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Abstract. This paper is concerned with the linear optimal full-order estimation problem
for networked control systems with multiple packet dropouts of both sides from a sensor
to an estimator and from a controller to an actuator. The phenomena of packet dropouts
are described by two mutually uncorrelated random variables satisfying Bernoulli distri-
butions. A full-order linear optimal state filter and an input filter in the least mean square
sense are designed via completing square approach. They employ the received measure-
ments at the present and last moments. The proposed filters are recursively computed in
terms of the solutions of a Riccati equation, a Lyapunov equation and a simple difference
equation. Further, the full-order linear optimal predictors and smoothers are also derived
for the state and input, respectively. The stability of the proposed linear optimal filters
is analyzed and the steady-state property is also investigated. The sufficient conditions
for the stability of the linear optimal filters and the existence of the steady-state filters
are given, respectively. Two simulation examples show the effectiveness of the proposed
estimators.
Keywords: Linear optimal estimator, Packet dropout, Completing square, Steady state,
Networked control system

1. Introduction. In recent years, the research on control and estimation problems for
systems with packet dropouts has gained lots of attention due to wide applications in
networked control systems (NCSs) and sensor networks (SNs) [1-3]. In NCSs and SNs,
random delays and packet dropouts almost exist in data transmissions from sensors to
estimators and from controllers to actuators through the communication channels. So, the
data available for the state estimation and control may not be up to date. This imposes
significant challenges in estimation and control over networks [4].

The research on NCSs is focused on random delays, packet dropouts or missing measure-
ments over the last few years. For the control problems of NCSs, some results have been
developed, such as the finite- or infinite-horizon LQG control for a partially observed
system [5], H∞ control with missing measurements and delays [6]. For the estimation
problems of NCSs, many algorithms about random delays have been proposed [7-10]. Yaz
et al. study the estimation for systems with stochastic parameters via a linear matrix
inequality (LMI) and apply to deal with random sensor delays or packet dropouts [11].
Wang et al. study the robust filter with missing measurements via LMI [12]. [13,14] study
the polynomial state estimation for systems with stochastic multiplicative state noises and
non-Gaussian noises, respectively. However, the presented filters are nonlinear and have
the expensive computational cost by the high-dimension state augmentation. So, it is
not realistic for application in real time. Xiao et al. study the peak covariance stability
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of time-varying Kalman filter for systems with bounded Markovian packet dropouts [15].
Furthermore, it is noteworthy that the stability analysis for some kinds of systems with
random delays and packet dropouts, or stochastic parameters has also been developed
[16,17].
In [18], an H2 filter with multiple packet dropouts from a sensor to an estimator is

designed via LMI. Based on a similar model to [18], the optimal and steady-state linear
estimators are presented in the linear minimum variance sense via an innovation analysis
approach [19], and full- and reduced-order estimators are also developed [20]. For systems
with the finite consecutive packet dropouts, a full-order suboptimal filter is designed by
assuming the filter to be the structure like Kalman recursive form [21]. However, only
packet dropouts of single side from the sensor to the estimator are taken into account in
the above literature. Recently, the augmented H2 and H∞ prior filters are designed for
NCSs with packet dropouts of both sides from the sensor to the estimator and from the
controller to the actuator via LMI [22,23]. However, the LMI approach is not applicable
in real time for time-varying systems since it will cost much time to compute the filtering
gain matrices at each time. The augmented optimal and steady-state linear filters for the
augmented state are presented in the linear minimum variance sense via the projection
theory [24], where, however, the augmented filters derived are complicated and expensive
in the computational cost, and moreover, the predictor and smoother are not taken into
account. So far, the full-order filters for systems with packet dropouts of both sides
have not been studied, which have the reduced online computational cost compared with
the augmented filters [22-24] since the additional computation is avoided. Recently, the
distributed fusion estimators for systems with multiple sensors of packet dropouts and
delays are also investigated [25,26]. For the input estimation problem, many results are
mainly focused on the non stochastic input or disturbance [27,28]. Few results are reported
on the stochastic input.
In this paper, the results in [20] with packet dropouts of single side from the sensor to

the estimator are generalized to those with packet dropouts of both sides from the sensor
to the estimator and from the controller to the actuator. The full-order linear optimal
state and input estimators in the least mean square sense are developed via completing
square approach, which, however, cannot be obtained by simple extension from [20] like
the standard Kalman filter with deterministic input since the control input here is a sto-
chastic variable. The linear optimal full-order filter, predictor and smoother are given in
terms of a Riccati equation, a Lyapunov equation and a simple difference equation. The
proposed full-order filter has the reduced online computational cost compared with the
augmented filters in [22-24]. Differently from the general estimators [29], the estimation
error covariance and gain matrices are affected by the control input since there are the
stochastic packet dropouts. So, the steady-state estimators do not exist generally. The
stability and steady-state property of the proposed estimators are analyzed. A sufficient
condition for the stability of the optimal estimators is given. Moreover, a sufficient condi-
tion for the existence of the steady-state estimators is also given. In the absence of packet
dropouts, the proposed linear optimal estimators are reduced to the standard Kalman
estimators [29].

