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Abstract. This paper brings attention to the nonlinear dynamics of an induction mo-
tor’s drive system with indirect field controlled. To understand the complex dynamics of
system, some basic dynamical properties, such as equilibrium, stability are rigorously de-
rived and studied. Chaotic attractors are first numerically verified through investigating
phase trajectories, bifurcation path, Poincaré projections and dissipativity. Furthermore,
a new sliding mode control method is proposed to gain the synchronization with different
initial values. It can control the system to an equilibrium point. Numerical simulations
are presented to demonstrate the effectiveness of the proposed controllers.
Keywords: Induction motor, Chaos, Chaos control, Synchronization

1. Introduction. Chaotic behavior has been extensively analyzed in many fields such as
mathematics [1], physics [2], biology [3], mechanical [4] and electrical engineering [5]. As
a matter of fact, chaos may occur in natural processes. Controlling these complex chaotic
dynamics for engineering applications has emerged as a new and attractive field and has
developed many profound theories and methodologies.

Motor is a device, which is widely applied in industry for energy conversion between
energy and mechanical energy. Many achievements have been proposed. For example,
Ataei et al. [6] characterized the complex dynamics of the permanent-magnet synchronous
motor (PMSM) model with a non-smooth-air-gap. A bifurcation analysis was applied to a
Permanent Magnet (PM) stepper motor, and the nonlinear control was designed by Jing,
Yu and Chen [7]. Harb and Zaher [8] studied chaotic behaviors in Permanent Magnet
Synchronous Motor (PMSM) for a certain range of its parameters, and it was eliminated
by using optimal Lyapunov exponent methodology. Zribi and his co-workers [9] proposed
to use an instantaneous Lyapunov exponent control algorithm to control the Permanent
Magnet Synchronous Motor (PMSM). Dynamical equations of three time scale brushless
DC motor system were presented by Ge and Cheng [10]. Chaotic anti-control and chaotic
synchronization of the system were also studied. Fossi and Woafo [11] presented the
dynamical model of an induction motor activating a mobile plate fixed to a spring and the
electromechanical equations were formulated, and anti-control of chaos in the induction
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motor was also obtained using the field-oriented control associated to the time delay
feedback control. Anti-control of chaos in single time scale brushless DC motors (BLDCM)
and chaotic synchronization of different order systems were also studied by Ge, Chang
and Chen [12]. To control the undesirable chaos in the permanent magnet synchronous
motor (PMSM), an adaptive dynamic surface control law was designed by Wei and his
copartners [13]. The purpose of paper [14] was to employ time-delay feedback to anti-
control a permanent magnet DC (PMDC) motor system for vibratory compactors. Yu et
al. [15] developed an adaptive fuzzy control method to suppress chaos in the permanent
magnet synchronous motor drive system via back stepping technology. However, there are
few contributions to a current-driven induction motor, especially, the dynamical model
for a whole induction motor system with indirect field controlled. While, it is a main
drive device in modern industry, and its nonlinear vibration is catholic. Therefore, it is
necessary to study the intrinsic quality of its nonlinear vibration via nonlinear dynamics
theory.
Chaos control is inquisitive in how to control the chaotic system to the periodic orbit

or equilibrium point with the original parameters remained or only fine-tuned, because
the system parameters can not be changed objectively, or the parameters change largely
must pay a great price. Typical control methods have been proposed to achieve chaos
control. For instance, two methods of chaos control with a small time continuous pertur-
bation were proposed by Pyragas [16]. Ataei et al. [17] presented a chaos synchronization
method for a class of uncertain chaotic systems using the combination of an optimal
control theory and an adaptive strategy. Wang and his coworkers [18] used symbolic dy-
namics and the automaton reset sequence to identify the current drive word and obtained
the synchronization. Nonlinear and linear feedback controllers were designed to control
and synchronize the chaotic system by Rafikov et al. [19]. Golovin et al. [20] proposed
a global feedback control method based on measuring the maximum of the pattern am-
plitude over the domain, which can stabilize the system. Based on OGY approach, a
multiparameter semi-continuous method was designed to control chaotic behavior by de
Paula and Savi [21]. The united chaotic systems with uncertain parameters were synchro-
nized based on the CLF method by Wang et al. [22]. Ataei et al. [23] presented a chaos
synchronization method for a class of uncertain chaotic systems using the combination of
an optimal control theory and an adaptive strategy. Among the control methods, sliding
mode technique (SMT) is one of the best methods. Recently, many contributions have
been published (see, for example, [24-28]). To our best knowledge, there is little informa-
tion about control method, which could bridge the chaos control and synchronization from
the literature. And, it is a very valuable theory for its stable and synchronous operation
with the power system.
Considering all the above discussion, there are several advantages which make our

