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Abstract. In this paper, nonlinear receding horizon control (NMPC) is implemented on
a laboratory quadruple-tank system, which is a nonlinear multi-variable process with state
constraints as well as input constraints. A fast numerical algorithm called C/GMRES
is employed to implement nonlinear receding horizon control of quadruple-tank system,
in which the continuation method is combined with a fast algorithm for linear equations
instead of the Riccati differential equation. Analysis and simulation results show that the
computation time is significantly reduced and nonlinear receding horizon control can be
implemented successfully in real time.
Keywords: Quadruple-tank system, Nonlinear receding horizon control, Real-time op-
timization, GMRES

1. Introduction. Nonlinear moving horizon control, mostly referred to as nonlinear
model predictive control (NMPC), has become an attractive feedback strategy for nonlin-
ear multi-variable systems subject to input and state constraints, while application can
be found not only in traditional fields [1], but also in emerging environments (see [2-7] for
some new reports). Over the last few years, also academic research of NMPC has achieved
significant progresses. By introducing the so-called stability constraint and appropriately
computing the terminal penalty, nominal stability issues are well-addressed; for complete
surveys we refer, e.g., to [8-11]. Nevertheless, because of the computational requirements
of the optimizations associated with NMPC, it can be applied in the chemical industry
with slow dynamics [12,13], where the sampling period is sufficiently large, e.g., several
tens of seconds or longer, and an iterative optimization method can be executed to solve
the optimization problem within the sampling period. However, an iterative optimization
method is computationally expensive and is not suitable for fast systems controlled with
a sampling period in the order of milliseconds. Although an approximate algorithm of
nonlinear receding horizon control can be obtained explicitly through use of the Taylor
expansion [14], the length of the horizon and the form of the performance index are re-
stricted in such an algorithm. Therefore, efficient and reliable numerical algorithms are
necessary to implement nonlinear receding control.
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A real-time algorithm of nonlinear receding horizon control, in which the continua-
tion method is combined with a fast algorithm for linear equations instead of the Riccati
differential equation, is proposed in [15]. The formulation and implementation of the pro-
posed algorithm are substantially different from the previous algorithm, although both
algorithms are based on the continuation method. The problem is discretized over the
horizon first, and then a differential equation to update the sequence of control inputs
is obtained through use of the continuation method. Since that differential equation in-
volves a large linear equation, we employ the GMRES (Generalized Minimum Residual)
method [16] to solve the linear equation. To demonstrate the fast algorithm, we take
the quadruple-tank system that is a nonlinear multi-variable system with input and state
constraints as an example in this paper. The quadruple-tank process can easily be built
by using two double-tank processes, which are standard processes in many control lab-
oratories [17-19]. The setup is thus simple, but still the process can illustrate several
interesting multivariable phenomena. In this paper, we apply the real-time algorithm
called C/GMRES to the quadruple-tank system in order to examine the computation
time. Simulation results show that nonlinear receding horizon control is possible in real
time for the highly nonlinear system with the C/GMRES algorithm.
This paper is organized as follows. Section 2 describes the quadruple-tank system and

formulates the control problem. In Section 3, we briefly review the basic principle of
NMPC and design nonlinear receding horizon controller for the quadruple-tank system.
The real-time algorithm called C/GMRES is stated in Section 4, in which the continuation
method is combined with GMRES. Analysis and simulation results are given and discussed
in Section 5. Section 6 presents the conclusions of the paper.

2. Quadruple-Tank System. A schematic diagram of the quadruple-tank system is
shown in Figure 1. The quadruple-tank system is based on a laboratory experimental

Figure 1. Schematic diagram of the quadruple-tank system
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setup, which is used in control education at the Institute for Systems Theory and Au-
tomatic Control (IST), at the University of Stuttgart. The system is built up of four
interconnected water tanks. The two inputs of the tank system are the the flow rates u1
and u2. The control variables are the fill levels x1 and x2 of the lower two tanks. Each
input flow rate is separated by a valve into two flow rates. The valve position parameters
γ1, γ2 ∈ (0, 1) specify the flow partitioning of water up to the upper and the lower tanks.
The flow of water to tank 1 is γ1u1 and the flow to tank 4 is (1− γ1)u1 and respective to
tank 2 and tank 3. Mass balances and Bernoulli’s law yield under the assumption of fric-
tionless flow and the neglect of the unsteady parts to the nonlinear system equation [20]

