented. Namely,
if a sensor network is deployed in a Day Care Center, the nodes attached to the people
would be reprogrammed when they are sleeping in their rooms, thus, the nodes would
be distributed according to the physical position of the rooms in the floor of a building,
which can be usually approximated by a grid.

The simulations for calculating the resources needed in reprogramming the nodes were
carried out for three different scenarios: Best, Medium and Worst case results, according
to the position of the node where the update process starts and finishes. The study of
these scenarios is motivated by the missing packets that are introduced by the physical
distance between nodes with the corresponding increase on the energy consumption.

1. Best Case results: Control center starts the reprogramming task in order to modify
the code of three nodes located one hop away from it.

2. Medium Case results: Control center starts the reprogramming task so as to update
the code of two nodes located three and four hops away from it.

3. Worst Case results: Control center starts the reprogramming task to change the code
of the node located the farthest from it (8 hops).
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2.2.4. Parameter setting and measurements methodology. The initialization of the param-
eter values used in the simulations, for the different machine learning algorithms, were
selected as follows: i) for the feedforward neural network, the number of neurons in the
hidden layer were set to 9, 4 and 14 respective for Parkinson, Pima Indians diabetes and
Red wine quality datasets. In each case of study, “tansig” was the transfer function used.
And ii), for C-Mantec, on each of the three datasets the parameter I,,, was set to 100.000.
The pair of parameters {G foct, Fliemp} Were set to {0.25,3}, {0.1,0.75} and {0.15,1.5}
respective for Parkinson, Pima Indians diabetes and Red wine quality datasets.

For each of the analyzed datasets (Parkinson, Pima Indians diabetes and Red wine
quality), the three different classifiers (Rule-based, FF and C-Mantec) were trained with
all available examples. For the three methodologies used, models of similar performance
were chosen in order to obtain similar values for the correct classification of positive and
negative instances. Positive and negative classifications were analyzed separately because
some of the datasets contain very unbalanced classes. As NN models have a known random
component, 50 experiments have been carried out (randomizing 10 times the distribution
of patterns inside the dataset and then iterating 5 times for each randomized distribution)
per benchmark dataset in order to average and obtain the final performance of the NN
models.

A comparison between the different methodologies used for programming the sensors,
has been carried out as follows:

1. TP: Rule extraction was done using an inductive algorithm. It allows us to obtain
the code (set of rules if-then) needed to evaluate each one of the selected problems
(Parkinson, Pima Indians Diabetes and Red Wine) for simulating the dynamic re-
programming of a WSN using traditional programming (TP). Table 1 (left) describes
an example of the code needed for the case of the Pima Indians diabetes dataset.
For each of the problems presented in Section 2.1, the size of the code needed is
computed.

2. NN (FF and C-Mantec): For these two methodologies only the values of the synaptic
weights need to be sent, everytime the sensor code has to be modified. The number
of bytes needed to be transmitted is defined by Equation (6), where the number 8
indicates the fact that double data types are used to represent the synaptic weight
values (real numbers) and N represents the number of input signals for the neural
network model.

Size(b) = 8 x ((N x HiddenNeuronsNumber) + HiddenNeuronsNumber)  (6)

3. Sensor nodes communicate between themselves only by sending packets of 20 bytes
length (payload). Thus, the number of bytes needed to be transmitted in order to
update the program codes will determine the exact number of packets to be sent.
Table 3 shows the total number of packets that a node has to send to the WSN
according to the three different techniques used to program the nodes.

4. The energy consumption has been obtained by using the model approach from [11].
Due to the fact that in our experiments the parameter that most affects the energy
consumption is the current draw of the communication in the receiver mode, a shorter
version of the model has been used:

E=it;V (7)

where 7 is the current draw of the communication, ¢; reflects the time of the com-
munication of the node 7 and V' indicates the supplied voltage. As our goal was to
measure the energy consumption of the entire network, the above expression was
modified in the following way:
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20
E=i 72’9201 by (8)

where 7 = 19.7 mA (data obtained from the datasheet of the TelosB) and V' =3 V.

2.3. Benchmark results. We first show in Table 4 the values for the classification per-
formance of the different algorithms measured by the sensitivity or true positive rate
(TPR) and the specificity or true negative rate (TNR). Instead of taking an average and
displaying a single classification error, TPR and TNR are prefered estimators for the case
of unbalanced datasets. The results have been selected from among several parameter
tests, trying to obtain similar operating conditions for the three algorithms used. The
number of decision rules obtained to implement TP and the number of neurons of the
final architectures used (FF & CM) are also shown in the table. Further, the time needed
(in minutes) to obtain FF results was {21.10, 42.35,57.01} respective for Parkinson, Pima
Indians diabetes and Red wine quality datasets. On the other hand, CM results were
obtained in {10.04,25.73,40.48} respective for each of the benchmark datasets. It is re-
markable the difference between FF and CM models although in our case this process is
less important because it could be done off-line on a simple PC.