approach attractive, compared with prior works. First, the nonlinear dynamical model
for a whole induction motor system with indirect field controlled is proposed, and the
nonlinear dynamics behaviors of the system model are analyzed including Poincare maps,
bifurcation diagrams, dissipativity analysis and the spectrogram maps. Moreover, we
present a sliding mode control method. And the control method is effective to the chaos
control and synchronization. Numerical simulations are demonstrated to the effectiveness
of the proposed scheme.
This paper is organized as follows. In Section 2, the nonlinear dynamical model of a

current-driven induction motor expressed in a reference frame rotating at synchronous
speed is proposed. Section 3 discusses the nonlinear dynamical behaviors of the system.
In Section 4, a sliding mode controller is presented. Finally, we give the conclusions and
discussions in Section 5.
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2. Problem Formulation and Preliminaries. The nonlinear dynamical model of a
current-driven induction motor expressed in a reference frame rotating at synchronous
speed is given as follows:

•
φqr = −Rr

Lr
φqr − ωslφdr +

Lm

Lr
Rriqs

•
φdr = −Rr

Lr
φdr − ωslφqr +

Lm

Lr
Rrids

•
ωr = −Rω

J
ωr +

1
J

[
3
2
Lm

Lr
np (iqsφdr − idsφqr)− TL

] (1)

where Rr is rotor resistance, Lr is rotor self-inductance, Lm is mutual inductance in
a rotating reference frame, np is the number of pole pairs, ωsl is slipping frequency, J
is inertia coefficient, TL is load, φqr is quadrature axis component, φdr is direct axis
component of the rotor flux, ωr is rotor angular speed and Rω is rotating resistance
coefficient, respectively.

The parameters are introduced as follows:

c1 =
Rr

Lr
, c2 =

Lm

Lr
Rr, c3 =

Rω

J
, c4 =

1
J
, c5 =

3
2
Lm

Lr
np,

x1 = φqr, x2 = φdr, u1 = ωsl, u2 = ids, u3 = iqs

Therefore, the nonlinear dynamical model of induction motor system with indirect field
controlled can be rewritten as follows.

•
x

1 = −c1x1 − u1x2 + c2u3

•
x

2 = −c1x2 + u1x1 + c2u2

•
ωr = −c3ωr + c4 [c5 (x2u3 − x1u2)− TL]

(2)

In speed regulation applications, the indirect field oriented control is usually applied
with a proportional integral (PI) speed loop, and this control strategy is described as
follows: 

u1 =
∧
c1

u3

u2

u2 = u0
2

u3 = Kp (ωref − ωr) +Ki

∫ t

0
(ωref (ζ)− ωr (ζ)) dζ

(3)

where
∧
c1 is the estimate for the inverse rotor time constant c1, ωref is the constant reference

velocity, u0
2 is the constant reference for the rotor flux magnitude, Kp is the proportional

of the PI speed regulator, Ki is the integral gains of the PI speed regulator.

The rotor time constant varies widely in practice IFOC system of IM. One sets
∧
c1 = c1.

That is to say, if it has a perfect estimate of the rotor time constant, the control is tuned;

otherwise it is said to be detuned. Therefore, the degree of tuning is set to k =
∧
c1
c1
.

Obviously, the controller is tuned and one sets k = 1.
Let x3 = ωref − ωr and x4 = u3, and thus a new fourth dimensional system can be

written as follows, based on the model of the whole closed-loop system (2) and the control
strategy (3). 