ẋ1 = − a1
A1

√
2gx1 +

a3
A1

√
2gx3 +

γ1
A1

u1, (1a)

ẋ2 = − a2
A2

√
2gx2 +

a4
A2

√
2gx4 +

γ2
A2

u2, (1b)

ẋ3 = − a3
A3

√
2gx3 +

(1− γ2)

A3

u2, (1c)

ẋ4 = − a4
A4

√
2gx4 +

(1− γ1)

A4

u1, (1d)

where xi denotes the fill level of tank i, ui the flow rate of pump i, Ai the cross-section
of tank i, ai the cross-section of the outlet hole of tank i, g the acceleration due to
gravity (981cm/s2). The fluid flow is not steady, unless the system is in steady state,
but nevertheless the unsteady part of the Bernoulli equation is neglected to get an easier
model. The measured parameters Ai and the identified parameters ai of the four tank
system are given in the Table 1 [21].

Table 1. Parameters of the four tank system

Ai ai

i = 1 50.27 cm2 0.233 cm2

i = 2 50.27 cm2 0.242 cm2

i = 3 28.27 cm2 0.127 cm2

i = 4 28.27 cm2 0.127 cm2

The objective to control the water levels of the two lower tanks around the setpoints
x1f = 14cm and x2f = 14cm with the valve parameters γ1 = γ2 = 0.4. This results in the
setpoint xf = [14cm 14cm 14.2cm 21.3cm]T for the state and uf = [43.4ml/s 35.4ml/s]T

for the control inputs. The control inputs of the quadruple-tank system are constrained
as ub ≤ u1, u2 ≤ ua, where ub = 0ml/s and ua = 65ml/s [21].

3. Nonlinear Receding Horizon Control. In this section, the nonlinear receding hori-
zon control problem is briefly summarized. We consider a general nonlinear system gov-
erned by the state equation

ẋ(t) = f(x(t), u(t), p(t)), (2)

subject to the input and state constraints u ∈ U , x ∈ X , where x ∈ Rn is the system
state and u ∈ Rmu the control input, and p(t) ∈ Rmp the vector of given time-dependent
parameters, respectively. Furthermore, it is assumed that the equilibrium point of the
system (2) is at the origin, i.e., the vector field f satisfies f(0, 0, 0) = 0. The set X is a
closed subset of Rn and the set U is a compact subset of Rm, both containing the origin.
Suppose that the full state x of the system (2) can be measured. Then in NMPC the
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control input applied to the system (2) at each time t is given by the repeated solution
of the finite horizon optimal control problem:

min
u(·)

J(x(t), u(·), p(t))

subject to

ẋ(t′) = f(x(t′), u(t′), p(t′)), x(t;x(t), t) = x(t) (3a)

u(t′) ∈ U, t′ ∈ [t, t+ T ] (3b)

x(τ ;x(t), t) ∈ X, t′ ∈ [t, t+ T ] (3c)

x(t+ T ;x(t), t) ∈ E . (3d)

We introduce a finite horizon objective functional for the open-loop optimal control
problem at time t in the framework of nonlinear MPC by

J = ϕ(xu(t+ T ; t, x(t), p(t+ T )) +

∫ t+T

t

L(xu(t′; t, x(t)), u(t′), p(t′))dt′ (4)

where xu(τ ; t, x(t))(x ≤ t′ ≤ t + T ) denotes the state trajectory by the input function
u starting from x(t) at time t, T is the control/prediction horizon and L is the stage
cost which is in general a positive definite funciton in the variables x, u. The optimal
control uopt is determined as a function over the horizon and also depends on t and
x(t) as uopt(t