Table 5 shows a comparison of the results obtained when reprogramming a WSN using
the three techniques. Time, energy and number of packets have been measured using the
COOJA simulator for all the cases considered. The three included tables show the different
results for the three analyzed datasets: Top table shows the results for Parkinson disease
data, Middle table for the Pima Indians diabetes diagnosis set and the bottom table
shows those results corresponding to Red wine quality data. For each one of the problems
analyzed, also three different results are reported, corresponding to Best, Medium and
Worst communication scenarios according to the position of the sensors to be updated,

TABLE 3. Size (in bytes) and corresponding number of packets of the mes-
sage needed to be sent to update the code of the sensors everytime an
update is done, computed for the three different methods used in this work:

TP, FF and CM
Parkinson disease || Pima Indians Diabetes || Red wine quality [
Size Packets Size Packets Size Packets
(bytes) (bytes) (bytes)
TP T884 395 7270 364 8192 410
FF 1656 83 288 15 1344 68
CM 368 19 144 8 192 10

TABLE 4. Classification results for the 3 problems using TP, a feedforward
multilayer perceptron (FF) and C-Mantec (CM)

Parkinson disease Pima Indians Diabetes Red wine
% TPR | % TNR | 20 /o ppr | o rnr | JUe /o ppr | o rag | Rules /
Neurons Neurons Neurons
TP 99.3 91.7 9 77.2 78 7 48.8 97.3 20
95.58 3T 86.96 57.45 098.25
PP 100 5 O_. 9 67.2 b b N 0(. 45 20 14
+0 +19.73 +5.84 +12.64 +4.22 +0.33
oM 05,98 99.75 2 75.72 7779 1.46 85.83 79.81 1.07
- +0.9 4+0.66 40 4+2.89 +2.31 +0.49 4+1.07 +0.72 4+0.26
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TABLE 5. Time (ms), energy (mW) and number of packets needed to re-
program the simulated sensor nodes for three different problems analyzed:
Parkinson disease (top table), Pima Indians diabetes (medium table) and
red wine quality (bottom table) and for the three different technologies
used: traditional programming (TP), feedforward neural network (FF) and
constructive neural network C-Mantec algorithm. For each dataset and
technology best, medium and worst cases are analyzed depending on the
position of the nodes (see the text for specific details).

PARKINSON DISEASE MONITORING PROBLEM

Best Case I Medium Case Worst Case
Time | Energy Time | Energy Time Energy
Packets i Packets = Packets
(ms) (mW) HeRe (ms) (W) rexe (1ms) (mW) reRets

TP | 141038 | 17606 56537 686156 | 18188 66935 1769194 | 21517 155856
FF | 38819 3750 12649 129646 3770 14399 323220 4477 30941

CM 8462 891 2713 50233 964 4861 75965 1097 8309
PIMA INDIANS DIABETES PROBLEM
Best Case Medium Case Worst Case

Time | Energy ) . Time | Energy . ‘ Time Energy . _

(ms) (W) Packets (ms) (W) Packets (mns) (W) Packets

TP | 137713 16222 H3886 597482 16400 G066 1724786 20136 149988
FF 6132 713 2411 28669 738 2705 G0O708 390 6635
CM 3745 406 1234 13791 410 1535 41258 525 4553

RED WINE PROBLEM

Best Case Medinm Case Worst Cas

e
Time | Energy ) . Time | Energy e Time Energy e
(ms) (mW) Packets (ms) (W) Packets (ms) (mW) Packets

TP | 179840 | 18262 50756 686100 | 18487 67835 1891400 | 22515 165149
FI' | 31913 3083 10374 128235 3144 12450 254026 3662 26041
CM 5370 493 1584 14520 499 1874 43347 621 4692

as it was indicated before in Section 2.2.3. In particular, it is important to highlight the
big difference that exists between the Best and Worst scenario in some measures such as
the Time to transmit the packets to the sensor nodes. Moreover, there are also important
positive results obtained using our proposed algorithm C-Mantec in comparison to the
ones obtained with Traditional Programming or Feedforward that are considerably worse
on each of the datasets and measures considered in this work.

Figure 3 reflects, in general, the benefits of using neural networks (particularly C-
Mantec) in comparison with the traditional programming when the sensor networks needs
to carry out dynamic reprogramming. The colored bars on the graphic are overlapped
and these final results are calculated by averaging the best, medium and worst cases
shown in Table 5. The graphic shows that FF neural networks outperform traditional
programming between 80% — 95% in all the three analyzed features (energy consumption,
the time needed to carry out the reprogramming and number of packets sent). Moreover,
C-Mantec improves further the efficiency of the transmission as it outperformed the TP
results on approximately 95% at least in all the cases studied.