•
x

1 = −c1x1 + c2x4 − kc1
u0
2
x2x4

•
x

2 = −c1x2 + c2u
0
2 +

kc1
u0
2
x1x4

•
x3 = −c3x3 − c4

[
c5 (x2x4 − x1u

0
2)− TL − c3

c4
ωref

]
•
x4 = (ki − kpc3)x3 − kpc4

[
c5 (x2x4 − x1u

0
2)− TL − c3

c4
ωref

] (4)
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3. System Dynamics Analysis. The phase trajectory is most intuitive way to describe
system state, shown in Figure 1, when c1 = 13.67, c2 = 1.56, c3 = 0.59, c4 = 1176,
c5 = 2.86, u0

2 = 4, kp = 0.001, ki = 1, k = 1.5, TL = 0.5, ωref = 181.1 and the initial state
is set x1 = 0, x2 = 0.4, x3 = −200, x4 = 6.
Poincare map is a classic technology of dynamical system analysis. If the dense point

on the Poincare section is flaky and structural, the system is chaotic. The Poincare map
is got in the plane z = 1.5, shown in Figure 2. Meanwhile, the spectrogram map exhibits
continuous broadband feature, shown in Figure 3.

(a) x1-x2-x3 (b) x1-x2-x4

(c) x1-x2 (d) x2-x4

Figure 1. Phase trajectory for system (4)

Figure 2. Poincare map for system (4)
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Figure 3. Spectrogram for system (4)

Figure 4. Hopf bifurcation with the change of TL for system (4)

A bifurcation diagram summarizes the essential dynamics of a system, and thus is a
useful tool to observe its nonlinear dynamical response. The bifurcation diagram is shown
in Figure 4 with different torque TL parameters for system (4). The parameters of the
motor are listed as c1 = 13.67s−1, c2 = 1.56H ·s−1, c3 = 0.59s−1, c4 = 1176kg−1 ·m−2 and
c5 = 2.86, the parameters of the system are given u0

2 = 4A, ωref = 181.1rad/s, kp = 0.001,
ki = 0.5, and k = 1.5.
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The equilibria of system (4) can be found by solving the following algebraic equations:

0 = −c1x1 + c2x4 − kc1
u0
2
x2x4

0 = −c1x2 + c2u
0
2 +

kc1
u0
2
x1x4

0 = −c3x3 − c4

[
c5 (x2x4 − x1u

0
2)− TL − c3

c4
ωref

]
0 = (ki − kpc3) x3 − kpc4

[
c5 (x2x4 − x1u

0
2)− TL − c3

c4
ωref

]
where, c1 = 13.67, c2 = 1.56, c3 = 0.59, c4 = 1176, c5 = 2.86, u0

2 = 4, kp = 0.001, ki = 1,
k = 1.5, TL = 0.5, ωref = 181.1 and the initial state is set to x1 = 0, x2 = 0.4, x3 = −200,
x4 = 6.
The system has three equilibria, which are respectively described as follows:
O(−0.017, 0.455, 0, 0.304),
E+(−0.022− 0.182 ∗ i, 0.184 + 0.021 ∗ i, 0, 0.187− 3.981 ∗ i),
E−(−0.022 + 0.182 ∗ i, 0.184− 0.021 ∗ i, 0, 0.187 + 3.981 ∗ i).
The system has a unique equilibrium O(−0.017, 0.455, 0, 0.304). Linearize the system

at O, and the Jacobian matrix is obtained as follows:

J0 =


−13.67 −5.12625x4 0 1.56− 5.12625x2

5.12625x4 −13.67 0 5.12625x1

13453.44 −3363.36x4 −0.59 −3363.36x2

13.45344 −3.36336x4 0.99941 −3.36336x2



=


−13.67 −1.558 0 −0.772
1.558 −13.67 0 −0.087

13453.44 −1022.46 −0.59 −1530.32
13.4534 −1.022 0.999 −1.530


For gaining its eigenvalues, we have:

|λI − J0| = 0

These eigenvalues at equilibrium O are respectively obtained as follows:

λ1 = 1.65 + 40.39i, λ2 = 1.65− 40.39i, λ3 = −18.98, λ4 = −13.78.