′; t, x(t))(t ≤ t′ ≤ t + T ). However, the actual input to system is given
only by the value of uopt at time t, that is, u(t) = uopt(t; t, x(t)), which results in a
state feedback control law. Since uopt is updated at each time, the predicted trajectory
xuopt(t′; t, x(t))(t ≤ t′ ≤ t + T ) is not necessarily identical to the actual trajectory of the
closed-loop system. The terminal region E and the terminal penalty term ϕ of the finite
horizon optimal problem (4) are used to enforce closed loop stability and to increase the
performance in NMPC. A wide variety of approaches have been developed in the literature
to achieve asymptotic closed loop stability [8,11]. All these approach are based, implicitly
or explicitly, on three ingredient: a terminal cost ϕ, a terminal region E and a locally
stabilizing control law ψ = Kx.
In the so called quasi-infinite horizon NMPC approach [22] the terminal cost and the

terminal region are chosen as

ϕ(x) = xTPx (5)

E = {x ∈ Rn|xTPx ≤ α} (6)

with the state feedback ψ = Kx. The terminal cost ϕ(x), the terminal region E , and the
linear feedback ψ = Kx are calculated off-line by a procedure described in [22,23].

4. Continuation/GMRES Method for Fast Algorithm of NMPC. The receding
horizon control problem is essentially a family of finite horizon optimal control problems
along a fictitious time τ as follows:

min J = ϕ(x∗(T, t)) +

∫ T

0

L(x∗(τ, t), u∗(τ, t))dτ (7)

subject to

ẋ∗τ (τ, t) = f(x∗(τ, t), u∗(τ, t)), (8a)

x∗(0, t) = x(t), (8b)

C(x∗(τ, t), u∗(τ, t)) = 0. (8c)
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The new state vector x∗(τ, t) denotes the trajectory along the τ axis starting from x(t)
at τ = 0. The optimal control input u∗(τ, t) is determined on the τ axis as the solution
of the finite horizon optimal control problem for each t, and the actual control input is
given by u(t) = u∗(0, t). The horizon T is a function of time, T = T (t), in general, as is
explained later.

Equation constraints are also imposed in the general as Equation (8c) where C is an mc

dimensional vector-valued function. All functions are assumed to be differentiable as many
as necessary. In the case of an inequality constraint, we can convert it to the equation
constraint by introducing a penalty function method or some heuristic modification of the
problem, as have also be discussed in [24].

Real-time algorithm is a major issue for nonlinear receding horizon control. Now we
briefly review the algorithm called C/GMRES [15], which will be employed to solve the
optimal control problem at each time. First, we divide the horizon into N steps and
discretize the optimal control problem with the forward differences as follows:

x∗i+1(t) = x∗i (t) + f(x∗i (t), u
∗
i (t))∆τ, (9)

x∗0(t) = x(t), (10)

C(x∗(t), u∗i (t)) = 0, (11)

J = ϕ(x∗N(t)) +
N−1∑
i=0

L(x∗i (t), u
∗
i (t))∆τ, (12)

where ∆τ := T/N , and x∗i (t) corresponds to the discrete-time trajectory starting from
x(t) at i = 0. Since the horizon length T depends on time t in general, so does ∆τ . Note
that only the problem over the horizon is discretized, and the dependence of x∗i (t) and
u∗i (t) on the actual time t remains continuous at the stage of problem formulation. That
is, the discretized problem is supposed to be solved at each continuous time t, although the
time t will also be discretized eventually in the actual implementation. Given the initial
state of the discretized problem, x∗0(t) = x(t), the control input sequence {u∗i (t)}N−1

i=0 is
optimized at each time t. The actual control input to the system is given by u(t) = u∗0(t).

Let H denote the Hamiltonian defined by

H(x, λ, u, µ) := L(x, u) + λTf(x, u) + µTC(x, u),

where λ ∈ Rn denotes the costate, and µ ∈ Rmc denotes the Lagrange multiplier associated
with the equality constraint. The first-order necessary conditions for the sequences of
optimal control {u∗i (t)}N−1

i=0 , multiplier {µ∗
i (t)}N−1

i=0 and costate {λ∗i (t)}N−1
i=0 are obtain by

the calculus of variation [25] as

Hu(x
∗
i (t), λ

∗
i+1(t), u

∗
i (t), µ

∗
i (t)) = 0, (13)

λ∗i (t) = λ∗i+1(t) +HT
x (x

∗
i (t), λ

∗
i+1(t), u

∗
i (t), µ

∗
i (t))∆τ, (14)