3. Case of Study: Fall Detection Problem.

3.1. Fall detection problem overview. In this section we apply our proposal to the
problem of fall detection, an important problem in social health, affecting a large per-
centage of the elderly population [5,36,50]. The usual framework for this problem are
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FicUurE 3. Improvement on performance reflecting the benefits of using
neural networks. The graphics show the average (between best, medium
and worst cases) improvement between traditional programming (TP) and
feed-forward neural networks (FF) (top graphs), and between TP and C-
Mantec (bottom graphs) for the three analyzed datasets.

elderly people residences where it is needed to detect efficiently when a person living in
the residence falls, either in their room or in a communal area. A practical way to detect
when a person falls is to use wireless sensor networks. The first step consists of attaching
a small sensor node with a 3-axis accelerometer to each person that allows the system to
monitor the tilt angle and motion of the carrier person. This configuration detects any
anomalous movement in the individual wearing it, such as a sharp downward movement
or any sudden or violent movement. These body sensors together with other ones fixed
to the walls of the residence will form a wireless sensor network which will permit the
data to be relayed from the location where the event occurs to the base station where the
information is going to processed.

Detecting a fall from data from the sensor is quite a difficult task, in particular for
standard programming algorithms, as a typical “falling pattern” should be extracted from
the accelerometer readings (3-axis data) gathered by the sensor, in order to implement the
program. However, artificial neural networks offer a simple and versatile way to solve this
problem. Specifically, the Multi-LayerPerceptron (FF) and C-Mantec (CM) are trained
with real data composed of the accelerometer readings at two instants of times and a
variable that indicates whether the relation between the readings correspond to a fall or
not. The neural network training process manages to divide the input space into two
classes, separating the patterns associated with a fall from those which are not. This
kind of learning classification problems is better suited for nonlinear models like MLP,
because they can solve a greater number of problems (of different complexity) than linear
models. Specifically in this neural model, the number of hidden layers, together with
the number of neurons, varies depending on the complexity of the problem posed. The
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usefulness of the hidden layers is to project the input patterns into another space in which
the classification can be solved linearly.

3.2. Model evaluation. In order to generate the neural network that detects falls it is
necessary to get a dataset to train the network. To obtain this training dataset in this
case study we attached a sensor node to the waist of a voluntary person. The sensor was
placed on the waist because for this part typical movements (such as walking and sitting
down) do not significantly affect the readings of the accelerometer sensor. On the other
hand, when the sensors are attached to the waist falls have relatively simple recognizable
patterns.

After attaching the sensor common movements such as sitting down, walking and stop-
ping were reproduced. The sensor periodically gathers accelerometer data each 100 ms.
This set of data was identified with the pattern [Z;n; Yini Zini Tend Yend Zena 0] Where z, y
and z represent the accelerometer readings for every axis and 0 indicates that the pattern
does not correspond to a fall. After that, we simulated falls to obtain patterns related
with them. This set of data was represented by patterns with the form [Zin; Yini Zini Tena
Yend Zend 1]

Once the neural network was trained, some tests were carried out in order to see how
well the combination of sensor and neural networks performed to detect falls. The results
obtained were satisfactory (see Tables 6 and 7) since almost all simulated falls were de-
tected correctly by the sensor node. If after the deployment of the network the application
needs modifications to take into consideration new data or new behavioral patterns, the
use of TP would imply reprogramming the whole or a large part of the program in all the
nodes attached to each person. Following our approach, however, this task is considerably
simplified as only the value of synaptic weights need to be transmitted.

The time needed to carry out the training process using FF was 172.2 minutes while
CM results were obtained in 121.5 minutes. Once again, it is remarkable the difference
between FF and CM models although in our case this process is less important because it
could be done off-line on a simple PC. Table 8 shows a comparison of the results obtained
when reprogramming a WSN using the three techniques. Time, energy and number of
packets have been measured using the COOJA simulator and three different results are
reported, corresponding to Best, Medium and Worst communication scenarios according
to the position of the sensors to be updated, as it was indicated before in Section 2.2.3.
As it was expected, there is a big difference between the Best and Worst scenario in
some measure. Furthermore, there are also important positive results obtained using
our proposed algorithm C-Mantec in comparison to the ones obtained with Traditional
Programming or Feedforward that are considerably worse on each of measures considered
in this work.