λ1, λ2 are complex conjugate pair and their real parts are positive, and λ3 and λ4 are
negative real numbers. Therefore, the equilibrium O is a saddle point. It is unstable.
The other two equilibrium points E+ and E− do not belong to the real space. Thus, it

is not necessary to discuss stability of these points.
The theory of dissipative systems is a basic tool to describe the system characteristics.

And dissipative analysis of system (4) is presented as follows. For system (4), it is noticed
that

∇V =
∂

•
x1

∂x1

+
∂

•
x2

∂x2

+
∂

•
x3

∂x3

+
∂

•
x4

∂x4

= − (2c1 + c3 + kpc4c5x2) < 0,

where c1 = 13.67, c3 = 0.59, c4 = 1176, c5 = 2.86, kp = 0.001 and 0.32 ≤ x2 ≤ 0.42.
Obviously, system (4) can have dissipative structure, with an exponential contraction
rate:

dV

dt
= − (2c1 + c3 + kpc4c5x2)V.

That is, a volume element V0 is contracted by the flow into a volume element
V0e

−(2c1+c3+kpc4c5x2)t in time t. This means that each volume containing the system orbit
shrinks to zero as t → ∞ at an exponential rate − (2c1 + c3 + kpc4c5x2). Therefore, all
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system orbits are ultimately confined to some subset of zero volume, and the asymptotic
motion settles on some attractors.

4. Chaos Control, Synchronization and Numerical Simulation Results.

4.1. Controller design. Consider the drive system

Dx = Ax+ g(x) (5)

where x(t) ∈ R4 denotes the state vector of the 4-dimensional system, A ∈ R4×4 represents
the linear part of the system and g : R4 → R4 is the nonlinear part of the system.

Considering y(t) ∈ R4 as the response of state vector of the 4-dimensional system, we
can rewrite the response system as

Dy = Ay + g(y) (6)

The controller u(t) ∈ R4 is added to system (6), so it can be rewritten as:

Dy = Ay + g(y) + u(t) (7)

Here, we define the synchronization errors e = y − x. The aim is to choose a suitable
controller u(t) ∈ R4 such that the states of the master and slave systems can reach
synchronization (i.e., lim

t→∞
‖e‖ = 0, where ‖·‖ is the Euclidean norm).

Now, one sets the controller u(t) as

u(t) = u1(t) + u2(t) (8)

where u1(t) ∈ R4 is a compensation controller, and u1(t) = Dx−A(x)− g(x). u2(t) ∈ R4

is a vector function, and will be designed later. Using (8), response system (7) can be
rewritten as

De(t) = Ae+ g(y)− g(x) + u2(t) (9)

In accordance with the procedure of designing active controller, the nonlinear part of
the error dynamics is eliminated by the following the following input vector:

u2(t) = g(x)− g(y) +Kw(t) (10)

Error system (9) is then rewritten as follows

De(t) = Ae+Kw(t) (11)

where K = [k1, k2, k3, k4]
T is a constant gain vector and w(t) ∈ R is the control input

that satisfies

w(t) =

{
w+(t)
w−(t)

s(e) ≥ 0
s(e) < 0

(12)

As a choice for the sliding surface, we have

s(t) = Ce (13)

where C = [c1, c2, c3, c4]
T is a constant vector. For sliding mode method, the sliding

surface and its derivative must satisfy the following conditions.

s(t) = 0, ṡ(t) = 0 (14)

One sets:

ṡ(t) = CDe(t) = C(Ae+Kw(t)) = 0 (15)

To satisfy the above condition, the discontinuous reaching law is chosen as follows

Ds(t) = −psign(s)− rs (16)
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where

sign(s) =

 +1, s > 0
0, s = 0
−1, s < 0

(17)

and p > 0, r > 0 are the gains of the controller.
Considering (15) and (16), we have

w(t) = −(CK)−1 [C(rI + A)e+ psign(s)] (18)