λ∗N(t) = ϕT
x (x

∗
N(t)). (15)

The sequence of the optimal control {u∗i (t)}N−1
i=0 and the multiplier {µ∗

i (t)}N−1
i=0 have to

satisfy (9)-(11), (13)-(15), which defines a two-point boundary-value problem (TPBVP)
for the discretized optimal control problem. It should be noted that the TPBVP for the
discretized problem is identical to a finite difference approximation of the TPBVP for
the original continuous-time problem. Therefore, the solution of the discretized problem
converges to the solution of the continuous-time problem as N → ∞ under mild condi-
tions [26]. Other higher order discretization schemes can also be employed at the expense
of simplicity and computational time.
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We define a vector of the inputs and the multipliers as

U(t) :=
{
u∗T0 (t), µ∗T

0 (t), u∗T1 (t), µ∗T
1 (t), . . . , u∗TN−1(t), µ

∗T
N−1(t)

}
∈ R(m+mc)N ,

and we also define a projection P0: R(m+mc)N → Rm as

P0(U(t)) := u∗0(t).

For a given U(T ) and x(t), {x∗i (t)}Ni=0 are calculated recursively by Equations (9) and (10),
and then, {λ∗i (t)}Ni=0 are also calculated recursively by from i = N to i = 0 by Equations
(14) and (15). Since x∗i (t) and λ

∗
i (t) are determined by x(t) and U(t) through Equations

(9), (10), (14) and (15). Equations (11) and (13) can be regarded as an equation defined
as

F (U(t), x(t), t) :=


HT

u (x
∗
0(t), λ

∗
1(t), u

∗
0(t), µ

∗
0(t))

C(x∗0(t), u
∗
0(t))

...
HT

u (x
∗
N−1(t), λ

∗
N(t), u

∗
N−1(t), µ

∗
N−1(t))

C(x∗N−1(t), u
∗
N−1(t))

 = 0. (16)

The equation also depend on time t through T and ∆τ in general. If the equation is
solved with respect to U(t) for the measured x(t) at each time t, then the control input
u(t) = P0(U(t)) is determined.
Since such an iterative method as Newton method is numerically expensive to solve

Equation (16) in real time, we employ another equivalent condition to trace the time-
dependent solution as follows:

Ḟ (U(t), x(t), t) = −ζF (U(t), x(t), t), ζ > 0,

F (U(0), x(0), 0) = 0,

where the right-band side in the first equation is added to stabilize F = 0. If the Jacobian
FU is non-singular, we obtain a differential equation of U(t) as

U̇ = F−1
U (−ζF − Fxẋ− Ft). (17)

Then, U(t) can be updated without any successive approximation by integrating Equation
(17) in real time, which is a kind of the continuation method [27]. The derivative Fxẋ+Ft

in Equation (17) can be approximated efficiently by a forward difference [15].
Since Equation (17) still involves numerically expensive operations to solve the linear

equation associated with F−1
U , we also employ generalized minimum residual method

(GMRES) [16], which is a kind of Krylov subspace methods and is efficient for large-scale
linear equations. Then, the real-time algorithm is summarized as follows.

Algorithm (C/GMRES)

(i) Measure the initial state x(0) and find U(0) analytically or numerically such that
‖F (U(0), x(0), 0)‖ ≤ δ for sufficiently small δ > 0.

(ii) With the state x(t) measured, integrate in real time U̇(t) obtained by solving Equa-
tion (17) with GMRES. The control input u(t) is given by u(t) = P0(U(t)).

For example, real-time state integration of U̇(t) can be carried out with the Euler
method as U(tk+1) := U(tk) + U̇(tk)∆t, where tk denotes the sampling time and ∆t
denotes the sampling period. It should be noted that U̇(tk) and the measured state x(tk)
by Equation (17) and, consequently, U(tk) can be updated successively once U(0) is given.

Remark 4.1. C/GMRES solves the linear Equation (17) only once at each sampling
time and, therefore, requires much less computational burden than such iterative meth-
ods as Newton’s method which solves a linear equation several times to determine search
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directions. In addition, C/GMRES involves no line search, which is also a significant
difference from standard optimization methods.

