International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 10(B), October 2012 pp. TO55—-T082

AN AUGMENTED WAVELET DE-NOISING TECHNIQUE
WITH NEURO-FUZZY INFERENCE SYSTEM
FOR WATER QUALITY PREDICTION

AvLt NajaH AEMED!, AHMED EL-SHAFIE!, OTHMAN A. KARIM!
AND AMR EL-SHAFIE?

!Department of Civil and Structural Engineering
Universiti Kebangsaan Malaysia
Bangi, Selangor 43600, Malaysia
ali_najah@ymail.com

2Civil and Engineering Department
University BenGhazi
Banighazi, Lybia

Received August 2011; revised December 2011

ABSTRACT. Johor River Basin is located in Johor state, Malaysia, which is significantly
degrading due to human activities and development along the river. Accordingly, it is
very important to implement and adopt a water quality prediction model that can provide
a powerful tool to implement better water resource management. Several modeling meth-
ods have been applied to this research including: Multi Layer Perceptron Neural Networks
(MLP-ANN), Radial Basis Function Neural Networks (RBF-ANN) and Adaptive Neuro-
Fuzzy Inference System (ANFIS). Nevertheless, the data arising from monitoring stations
and experiment may be polluted by noise signals owing to systematic errors and random
errors. This noisy data often make the predict task relatively difficult. Therefore, this
study suggests an augmented Wavelet De-noising Technique with Neuro-Fuzzy Inference
System (WDT-ANFIS). In this study, the water quality parameters in the domain of in-
terests are dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical ozygen
demand (COD). Two scenarios were introduced: Scenario 1 was to construct prediction
model for water quality parameters at each station, while Scenario 2 was to construct pre-
diction model based on the value of same parameter at previous station (upstream), and
both were based on the value of the twelve input parameters. The WDT-ANFIS was ver-
ified based on field data from 2009-2010. The WDT-ANFIS model outperformed all the
proposed models and improved predicting accuracy for all water quality parameters. Sce-
nario 2 performed more adequately than Scenario 1 with significant improvement ranging
from 0.5% to 3.1% for all water quality parameters at all stations. The verification of
the proposed model showed that the model satisfactorily predicted all the parameters (R?
values bigger than 0.9).

Keywords: MLP-ANN, RBF-ANN, WDT-ANFIS

1. Introduction. Increasing concerns about the environment, associated with limited
budget, are generating increasing interest in rational and cost-effective approaches for
water quality management. Because water quality management will have direct impacts
on human health, improvement in the quality of water available for human consumption
will contribute to the reduction of health hazards [1]. Water quality modelling is the basis
of water pollution control project. It predicts the water quality tendency of varieties ac-
cording to the current water environment quality condition, transfer and transformation
rule of the pollutants in the river basin. In addition, several water quality models, such
as determistic and stochastic models have been developed in order to manage the best
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practices for conserving water quality [2,3]. Most of these models are very complex and
require a significant amount of field data to support the analysis. Furthermore, many
statistical-based water quality models, which assume the relationship between response
variable and prediction variable, are linear and distributed normally. However, the accu-
rate and efficient modelling of water quality in complex water bodies is still challenging
due to the complexity and variability of the real world, the uncertainty in model structure
and model parameters, and the error in measured data. Therefore, traditional data pro-
cessing methods are no longer efficient enough for solving the problem [4]. More efforts
need to be made to be improving the reliability of models results. Recently, Artificial
Intelligence (AI) technique has been accepted as an efficient alternative tool for modeling
of complex non-linear systems. The models usually do not consider the internal mecha-
nism but build models via the relationship between inputs and outputs. At present, Al
has been used intensively for prediction in a number of water-related areas [5-11]. The
above study efforts were normally based on an assumption that the data to be used should
be reliable and accurate. However, the data arising from investigation and experiment
may be polluted by noise signals due to the subjective and/or objective errors [12]. For
example, the experiment errors may be resulted from measurement, reading, recording,
and external conditions. Since these noisy signals are probably to distort the results of
models, it is a must to remove them (that is, signal denoising) before using any original
data. Signals can be denoised through the application of a set of linear filters [13]. How-
ever, one problem of these filters is that they are more appropriate in linear systems than
nonlinear systems. In addition, Fourier analysis technique (FAT) is a classical tool for
reducing noises, but it is only suitable for denoising data/signals containing steady noises.
Due to the noises that are unsteady in real-world cases, its application is still limited. To
overcome the problems of traditional denoising techniques, more sophisticated techniques
such as wavelet de-noising technique (WDT) have been proposed. WDT is useful for
denoising multi-dimensional spatial /temporal signals containing steady/unsteady noises.
It has been widely applied to engineering systems for patterns recognition and knowledge
discovery [14,15]. Nevertheless, few of these studies were applied to water quality man-
agement systems, where the water quality monitoring data needs to be used for parameter
prediction [16]. In this article, an augmented WDT-ANFIS based on historical data of wa-
ter quality parameters will introduce. In addition, a comprehensive comparison analysis
was also carried out between the proposed model (WDT-ANFIS) and different techniques
of Artificial Intelligence (AI) namely, the Multi Layer Perceptron Neural Networks (MLP-
ANN), Radial Basis Function Neural Networks (RBF-ANN) and Adaptive Neuro-Fuzzy
Inference System (ANFIS) to evaluate the performance achieved after removing the noises
from the data.