Now, the total control law can be defined as follows

u(t) = Dx− Ax− g(y)−K(CK)−1 [C(rI + A)e+ psign(s)] (19)

Using (19) and (9), the error dynamics can be obtained

De = [A−K(CK)−1C(rI + A)]e−K(CK)−1psign(s) (20)

For the sliding term, a linear system is a bounded input (−K(CK)−1p, when s > 0
and K(CK)−1p, when s < 0). The system (20) is stable, if |arg(eig([A−K(CK)−1C(rI
+A)]))| > π/2. It can be shown that choosing appropriate K, C and r can make the
error dynamics stable. Hence, the synchronization is realized.
Similarly, if the drive system (5) is modified as

Dx = 0 (21)

Thus, the response system can be controlled to the initial values of drive system. If the
initial values are changed, the controlling to any stable point can be achieved.

4.2. Numerical simulation results. The numerical simulation results are carried out
to verify the applicability and effectiveness of the proposed sliding mode control method.
It should be noticed that the controller is in action at t = 10. The ode45 solver of Matlab
software is applied to solve different equations. By taking the parameters as these in
Section 3, system (4) can be rewritten as:

•
x

1 = −13.67x1 + 1.56x4 − 5.1262x2x4

•
x

2 = −13.67x2 + 5.1262x1x4 + 6.24
•
x3 = −0.59x3 − 3363.4x2x4 + 13453x1 + 694.85
•
x4 = 0.9994x3 − 3.3634x2x4 + 13.4534x1 + 0.6948

(22)

According to 4.1, we get

A =


−13.67 0 0 1.56

0 −13.67 0 0
13453 0 −0.59 0
13.4534 0 0.9994 0

 , g =


−5.1262x2x4

5.1262x1x4 + 6.24
−3363.4x2x4 + 694.85
−3.3634x2x4 + 0.6948


Let system (22) with initial conditions [xd1, xd2, xd3, xd4]

T = [0, 0.4,−200, 6]T as a drive
system, and system (22) with initial values [xr1, xr2, xr3, xr4]

T = [0.3, 0.5, 0.2, 0.4]T as a
response system. The parameters of the controller are set as K = [−2,−6,−2,−2]T,
C = [5, 5, 5, 5], r = 5, and p = 0.2. This selection of parameters results in eigenvalues
(λ1, λ2, λ3, λ4) = (−2247.3,−14.072,−5,−2.1495) which are located in the stable region.
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According to (19), the control signals are obtained as

u1 =
dqr1xd

dt
− 2243.0e1 + 1.4450e2 − 0.9016e3 − 1.0933e4

+ 13.670xd − 1.56wd + 5.1262yrwr − 0.0067sign(s1)

u2 =
dqr2yd

dt
− 6728.9e1 + 4.3350e2 − 2.7047e3 − 3.28e4

+ 13.67yd − 5.1262xrwr − 6.24− 0.02sign(s2)

u3 =
dqr3zd

dt
− 2243.0e1 + 1.4450e2 − 0.90157e3 − 1.0933e4

− 13453xd + 0.59zd + 3363.4yrwr − 694.85− 0.0067sign(s3)

u4 =
dqr4wd

dt
− 2243.0e1 + 1.4450e2 − 0.90157e3 − 1.0933e4

− 13.453xd − 0.9994zd + 3.3634yrwr − 0.6948− 0.0067sign(s4)

(23)

where e1 = xr − xd, e2 = yr − yd, e3 = zr − zd, e4 = wr − wd.
The numerical simulation results are given in Figure 5. One can see, the errors con-

verge to zero immediately after the controller was applied, which implies that the chaos
synchronization between the two systems is realized.

Keep the parameters of the controller fixed, while set the drive system as system (21)
to investigate the effectiveness of the controller. And we still use system (23) as the
controller. Fortunately, Figure 6 illustrates the response states, which show that the
response states follow initial values of the drive system immediately.