A simple method for initializing U(0) is to choose a time-dependent horizon T (t) as a
smooth function such that T (0) = 0 and T (t) → Tf (t → ∞), e.g., T (t) = Tf (1 − eαt)
(Tf , α > 0). Then, since the horizon length is zero at t = 0, we have µ∗

i (0) = u(0),
µ∗
i (0) = µ(0) (i = 0, . . . , N − 1), x∗i (0) = x(0), λ∗i (0) = ϕT

x (x(0)) (i = 0, . . . , N), and the
initialization reduces to finding only m+mc unknown quantities, u(0) and µ(0), such that∥∥∥∥[HT

u (x(0), ϕ
T
x (x(0)), u(0), µ(0))

C(x(0), u(0))

]∥∥∥∥ ≤ δ√
N
.

Error analysis of the entire C/GMRES algorithm shows that the error ‖F‖ is bounded
under some assumptions if the parameter ζ is chosen so that 0 < ζ∆t ≤ ζ̄∆t for given
sampling period ∆t and some ζ̄ such that 1 ≤ ζ̄∆t < 2 [15].

Remark 4.2. Although the proposed algorithm is expressed as a differential equation
obtained from the continuation method, it must be discretized with respect to time for im-
plementation, and the algorithm may fail because of discretization error. In addition, the
algorithm without stability constraints does not guarantee closed loop asymptotic stability
and can even destabilize a stable system.

Remark 4.3. The algorithm, C/GMRES, for nonlinear receding horizon control is a
numerical algorithm anyway and can fail depending on the simulation conditions.

Remark 4.4. At the present time, there is no systematic methodology to determine those
free parameters. In general, the number of grids on the horizon N is restricted by available
computational power and a desirable sampling period. Then the maximum horizon length
Tf is restricted according to desirable accuracy of discretization and numerical stability
of the algorithm. There is also a limitation on α because the algorithm fails to trace the
solution if α is so large that the horizon length T increases too rapidly. Moreover, a de-
signer needs extensive simulation to find appropriate weights in the performance index to
achieve satisfactory closed-loop response. The weights on the inputs should be chosen to
be small as far as the algorithm can be executed so that the approximation is accurate.
If their values are sufficiently small, they have only slight influence over the control per-
formance. A large value of iteration number in GMRES may also be necessary for an
accurate solution. An appropriate value of the parameter for stabilization of the solution,
ζ would be about 1/∆t.

5. Simulation Results.

5.1. NMPC of the quadruple-tank system. The objective to control the water levels
of the two lower tanks around the setpoints x1f = 14cm and x2f = 14cm with the valve
parameters γ1 = γ2 = 0.4. This results in the setpoint xf = [14cm 14cm 14.2cm 21.3cm]T

for the state and uf = [43.4ml/s 35.4ml/s]T for the control inputs. Hence, with the
coordinate change zi = xi − xif and vi = ui − uif the dynamics of the quadruple-tank
system (1) is

ż1 = − a1
A1

√
2g(z1 + x1f ) +

a3
A1

√
2g(z3 + x3f ) +

γ1
A1

(υ1 + u1f ), (18a)

ż2 = − a2
A2

√
2g(z2 + x2f ) +

a4
A2

√
2g(z4 + x4f ) +

γ2
A2

(υ2 + u2f ), (18b)
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ż3 = − a3
A3

√
2g(z3 + x3f ) +

(1− γ2)

A3

(υ2 + u2f ), (18c)

ż4 = − a4
A4

√
2g(z4 + x4f ) +

(1− γ1)

A4

(υ1 + u1f ). (18d)

The stage cost of the considered control objective is

L(z, v) = z21 + z22 + 0.01(v21 + v22). (19)

Furthermore, the input and state constraints arise from the pump characteristics and
minimal and maximal water levels of the tanks. In particular, the input and state con-
straints are

vmin = [−43.4ml/s − 35.4ml/s]T ,

vmax = [21.6ml/s 29.6ml/s]T ,

zmin = [−6.5cm − 6.5cm − 10.7cm − 16.8cm]T ,

zmax = [14cm 14cm 13.8cm 6.7cm]T .