2. Methods and Materials.

2.1. Study area and data analysis. Johor is the second largest state in the Malaysia
Peninsular, with an area of 18,941 km?. The Johor River and its tributaries are important
sources of water supply, not only for the state of Johor but also for Singapore. The river
comprises 122.7 km long drains, covering an area of 2,636 km?. It originates from Mount
Gemuruh and flows through the southeastern part of Johor and finally into the Straits of
Johor. The catchment is irregular in shape. The maximum length and breadth are 80 km
and 45 km, respectively. About 60% of the catchment comprises undulating highlands
rising to a height of 366 m, while the remainder encompasses lowland and swampy areas.
The station’s location map is provided in Figure 1. This station includes four locations
along the main stream of the river, which are near to the mouth of the major tributaries.
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Ficure 1. Map showing the geographical setting of the survey area with
four field monitoring stations on the main stream

The proposed models in this research were constructed under the assumption that land
use/cover has remained unchanged during the study period. However, land use/cover
is an important factor for the prediction of water quality parameters. A more precise
prediction of water quality parameters could be achieved by adding variables representing
the land use/cover status into the model.

The area of research is based on the secondary data of water quality parameters of Johor
River. In this study, the water quality parameters in the domain of interest are dissolved
oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD)
due to their importance when studying the water quality status of any rivers. These
water quality parameters were measured within the period of 1998-2007. The amount of
dissolved oxygen present in a watercourse is one of the most important measures of the
water quality. It is also commonly used as indicators of a river’s health. The number of life
forms that survive begins to decrease as the level of DO drops below 4 mg/l. In extreme
cases, when anaerobic condition exists, most high forms of life are either killed or driven
off. Eventually conditions like floating sludges, bubbling, odourous gasses and slimy fungal
growths will subsist [17]. Most organic materials such as those from waste water treatment
plants, industrial efluents and agricultural run-off are biodegradable. The amount of
oxygen used in the metabolism of biodegradable organics is termed biochemical oxygen
demand. When organic matter decomposes, microorganisms such as bacteria and fungi
feed upon it and eventually it becomes oxidized. Biochemical oxygen demand (BOD)
is a measure of the quantity of oxygen used by these microorganisms in the aerobic
oxidation of organic matter chemical oxygen demand (COD) is a water quality parameter
to indicate the level of pollution in the water based on chemical characteristics and is a
measure of the amount of oxygen required to oxidize the organic matter chemically by
a strong oxidant known as dichromate and sulfuric acid. COD is therefore an estimate
of the amount of organic and reduced matter present in the water or better known as
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the amount of oxygen needed to chemically decompose the organic matter in the water.
The basic statistical parameters, namely, minimum, mean, maximum, standard deviati-
on (S.D.), and coefficient of variation (CV) of the input parameters used in this study,
are presented in Table 1.

TABLE 1. The basic statistical analysis for six water quality parameters

Unit Mean Minimum Maximum SD Cv

SNO1

DO mg/1 6.25 291 7.34 0.59 9.52
COD mg/1 22.14 3.00 56.00 6.67  30.13
BOD mg/1 1.80 1.00 5.00 0.87  48.36
SNO2

DO mg/1 6.14 4.84 6.96 0.42 6.83
COD mg/1 23.28 9.00 42.00 7.09  30.45
BOD mg/1 2.26 1.00 16.00 221 97.57
SNO3

DO mg/1 5.80 3.97 6.78 0.69  11.95
COD mg/1 20.28 1.00 45.00 8.45  41.67
BOD mg/1 2.05 1.00 9.00 1.74  84.59
SNO4

DO mg/1 5.54 4.41 7.53 0.67  12.07
COD mg/1 19.28 1.00 38.00 6.16  31.92
BOD mg/1 1.86 1.00 9.00 1.57  84.68

2.2. Proposed techniques. Wavelet analysis represents the next logical step after short-
time Fourier transforms (STEFT). It is based on a windowing technique with variable-sized
regions. Wavelet transform (WT) allows the use of long time intervals where we want
more precise low frequency information, and shorter regions where we want high frequency
information [18]. In general, the major advantage offered by wavelets is the ability to
perform local analysis; that is to analyze a localized area of a larger signal. The discrete-
time WT of a time domain signal x[k] is given as [16]:

DWT(m,n) =1 / VaT Y alklul2 0 — K] (1)

where ¢(n) is the mother wavelet while m and k are, respectively, the scaling and shifting
indices. The scaling gives the DWT logarithmic frequency coverage in contrast to the uni-
form frequency coverage of the STFT. This analysis method then consists of decomposing
a signal into components at several frequency levels, which are related by powers of two
(a dyadic scale) [18]. The filtering approach to multi-resolution WT is to form a series of
half-band filters that divide a spectrum into a high frequency band and a low frequency
band. It is formulated on a scaling function or low-pass filter (LP) and a wavelet function
or high-pass filter (UP) [19]. Wavelet Multi-resolution analysis (WMRA) builds a pyra-
midal structure that requires an iterative application of scaling and wavelet functions to
low-pass and high pass filters, respectively. These filters initially act on the entire signal
band at the high frequency (small-scale values) first and gradually reduce the signal band
at each stage. As in Figure 2, the high-frequency band outputs are represented by the
detail coefficients (DI, D2, D3), and the low-frequency band outputs are represented by
the approximation coefficients (Al, A2, A3).
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FIGURE 2. Scheme representing of the pyramid structure representing WMRA

Adaptive neuro-fuzzy inference system (ANFIS), first was proposed by Jang in 1993
[20], can achieve a highly nonlinear mapping and it is superior to common linear methods
in producing nonlinear time series [21]. Throughout this research, it was considered the
ANFIS architecture for the first order Sugeno fuzzy model [22]. The ANFIS is a multilayer
feed forward network which uses neural network learning algorithms and fuzzy reasoning
to map an input space to an output space [23]. Assuming the fuzzy inference system
under consideration has two inputs, z and y, and one output, f for a first-order Sugeno
fuzzy model, a common rule set with two fuzzy if.then rules can be expressed as:

Rule 1: If z is Ay and y is B; then f; = p1z + qiy + 14 (2)

Rule 2: If z is Ay and y is By then fo = pox + qoy + 79 (3)
where A;, As and B;, By are the membership functions (mfs) for inputs z and y, re-
spectively; p;, ¢; and r; (i = 1 or 2) are linear parameters in the consequent part of the
first-order Sugeno fuzzy model. Figure 3(a) illustrates the fuzzy reasoning mechanism
for this Sugeno model to derive an output function (f) from inputs z and y. The cor-
responding equivalent ANFIS architecture is showed in Figure 3(b), where nodes of the
same layer have similar functions. ANFIS consists of five layers as shown in Figure 3(b).

In fact, the prediction procedure is, by definition, an operation through which the future
water quality parameter patterns can be provided. In this study, the WDT-ANFIS with
its non-linear and stochastic modeling capabilities was utilized to develop a prediction
model that mimicked the water quality parameter patterns at Johor River based on the
12 input parameters (Scenario 1), which can be expressed as follows:

WQIPy = fwpr-anris(Tempy + CONDy + SALy + TURy 4+ NOsy
+CIN+PO4N+F€N+KN+MQN+NQN+E—COliN) (4)
N=1,234

where WQIPN is the water quality index parameters at station N, and fypr.anrirs(.)
is the non-linear function predictor constructed by the WDT-ANFIS network. Hence,
a total of four models for the water quality parameters predictions were constructed at
each station. Most of the recent studies attempted to predict the concentrations of water
quality parameters at each station. Generally, the water pollution of a downstream station
is affected by the discharge of the local area from the upstream station [24]. Hence, it
was required to consider the effect of water parameters at the upstream station in the
proposed model. Therefore, the second scenario (Scenario 2) was formed to establish
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FIGURE 3. (a) A two input first order Sugeno fuzzy model with two rules;
(b) equivalent ANFIS structure

the model prediction for the water parameters at each station based on the 13 input
parameters. The predicted WQIP at the previous station (upstream) can be expressed
following Equation (5). This procedure of using the predicted WQIP can be repeated
for the third and fourth stations at downstream. The schematic representation of the
proposed networks for Scenario 2 is shown in Figure 4. In addition, in order to investigate
the efficiency of the proposed model (Scenario 2), the verification based on collection of
field data within duration 2009-2010 is presented.

WQIPN_H = fWDT_ANFIS(TempN + CONDN + SALN + TURN + NO;),N + CIN
+POyn + Fexn + Ky + Mgy + Nay + E-coliy + WQIPpN)
(5)

3. Performance Criteria. Due to the fact that water parameters had been truthfully
monitored over the 5-year period, the performances of the proposed models could be
examined and evaluated. The performances of the models were evaluated according to
three statistical indexes. Coefficient of Efficiency (CE) is often used to evaluate the model
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FIGURE 4. The schematic representation of the proposed networks for Sce-
nario 2

performance, introduced by Nash [25]

(Xm - Xp)2
CE=1-"-! (6)

(Xm - Xvm)Z
1

INGE

2

where n is the number of observations, X, and X,, are the predicted and measured
parameter, respectively, and X,, is the average of measured parameter. The Mean Square
Error (MSE) can be used to determine how well the network output fits the desired
output. The smaller values of MSE ensure better performance. It is defined as follows:

n

1
MSE == (Xn—X,)? 7
22 (X @
The coefficient of correlation (CC) is often used to evaluate the linear relationship between
the predicted and measured parameter. It is defined as follows:

y M)(Xp - Xp)
cC=— — (8)