5. Conclusions and Discussions. The drive system of induction motor with indirect
field controlled is studied in this paper. The system model is described, which is an au-
tonomous four-order electromechanical system. In order to analyze a variety of chaotic

Figure 5. Synchronization errors between the two systems (the controller
u(t) is activated at t = 10)
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Figure 6. The state variables of the response system in the presence of
controller (the controller u(t) is activated at t = 10)

phenomena, we employ several numerical techniques such as phase portrait, bifurcation di-
agrams, Poincare map, balance point, Spectrogram map and dissipativity. To understand
the complex dynamics of system, some basic dynamical properties, such as equilibrium,
stability are rigorously derived and studied. Chaotic attractors are first numerically ver-
ified through investigating phase trajectories, bifurcation path and Poincaré projections
and dissipativity. All of the above is theoretical basis of stability of an induction motor
system with indirect field controlled.
Synchronization and control of the chaos in the induction motor system based on slid-

ing mode law is proposed. The theoretical analysis and numerical results have shown
the effectiveness of the proposed controller. Moreover, the sliding mode law is a bridge
between chaos control and synchronization, which provides a theoretical support for its
stable and synchronous operation with the power system.
In fact, the electrical devices are all nonlinear system. With the rapid development

of nonlinear science, it comes true that many nonlinear models can be described and
analyzed. Furthermore, the more and better control methods for different situations
should be studied. For example, new controller is with fewer terms, new control method
has better immunity against noise and uncertain parameters.

Acknowledgment. This work is partially supported by National Natural Science Foun-
dation (NO. 51109180) and Talent Special Fund of North West A&F University (BJRC-
2009-001). The authors also gratefully acknowledge the helpful comments and suggestions
of the reviewers, which have improved the presentation.



CONTROL AND SYNCHRONIZATION OF CHAOS IN AN INDUCTION MOTOR SYSTEM 7247

REFERENCES

[1] D. Y. Chen, Y. X. Liu, X. Y. Ma and R. F. Zhang, Control of a class of fractional-order chaotic
systems via sliding mode, Nonlinear Dynamics, vol.67, no.1, pp.893-901, 2012.

[2] J. Zhang, C. S. Zhou, X. K. Xu and M. Small, Mapping from structure to dynamics: A unified view
of dynamical processes on networks, Physical Review E, vol.82, no.2, pp.026116, 2010.

[3] D. Y. Chen, W. L. Zhao, X. Y. Ma et al., No-chattering sliding mode control chaos in Hindmarsh-
Rose neurons with uncertain parameters, Computers and Mathematics with Applications, vol.61,
no.8, pp.3161-3171, 2011.

[4] C. A. Kitio Kwuimy, B. Nana and P. Woafo, Experimental bifurcations and chaos in a modified self-
sustained macro electromechanical system, Journal of Sound and Vibration, vol.329, no.15, pp.3137-
3148, 2010.

[5] D. Y. Chen, C. Wu, C. F. Liu et al., Synchronization and circuit simulation of a new double-wing
chaos, Nonlinear Dynamics, vol.67, no.2, pp.1481-1504, 2012.

[6] M. Ataei, A. Kiyoumarsi and B. Ghorbani, Control of chaos in permanent magnet synchronous motor
by using optimal Lyapunov exponents placement, Physics Letters A, vol.374, no.41, pp.4226-4230,
2010.

[7] Z. J. Jing, C. Yu and G. R. Chen, Complex dynamics in a permanent-magnet synchronous motor
model, Chaos, Solitons and Fractals, vol.22, no.4, pp.831-848, 2004.

[8] A. M. Harb and A. A. Zaher, Nonlinear control of permanent magnet stepper motors, Communica-
tions in Nonlinear Science and Numerical Simulations, vol.9, no.4, pp.443-458, 2004.

[9] M. Zribi, A. Oteafy and N. Smaoui, Controlling chaos in the permanent magnet synchronous motor,
Chaos, Solitons and Fractals, vol.41, no.3, pp.1266-1276, 2009.

[10] Z. M. Ge and J. W. Cheng, Chaos synchronization and parameter identification of three time scales
brushless DC motor system, Chaos, Solitons and Fractals, vol.24, no.2, pp.597-616, 2005.