The terminal penalty term ϕ(x) and the terminal region E of the quasi-infinite horizon
NMPC controller are calculated via the procedure described in [23] and are given by

P =


6.55 0 0 0
0 6.55 0 0
0 0 7.92 0
0 0 0 31.7

 , α = 792.4. (20)

Figure 2. Simulation results with quasi-infinite horizon NMPC: setpoint
(dash-dotted), simulation (solid)
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Figure 2 shows the simulation results using the quasi-infinite horizon NMPC controller
with a control/prediction horizon of T = 15s and the sample time δ is chosen as 3s.
It can be seen that the quasi-infinite horizon NMPC controller is able to stabilize the
quadruple-tank system while satisfying the input and state constraints (20). For a total
simulation of 150s, the elapsed CPU time is about 220s in a system with 2.1GHz Intel Core
2 Duo T657 CPU and 2G RAM, where the controller calls fmincon for solving the LMI
optimization problem with given numerical parameters (relative accuracy = 0.01, etc.).
The heavy on-line computation burden arises partially from the M-files management. It
is clear that the computation times of the optimizer with the NMPC controllers takes
more time to find the optimal solution than sample time, which indicates that real-time
control is impossible with a sampling period of 3s.

5.2. Real-time implementation of the quadruple-tank system. The control inputs
of the quadruple-tank system are constrained as ub ≤ u1, u2 ≤ ua, where ub = 0ml/s and
ua = 65ml/s [21]. The inequality constraint is converted into an equality constraint by
introducing a dummy input v1 and v2 as follows [24]:

C(u, v) :=

[
(u1 − uav)

2 + v21 − (ua − uav)
2

(u2 − uav)
2 + v22 − (ua − uav)

2

]
= 0,

where uav:=(ua+ub)/2, and u is the augmented input vector defined by u:=[u1, u2, v1, v2]
T .

In order to evaluate the computational time of the algorithm C/GMRES, we attempt
to control this system with receding horizon control. The functions in the performance
index J are chosen as

ϕ := (x− xf )
TSf (x− xf )

L := (x− xf )
TQ(x− xf ) +(u− uf )

TR(u− uf )− p1ν1 − p2ν2

where p1 and p2 are small positive numbers for avoiding the singularities [24]. The state
vector of the present system is x = [x1 x2 x3 x4]

T ∈ R4, xf ∈ R4 denote the objective
state, and Sf , Q and R are weighting matrices.

The simulation program in C is generated by an automatic code generation system
called AutoGenU [15]. AutoGenU is a Mathematica program for generating a sim-
ulation program for nonlinear receding horizon control. The parameters in the per-
formance index are chosen as: T = Tf (1 − e−αt), Tf = 15s, ∆t = 0.01s, α = 0.5,
Sf = diag[6.55 6.55 7.92 31.7], Q = diag[1 1 0 0], R = diag[0.01 0.01], p1 = p2 = 0.1, and
ζ = 1/∆t. The initial state is x0 = [9cm 10cm 7cm 17cm]T . The simulation result with
C/GMRES is shown in Figure 3. We can see that nonlinear receding horizon control steers
the state sufficiently close to the objective state. The computation time by C/GMRES is
less than 2.94s for a total simulation of 150s, which indicates that the computation time of
NMPC with C/GMRES algorithm is significantly reduced compared with NMPC without
C/GMRES algorithm and C/GMRES algorithm can be implemented successfully in real
time with a sampling period of 3s [28].

6. Conclusions. Nonlinear receding horizon control has been applied to control the wa-
ter level of the quadruple-tank system. A real-time algorithm called C/GMRES has been
successfully implemented for nonlinear receding horizon control. Although asymptotic
stability of the objective state is not guaranteed, nonlinear receding horizon control steers
the state sufficiently close to the objective state, which shows practical effectiveness of the
control method. Analysis and simulation results show that the computation time is signif-
icantly reduced and nonlinear receding horizon control can be implemented successfully
in real time. Nevertheless, many unsolved questions remain. The algorithm, C/GMRES,
is a numerical algorithm anyway and can fail depending on the simulation condition and
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Figure 3. Simulation results with C/GMRES: setpoint (dash-dotted),
simulation (solid)

there is no systematic methodology to determine those free parameters, which motivates
our further efforts on the fast algorithm.
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