(X, — ¥
2 (6 = X 2 (X, — X

1

n

4. Result and Discussions.



7062 A. NAJAH, A. EL-SHAFIE, O. A. KARIM AND A. H. EL-SHAFIE

4.1. Optimal parameter selection for proposed models. The development of an
ANN model usually consists of three steps. The first step is the training stage, where the
network is subjected to a training set of input-output patterns. The second step is the
validation stage, where the performance of the network is tested on patterns that have
not been ‘seen’ by the network during the training stage. The third step is the testing
stage, where the performance of the network is tested based on the unknown patterns
that have not been ‘seen’ during both stage training and validating stages [26]. Six MLP-
ANN architectures were developed (one for each parameter). All six networks utilize the
Levenberg-Marquardt Back Propagation algorithm (LMA) during the training procedure.
Three activation functions were used: the log-sigmoidal (logsig) function, tan-sigmoidal
(Tansig) and the linear transfer function (purelin). Once the network weights and biases
are initialized during the training process, the weights and biases of the network are
iteratively adjusted to minimize the network performance function mean square error
(MSE) — the average squared error between the network outputs and the target outputs.

In order to find the optimum result for this study, varying values of learning rate
(Ir) introduced to the networks. In fact, the learning rate is crucial for backpropagation
learning algorithm since it determines the magnitude of weight changes. However, training
with smaller learning rate values tends to slow the learning process and it is not preferred.
On the other hand, training with larger learning rates values may cause network oscillation
in the weight space. One way to improve the gradient descent method is to include an
additional momentum parameter (mc) to allow for larger learning rates resulting in faster
convergence while minimizing the tendency to oscillation [27] The idea of introducing the
momentum term is to make the next weight change in more or less the same direction as
the previous one and hence reduce the oscillation effect of larger learning rates. Since there
are few systematic ways of selecting the learning rate and momentum simultaneously, the
best values of these learning parameters are usually chosen through experimentation. As
the learning rate and the momentum can take on any value between 0 and 1, it is actually
impossible to do an exhaustive search to find the best combinations of these training
parameters. In this study, different learning rate and momentum were investigated on the
both networks, in practice; 0.9 and 0.85 were chosen as the optimum learning rate and
momentum for the DO, BOD and COD model, respectively.

A learning matrix including 60% training samples drawn from data was used in training
each network. In order to achieve fast training convergence to the target MSE of 0.0001,
the input and output data were normalized with respect to the corresponding maximum
values in the input vectors using linear normalization functions. Data normalization is
often performed before training process begins. Training, validation and testing processes
of the MLP-NN model were performed to minimize the Mean Square Error (MSE) between
the output and the desired response, as shown in Figure 5. It was apparent that the
performance goal was achieved in less than 24 and 15 iterations (epochs) for DO and
COD, respectively.

One of the most important characteristics of MLP-ANN technique is the number of
neurons in the hidden layer. If an insufficient number of neurons are used, the network will
be unable to model the complex data and the resulting fit will be poor. On the contrary,
if too many neurons are used, the training time may become excessively long and the
network may over fit the data. In this study, different MLP-ANN architectures were used
to examine the best performance. In fact, there is no formal and /or mathematical method
for determining the appropriate “optimal set” of the key parameters of Neural Network.
Therefore, it was decided to perform this task utilizing the trial and error method. The
neurons of the hidden layer were randomized from N = 1 to 20 neurons and the best
number of nodes in the hidden layer is the one that gives the lowest error [28].
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FIGURE 5. The networks convergence during training, (a) DO and (b) COD

The optimum number of neurons was determined based on two performance indices.
The first index is the root-mean-square error (RMSE) value of the prediction error and
the second index is the value of the maximum error. Both indices were obtained while
examining the ANN model with the water quality parameter data between 1998 and 2007.
In fact, in developing such a predicting model using Neural Network, the model could
perform well during the training period and might provide a higher level of error when
evaluating during either the validation or testing period. In the context of this study, these
performance indices used to make sure that the proposed model could provide consistent
levels of accuracy during all periods.

The advantages of utilizing these two statistical indices as a performance indicator of
the proposed model are first, to make sure that the highest error while evaluating the
performance is within the acceptable error for such a forecasting model. This is done
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while utilizing the RMSE to ensure that the summation of the error distribution within
the validation period is not high. Consequently, by using both indices it guarantees
the consistent level of errors by providing a great potential for having the same level
error while examining the model for unseen data in the testing period. In order to show
how the trial and error procedure for selecting the best number of neurons of certain
ANN architecture was performed; the relationship between the numbers of neurons versus
RMSE and maximum error are presented in Figure 6 for better visualization.
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FiGURE 6. Neural network performance utilizing different number of neu-
rons, (a) inverse of RMSE and (b) inverse of maximum error %

The inverse value of both RMSE and maximum error were used as seen in Figures
6(a) and (b) instead of the real values. It is interesting to observe the large number of
local minima that exist in both domains. Changing the number of hidden neurons to
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TABLE 2. The ANN architecture for each parameter

Parameter No. of neuron RMSE Maximum TFHL TFOL TA
error (%)