[11] D. O. T. Fossi and P. Woafo, Dynamical behaviors of a plate activated by an induction motor,
Journal of Sound and Vibration, vol.329, no.17, pp.3507-3519, 2010.

[12] Z. M. Ge, C. M. Chang and Y. S. Chen, Anti-control of chaos of single time scale brushless DC
motors and chaos synchronization of different order system, Chaos, Solitons and Fractals, vol.27,
no.5, pp.1298-1315, 2006.

[13] D. Q. Wei, X. S. Luo, B. H. Wang et al., Robust adaptive dynamic surface control of chaos in
permanent magnet synchronous motor, Physics Letters A, vol.363, no.1-2, pp.71-77, 2007.

[14] Z. Wang and K. T. Chau, Anti-control of chaos of a permanent magnet DC motor system for
vibratory compactors, Chaos, Solitons and Fractals, vol.36, no.3, pp.694-708, 2008.

[15] J. P. Yu, B. Chen, H. S. Yu et al., Adaptive fuzzy tracking control for the chaotic permanent magnet
synchronous motor drive system via backstepping, Nonlinear Analysis: Real World Applications,
vol.12, no.1, pp.671-681, 2011.

[16] K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A, vol.170,
no.6, pp.421-428, 1992.

[17] M. Ataei, A. Iromloozadeh and B. Karimi, Robust synchronization of a class of uncertain chaotic
systems based on quadratic optimal theory and adaptive strategy, Chaos, vol.20, no.4, pp.043137,
2010.

[18] M. G. Wang, X. Y. Wang, Z. Z. Liu and H. G. Zhang, The least channel capacity for chaos synchro-
nization, Chaos, vol.21, no.1, pp.013107, 2011.

[19] M. Rafikov and J. M. Balthazar, On control and synchronization in chaotic and hyperchaotic systems
via linear feedback control, Communications in Nonlinear Science and Numerical Simulation, vol.13,
no.7, pp.1246-1255, 2008.

[20] A. A. Golovin, Y. Kanevsky and A. A. Nepomnyashchy, Feedback control of subcritical Turing
instability with zero mode, Physical Reiview E, vol.79, no.4, pp.046218, 2009.

[21] A. S. de Paula and M. A. Savi, A multiparameter chaos control method based on OGY approach,
Chaos, Solitons & Fractals, vol.40, no.3, pp.1376-1390, 2009.

[22] H. Wang, Z. Z. Han, W. Zhang and Q. Y. Xie, Synchronization of united chaotic systems with
uncertain parameters based on the CLF, Nonlinear Analysis: Real World Applications, vol.10, no.2,
pp.715-722, 2009.

[23] M. Ataei, A. Iromloozadeh and B. Karimi, Robust synchronization of a class of uncertain chaotic
systems based on quadratic optimal theory and adaptive strategy, Chaos, vol.20, no.4, pp.043137,
2010.



7248 D. CHEN, P. SHI AND X. MA

[24] P. Shi, Y. Xia, G. Liu and D. Rees, On designing of sliding mode control for stochastic jump systems,
IEEE Trans. on Automatic Control, vol.51, no.1, pp.97-103, 2006.

[25] D. Y. Chen, T. Shen and X. Y. Ma, Sliding mode control of chaotic vibrations of spinning disks with
uncertain parameter under bounded disturbance, Acta Physica Sinica, vol.60, no.5, pp.050505, 2011
(in Chinese).

[26] D. Y. Chen, Y. X. Liu, X. Y. Ma et al., No-chattering sliding mode control in a class of fractional-
order chaotic systems, Chinese Phyiscs B, vol.20, no.12, pp.120506, 2011.

[27] B. Jiang, P. Shi and Z. Mao, Sliding mode observer-based fault estimation for nonlinear networked
control systems, Circuits Systems and Signal Processing, vol.30, no.1, pp.1-16, 2011.

[28] D. Y. Chen, R. F. Zhang, X. Y. Ma et al., Chaotic synchronization and anti-synchronization for
a novel class of multiple chaotic systems via a sliding mode control scheme, Nonlinear Dynamics,
vol.69, no.1-2, pp.35-55, 2012.