TABLE 6. Size (in bytes) and corresponding number of packets of the mes-
sage needed to be sent to update the code of the sensors everytime an
update is done, computed for the practical case of study in this work: TP,

FF and CM
Fall Detection
Size
(bytes) Packets
TP 4137 207
FF 840 42
CM 104 6
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TABLE 7. Classification results for the practical case study using TP, a
feedforward multilayer perceptron (FF) and C-Mantec (CM)

Fall detection

% TPR | % TNR | Sl /

Neurons

TP | 99.98 99.99 7
08 100

e +14.14 +0 10

N 99.85 99.91 1.05

M +0.06 +0.1 +0.23

TABLE 8. Time (ms), energy (mW) and number of packets needed to re-
program the simulated sensor nodes for the practical case study analyzed
(fall detection) and for the three different technologies used: traditional pro-
gramming (TP), feedforward neural network (FF) and constructive neural
network C-Mantec algorithm. Best, medium and worst cases are analyzed
depending on the position of the nodes (see the text for specific details).

FALL DETECTION PROBLEM

Best Case | Medium Case I Worst Case
Time | Energy ] ‘ Time | Energy ] . Time | Energy
(ms) (W) Packets (ms) (mW) Packets (1ms) (mW)
TP | 84285 8986 29113 351023 | 10337 35326 954742 | 12423 84236
FF | 17226 2102 7256 74892 2423 8141 164229 2478 17526

CM | 2513 268 752 10126 281 1137 23719 365 2678

Packets

Figure 4 reflects, in general, the benefits of using neural networks (particularly C-
Mantec) in comparison with the traditional programming when the sensor networks needs
to carry out dynamic reprogramming. The colored bars on the graphic are overlapped
and these final results are calculated by averaging the best, medium and worst cases
shown in Table 8. The graphic shows that FF neural networks outperform traditional
programming between 77% — 82% in all the three analyzed features (energy consumption,
the time needed to carry out the reprogramming and number of packets sent). Moreover,
C-Mantec improves further the efficiency of the transmission as it outperformed the TP
results on approximately 97% at least in all the features.

4. Conclusions. In this paper, we propose the use of neural network based technologies
to carry out the dynamic reprogramming of WSN. In order to show the benefits of our
proposal we first present a comparative analysis of the resources needed to reprogram the
WSN for three test problems related to the use of sensor networks obtained from public
benchmark datasets. Energy consumption, time needed and number of packets sent were
measured for a simulated sensor network considering best, medium and worst reprogram-
ming cases. Traditional programming based on rules from decision trees, standard FF
neural networks and a novel constructive neural network algorithm were used as tools for
reprogramming the code of the sensors and for these three technologies the comparative
study was carried out. Further, to test the practical application we apply our method to a
real problem where sensors are directly involved and needed for the task of fall detection,
an important problem in social health. The obtained results for this case of study (Section
3.2) confirmed the benchmark tests.

On overall, the results show that the use of FF neural networks can save much of the
resources in reprogramming the nodes, with a further improvement for the case of the
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FIGURE 4. Improvement on performance reflecting the benefits of using
neural networks. The graphics show the average (between best, medium
and worst cases) improvement between traditional programming (TP) and
feed-forward neural networks (FF) (top graphs), and between TP and C-
Mantec (bottom graphs) for the case study.

C-Mantec algorithm above 95% in almost all considered cases. The large difference in
resources observed between TP and neural based technologies (FF & CM) arises mainly
from the way traditional programming operates, sending the whole set of conditional
sentences. This process is very inefficient most of the time as it is independent to whether
the change of the code was large or small. On the other hand, if a neural network based
technology can be used the updating process is much more efficient as only the synaptic
weight values are sent between nodes, saving much of the resources. Regarding the use
of the C-Mantec constructive algorithm, the saving on resources is even larger as this
method generates very small neural networks and thus less numbers of synaptic weights
are needed. Based on these analyse and considerations, it seems that neural network
based technologies, and in particular constructive neural networks like C-Mantec, are very
promising tools to be applied in the area of WSNs, given their powerful computational
capabilities and flexibility of use. On the other hand, one of the disadvantages of the
present approach might be that the use of neural networks involves obtaining training
times usually longer than other standard classification method, but it is worth mentioning
that this process is done off-line, and thus is not related to the time needed to reprogram
the sensors. Eventually, the introduction in the near future of smarter sensors might
permit in the case of small modification of the programming code to alter only specific
parts of the code allowing TP to be more efficient at the time of reprogramming sensors.

Nevertheless, these potential benefits will apply only to minor modifications of the code
based on TP.
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Appendix A. Glossary of acronyms. The different acronyms used among the article
are

WSN.  Wireless sensor network

TP. Rule-based programming
NN. Neural networks

CNN.  Constructive neural networks
FF. Feedforward neural networks

CM. C-Mantec algorithm

TDR.  Traditional dynamic reprogramming
NNDR. Neural network dynamic reprogramming
TPR. True positive rate

TNR.  True negative rate

OAP.  Old age pensioner