DO 17 0.17 2.92 TS PL LMA
BOD 17 0.28 3.07 TS PL LMA
COD 18 0.24 3.29 LS PL LMA

TFHL: Transfer Function between input layer and Hidden Layer
TFOL: Transfer Function between hidden layer and Output Layer
TA: Training Algorithm

LS: Log sigmoid

TS: Tan sigmoid

PL: Pure-line

LMA: Levenberg—Marquardt Algorithm

RBF- NN
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FiGurE 7. The training behaviour of the RBF-ANN

the network clearly affects the prediction performance to a significant degree. It clearly
shows that the prediction performance increases as the number of hidden neurons were
increased (from 1 to 18), with a corresponding decrease in RMSE and maximum error
for all parameters. However, adding-up the hidden neurons further (19 to 20) to the
network resulted in a drop of prediction performance. For example, It can be observed
that the best combination of the proposed statistical indices for evaluating the predicting
model for the DO when the ANN architecture has 17 neurons, achieving RMSE 0.17 and
maximum error 2.92%. While the best combination of the proposed statistical indices for
evaluating the predicting model for the BOD when the ANN architecture has 18 neurons,
achieving RMSE 0.24 and maximum error 3.29%. The optimal numbers of neurons for
the rest parameters are presented in Table 2.

In case of radial basis function several trials were performed utilizing different numbers
of radial basis functions and spread values to achieve the target SSE of (1 x 10~*) and
the best possible performance. All of the networks successfully achieved the target, and
the convergence of the SSE of one module during the training procedure is presented in
Figure 7. During the training process, the RBF-ANN adjusted the initial value of spread
to minimize the SSE to reach the performance goal for the DO. This spread is incremented
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TABLE 3. RBF-ANN structures that were used to predict water quality
parameters at both locations

Number of Radial

Basis Function Spread value Output Layer

18 0.5 DO
8 0.7 COD
8 0.9 BOD

(by a certain predefined ratio) if the SSE continuously decreases during training to hasten
system convergence.

The ability of the RBF-NN model to achieve the performance goal depends on the
predefined internal RBF-NN parameters, such as the number of radial basis functions
and the spread. The contribution of each input parameter to the desired output, whereas
the spread controls the adaptive changes that the RBF-ANN makes to the radial basis
functions during the training procedure. Optimization of the internal RBF-ANN param-
eters is an important process for adequate mapping. This optimization was performed by
an extensive trial and error process in which the RBF-NN parameters were tuned to ob-
tain the optimal values of internal RBF-ANN parameters that were capable of mimicking
the sequences of the water quality parameters patterns. Table 3 depicts all RBF-ANN
structures that were used to predict water quality parameters at both locations.

In fact, one of the challenges in modelling with ANFIS is determining its optimal learn-
ing parameters (number of membership function and initial value of step size) prior to
training such that optimal training is accomplished. Two approaches have been recom-
mended by many researchers for determining the optimal learning parameters of learn-
ing environments such as ANFIS: optimization algorithms [29] or by trial-and-error [30].
While finding the optimal learning parameters might be guaranteed by optimization tech-
niques (derivative free or derivative based optimization), the optimization alternative has
the drawback of being computationally expensive. On the other hand, trial-and-error
approach has been proven efficient if the target root mean square error can be met. The
trial-and-error approach has also the advantage of yielding a knowledge rule-base that has
a lower probability of over-fitting the training dataset compared to that of the optimiza-
tion approach. We, therefore, excluded the optimization alternative and determined the
optimal learning parameters of ANFIS using the trial-and error approach.

For each of water quality parameter we used same architectures that presented in
previous section. Where, twelve inputs were used to predict the water quality parameters.
It is to be noted that there is no analytical method to determine the optimal number
of MFs. The optimal number of MFs is usually determined heuristically and verified
experimentally. Hence, the number of MFs is selected in trial and error basis. In the
meantime, it is noted that we have tried four types of membership function: (a) triangular,
(b) trapezoidal, (c) gaussian, and (d) bell-shaped to construct the fuzzy numbers. After a
large number of trials, as a result bell-shaped distributed membership function compared
with the others have obtained the minimum relative error. Table 4 illustrates the number
and the types of MFs that adopted in this study to create modules. The ANFIS module
is trained until reaching certain minimum error or after completing certain number of
training epochs. In this study, the less no. of iteration was introduced in order to consume
the time in Figure 8. Training and cross-validation process of the WDT-ANFIS module
were performed to minimize the Root Mean Square Error between the output and the
desired response shown in Figure 9. It is obvious in that the performance goal of 10~*
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was achieved in less than 100 epochs, while the same goal could not be achieved in Figure
8. This result depicts that the WDT-ANFIS capable to consume the time.

TABLE 4. Number and types of MFs for each module

Parameter AFNIS Module
MFs (Type) MFs (Number)
DO gbellmf 3
COD gbellmf 4
BOD gbellmf 3
x10°

T T

L I
==== Cross validation Error
= Traing error
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—
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FicUure 8. Change of the RMSE of ANFIS module during training and
cross-validation

4.2. Sensitivity analysis. To evaluate the effect of input parameters on the model, three
evaluation processes were used. The first assessment process was based on partitioning the
neural network connection weights in order to determine the relative importance of each
input parameter in the network [31,32]. In this study, the proposed network consisted of
five environmental parameters. Assuming the connection weights from the input nodes
to the hidden nodes demonstrate the relative predictive importance of the independent
parameter, the importance of each input parameter can be expressed as follows:

So=t ((Iwis] /S [wit]) < [whe) o
s 2 (Il /i i) < wiel) b

where [; is the relative importance of jth input parameter on the output parameter,
N; and N, are the numbers of input and hidden neurons, respectively, and W is the
connection weight. Meanwhile, superscripts ‘%', ‘A’ and ‘o’ refer to the input, hidden
and output layers, respectively, whereas subscripts ‘k’, ‘m’ and ‘n’ refer to the input,
hidden and output neurons, respectively. Table 5 shows the connection weights values for
the proposed model that used to predict the DO. It is important to note that Garson’s

] =
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x10”
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Ficure 9. Change of the RMSE of WDT-ANFIS module during training
and cross-validation

algorithm uses the absolute values of the connection weights when calculating parameter
contributions.

The second assessment process was to evaluate relative importance of each of the input
parameters on the model. The relative importance of each of the input parameters is
shown in Figure 10. The relative importance showed the significance of a parameter com-
pared with the others in the model. Although the network did not necessarily represent
physical meaning through the weights, it suggested that all the parameters had strong ef-
fects on the prediction of all output parameters, where the predictor contributions ranged
from 5 to 15%. It was obvious that the most effective inputs were those which included
oxygen containing (NOj) and phosphate (PO4). On the other hand, Temp and pH were
found to be the least effective parameters. Moreover, COND revealed the highest contri-
bution on the proposed model for DO. In the case of BOD, it was obvious that the most
effective input was CI.

The third assessment process was to construct 5 models using a single parameter to
determine the most effective input [33]. The correlation coefficients (R?) of the input
parameters are provided in Figure 11. Several parameters are available for the sensitivity
study of each parameter of the water quality model. The intention is not to present all
the performed tests, but rather to show the effect of some of the main parameters. In this
study the authors focused on DO. The most effective inputs were those include the oxygen
containing (PO4). Salinity provided the lowest contribution to the proposed model, which
agrees with previous evaluations of parameter combinations.

4.3. Comparative analysis. All models presented in the previous section were com-
pared in order to provide the precise prediction to the water quality parameters at Johor
River. Figure 12 illustrates the comparison between the predicted DO versus the observed
DO using 45° line of graph and two deviation lines from the 45° line for both validation
and testing data sets for the developed models. It was obvious that MLP-ANN could
predict the DO with relatively low level of accuracy, whereby the error for majority of the
records did not reach 15%, while the error of a few records fell within 15%. Apparently,
the scatter plot of the RBF-ANN model showed that the error was approximately close
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on the ideal line, which remarkably did not exceed 13%. Meanwhile, the scatter plot of
the ANFIS models showed that the error approximately fell on the ideal line except for a
few records, which remarkably exceeded 9%. These records were more deviated from the
observed value attributes due to the fact that the extreme values found in the samples
were polluted by noise signals owing to systematic and random errors.

For further assessment, the proposed models were compared with the results reported
in the literature. Soyupak [34] employed the ANN modelling approach to calculate the
pseudo steady state time and space dependent DO concentrations in three different reser-
voirs, with entirely different properties. The correlation coefficients between neural net-
work estimates and field measurements were higher than 0.95. In addition, Sengorur [35]
employed the feed-forward (FF) type ANN for computing the monthly values of DO. The
findings demonstrated that the ANN results were very close to the observed values of
DO where the correlation coefficient equalled to 0.9186. Ying [36] adopted the BP neu-
ral network to forecast water quality at Yuqiao Reservoir. The correlation between the
forecast and actual measured of DO values was 0.9418. Likewise, Kuo [37] used the back-
propagation neural network for predicting the dissolved oxygen in the Te-Chi Reservoir
in Taiwan. The correlation coefficients between the predicted values and measured data
of DO were above 0.7 for training and testing data sets.

Meanwhile, Zaqoot [24] used the ANNs-Multilayer Perceptron (MLP) network to pre-
dict the next fortnight’s dissolved oxygen concentrations in the water of Mediterranean
Sea along Gaza. The coefficient of determination between the measured and model com-
puted values of DO was 0.996. On the other hand, Singh [38] constructed an artificial
neural network (ANN) model to predict the water quality at Gomti River, India. The
coefficients of determination between the measured and model computed values of DO
for the training, validation and test sets were 0.70, 0.74 and 0.76, respectively. Further-
more, Rankovic [39] developed a feed-forward neural network (FNN) model to predict
the dissolved oxygen in Gruza Reservoir, Serbia. The correlation coefficients between
the predicted values and measured values of DO were 0.974 and 0.8738 for training and
testing data sets, respectively.

The proposed model showed efficiency in predicting the concentration of dissolved oxy-
gen in the Johor River, and it was compatible with the results of other researchers/authors.

I

||||nu AN

COND TEMP  NO3 TURB K MG NA E-coli
5DO | 7.3777 | 8.7432  6.8780 6.8)84 8.5459 8.366:\ 9.:|I?4 7.5802  7.5205  12.297 ?.K-II)H 8.4439

BOD 94785 | 89200 6.7197 | 6.0972  9.3917 11336 | 51676  9.1593 | 8.0036 10325 | 89423 | 6.2574
COD 15,022 | 50410 | 84694 | 6.9087 | 89194 51680 93680 | 56047 72407 | 9.2829  10.865  8.1087

=

Relative Importace (%)

g

F1GURE 10. The relative importance of each input parameter
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High coefficients of correlation were obtained between the observed and predicted values
for the test sets of 0.97, 0.95, 0.94 and 0.95 for all stations. These results revealed that the
input parameters selected in this study had direct relevance with the target (DO). The
selection of input parameters might affect the model output remarkably [35]. The results
also indicated that the proposed model was basically an attractive alternative, offering a
relatively fast algorithm with good theoretical properties to predict the dissolved oxygen
and can be extended to predict different water quality parameters.

In case of BOD Figure 13 illustrates the comparison between the predicted versus
observed BOD using 45° line of graph and two deviation lines from the 45° line for both
validation and testing data sets for developed models. It was obvious that MLP-ANN can
predict the BOD with relatively low level of accuracy, whereby the error for majority of the
records did not reach 18%, while the error of a few records fell within 17%. Apparently,
the scatter plot of the RBF-ANN model showed that the error remarkably fell on 15%.
While, the scatter plot of the WDT-ANFIS models showed that the error approximately
fell on the ideal line except few records, which remarkably exceeded 11%. These records
were more deviated from the observed value attributes due to the fact that the extreme
values were found in the samples which were polluted by noise signals owing to systematic
and random errors. The same result was achieved by the model that used to predict COD
as shown in Figure 14, when the scatter plot of the ANFIS models showed that the error
approximately fell on the ideal line except few records, which remarkably exceeded 15%.
These records were more deviated from the observed value attributes due to the fact that
the extreme values were found in the samples which were polluted by noise signals owing
to systematic and random errors.

4.4. Scenarios and verification. Ying [36] showed that the selection of affecting factors
(i.e., the input parameters) plays a key role since these factors have great impact on the
forecast results. Thus, it was evident that the low correlation in this study was attributed
to the fact that, the input parameters did not include all the relevant parameters. In
addition, water pollution at the downstream station was related to the discharge from the
upstream station.

Hence, to overcome the problem, this study introduced another approach (i.e., Scenario
2) so that a high level of accuracy could be reached. This approach was related to the
prediction of the water quality parameters, with consideration of the actual one at the
upstream station as the input to the model, as expressed by Equation (5). For the best
analysis, this study adopted the accuracy improvement (AI) index for the correlation
coefficient statistical index to measure the significance of the proposed Scenario 2 over

Scenario 1, expressed as follows:
CCScen2 - CCScenl
Al = 100
(%) ( CCScen2 ) X

where C'Cgeeno is the value of the correlation coefficient for Scenario 2, while C'Cgpp1 i
the same statistical index for Scenario 1. Examining Table 6 carefully, it can be observed
that Scenario 2 was more adequate than Scenario 1, with a significant improvement for
all stations ranging from 0.5% to 3.1%. Prediction accuracy was significantly improved
after introducing Scenario 2 for all stations. For example, in case of the DO, Scenario 2
performed more adequately than Scenario 2 with significant improvement in the Al rang-
ing from 2.1% for Station 2 and 4 to 3.1% for Station 3. The same level of improvement
for both BOD and COD was also achieved, where Al ranged from 0.5% for Station 2,
to 1.1% for Station 1 and Station 3. These results showed that Scenario 2 was not only
capable of improving the accuracy for certain parameter but the model was also capable

(10)
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of capturing the temporal patterns of the water quality parameter which allowed it to
provide significant enhancement for the stations.

TABLE 6. A summary of correlation coefficients for Scenario 1, Scenario 2
and the AT %

Model SNO2 SNO3 SNO4 AT (%)
Scenl Scen2 Scenl Scen2 Scenl Scen2 SNO2 SNO3 SNO4
DO 0.95 097 094 097 095 097 2.1 3.1 2.1
BOD 096 097 0.97 0975 096 0.97 1.1 0.5 1.1
COD 096 097 097 0975 096 0.97 1.1 0.5 1.1

The model needs to verify when the output results and the observed values are close
enough to satisfy the verification criteria [40]. Therefore, in order to investigate the
efficiency of the proposed model, the verification of the augmented wavelet de-noising
technique with the Neuro-Fuzzy Inference System (WDT-ANFIS) based on the collection
of field data within the duration of 2009-2010 is presented. The scatter plots between
the observed and predicted values for each of the five selected water quality parameters
are presented in Figure 15. The WDT-ANFIS model verified to predict the DO and
COD concentrations performed very satisfactorily (i.e., R? values were equal or bigger
than 0.9) for all stations. On the basis of these results, WDT-ANFIS exhibited good
prediction performance.

5. Conclusion. Modelling water quality parameters is a very important aspect in the
analysis of any aquatic systems. Prediction of surface water quality is required for proper
management of the river basin so that adequate measure can be taken to keep pollution
within permissible limits. Accordingly, it is very important to implement and adopt
a water quality prediction model that can provide a powerful tool to implement better
water resource management. Several modelling methods have been applied in this research
including: Multi Layer Perceptron Neural Networks (MLP-ANN), Radial Basis Function
Neural Networks (RBF-ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS).
The results revealed that it was difficult to produce a reliable model with the MLP-
ANN models due to the high variance and inherent non-linear relationship of the water
quality parameters because of the stochastic nature and chemical process. In addition, the
MLP-ANN models experienced slow convergence while training due to the requirement of
relatively large number of hidden neurons. In the case of RBF-ANN] the predictive ability
of the RBF-ANN was quite good for all the water quality parameters during the training
phase, but less accurate during the validation and testing phases. The results showed
that the ANFIS found a solution faster than the MLP-ANN and RBF-ANN and was the
most accurate and reliable tool in terms of processing large amounts of non-linear and
non-parametric data. It was also observed that the WDT-ANFIS model outperformed the
ANFIS model and was able to provide improvement in predicting accuracy for all water
quality parameters. It appeared that the WDT-ANFIS model was capable of achieving
high level of accuracy in the prediction stage. Overall, in this research, WDT-ANFIS
could therefore be declared as the best network architecture because it outperformed
the ANFIS. These results showed that the WDTANFIS model was not only capable of
improving the accuracy, but the model was also capable of capturing the temporal patterns
of the water quality which allowed it to provide significant enhancement in prediction.
As a result, the ANFIS model was more capable to capture the dynamic and complex
processes that were hidden in the data itself for water quality parameter after being



AN AUGMENTED WDT-ANFIS FOR WATER QUALITY PREDICTION 7079

10 10 -
y=0.872x + 0.861 y=0.985x+0.106
g R =0.932 s R = 0.945
Z =
=L g 0
T =
z g
= -]
F -
&4 & 44
z T ¥ T ] 2 : T T ]
2 4 [ 8 10 2 4 6 8 10
Measured DO (mg/1) Measured DO (mg/1)
40 40 4
. *
y=0.989x+ 0.289 y=0.958x+0.257 .
30 4 RZ=0.96 30 R*=0.90
= '~ p/
= o *
£ S .
a 3 .
020 S o120 o +*
o ]
= * =
e -
= £
E 10 % 10
& &
0 T T T 1 0 T T T |
0 10 20 30 40 0 10 20 30 40
Measured COD (img1) Measured COD (mg1)
10 10
y=0.962x+0.173 y=0.993x+0.087
8 R*=0.929 8 4 R*=0.939
g =
£ g
=] Q
s 6 * 861
T ) T *
-
£ 4 * £ 4
2 T T T 1 2 T T T 1
2 4 0 8 10 2 4 6 g 10
Measured DO (mg1) Measured DO (mg/1)
40 5 40 A
o *
y=1.025x-0.869 y=1.013x-0.298
30 4 R*=0.91 30 4 R2=0.95
E * E
: o9 5
pzn <20 4
= ()
2 * I
E 10 4
S 10 £ 10
1] T T T 1 0 T T T 1
0 10 20 30 40 0 10 20 30 40
Measured COD (mg/1) Measured COD (mg1)

FiGure 15. WDT-ANFIS model verification for each water quality param-
eter at each station



7080 A. NAJAH, A. EL-SHAFIE, O. A. KARIM AND A. H. EL-SHAFIE

augmented with WDT. In comparison between Scenario 1 and Scenario 2, Scenario 2
was able to achieve a high level of accuracy in simulating the magnitude and patterns
of all water quality parameters at all stations. It was obvious that the proposed WDT-
ANFIS model with Scenario 2 provided predicted water quality parameters that were
able to mimic the pattern (dynamics) in the observed values apart for those extreme
values experienced during this period. In addition, the verification of the WDT-ANFIS
based on the collection of field data within the duration of 2009-2010 showed that the
WDT-ANFIS model performed very satisfactorily. Nevertheless, due to the fact that
water quality forecast can be easily affected by external environment, the obtained model
sometimes produced results which were much deviated from the actual values, therefore,
further research needs to be done in future work to identify the suitable forecast model,
understand its laws of changes and solve the problem of forecast deviation. In general,
this research work has managed to integrate several analytical and modeling methods
that would prove to be useful for various institutions that are directly involved in the
management of river basins in Malaysia. Moreover, the tools used in this work could form
a basis for a more effective decision making process on the part of the policy makers in
order to help maintain and improve the management of river basins.
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