2. Problem Formulation and Preliminary Lemma.

2.1. Problem formulation. Consider the following linear discrete-time stochastic sys-
tem with multiple packet dropouts:

x(t+ 1) = Φx(t) +Bũ(t) + Γw(t) (1)

z(t) = Hx(t) + v(t) (2)
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y(t) = ξ(t)z(t) + (1− ξ(t))y(t− 1) (3)

ũ(t) = γ(t)u(t) + (1− γ(t))ũ(t− 1) (4)

where x(t) ∈ Rn is the state, z(t) ∈ Rm is the measured output, u(t) ∈ Rr is the known
control input, y(t) ∈ Rm is the measurement received by the estimator to be designed,
ũ(t) ∈ Rr is the control input received by the actuator, w(t) ∈ Rh and v(t) ∈ Rm are white
noises, Φ, B, Γ and H are constant matrices of suitable dimensions, and ξ(t) and γ(t) are
mutually uncorrelated random variables that satisfy the Bernoulli distributions with the
known probabilities Prob{ξ(t) = 1} = α, Prob{ξ(t) = 0} = 1 − α, Prob{γ(t) = 1} = β
and Prob{γ(t) = 0} = 1 − β, 0 ≤ α, β ≤ 1, and are uncorrelated with other random
variables. For the brevity of notations, only linear time-invariant systems are taken into
account. However, the results derived in this paper can be easily extended to linear
time-varying systems.

A similar model to (1)-(4) is introduced in [22] to describe multiple packet dropouts of
both sides from a sensor to an estimator and from a controller to an actuator in NCSs.
The models (3) and (4) show that the latest data received previously will be used if the
present measurement or control input is lost during data transmissions.

In this paper, the mathematical expectation E operates on ξ(t), γ(t), w(t) and v(t).
0 is a zero matrix of suitable dimension. The function diag(.) denotes a block diagonal
matrix. The superscript T denotes the transpose. δtk is the Kronecker delta function.
The following assumptions are used in the paper.

Assumption 2.1. w(t) and v(t) are uncorrelated white noises with zero means and vari-
ances Qw and Qv.

Assumption 2.2. The initial state x(0) with mean µ0 and covariance P0 is uncorrelated
with ξ(t), γ(t), w(t) and v(t).

Our aim is to find the linear optimal full-order state estimator x̂(t + N |t) and input

estimator ˆ̃u(t+N |t) in the least mean square sense based on the received measurements
(y(t), y(t − 1), . . ., y(0)). They are filters if N = 0, predictors if N > 0 and smoothers if
N < 0.

2.2. Preliminary lemma. First, system (1)-(4) can be rewritten as a compact form
[22]:

X(t+ 1) = Φ̃(t)X(t) + B̃(t)u(t) + Γ̃(t)W (t) (5)

y(t) = H̃(t)X(t) + ξ(t)v(t) (6)

where

X(t) =

 x(t)
y(t− 1)
ũ(t− 1)

 , W (t) =

[
w(t)
v(t)

]
, Φ̃(t) =

 Φ 0 (1− γ(t))B
ξ(t)H (1− ξ(t))Im 0
0 0 (1− γ(t))Ir

 ,

B̃(t) =

 γ(t)B
0

γ(t)Ir

 , Γ̃(t) =

 Γ 0
0 ξ(t)Im
0 0

 ,

H̃(t) =
[
ξ(t)H (1− ξ(t))Im 0

]
(7)

From Assumption 2.1, we have E[W (t)WT(k)] = diag[ Qw Qv ]δtk, E[W (t)vT(k)] =
[ 0 Qv ]Tδtk, and

Φ̄ = E[Φ̃(t)] = Φ0 + αΦ1 + βΦ2, B̄ = E[B̃(t)] = βB1,

H̄ = E[H̃(t)] = H0 + αH1, Γ̄ = E[Γ̃(t)] = Γ0 + αΓ1
(8)
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where

Φ0 =

 Φ 0 B
0 Im 0
0 0 Ir

 ,Φ1 =

 0 0 0
H −Im 0
0 0 0

 ,Φ2 =

 0 0 −B
0 0 0
0 0 −Ir

 ,

Γ0 =

 Γ 0
0 0
0 0

 , Γ1 =

 0 0
0 Im
0 0

 , B1 =

 B
0
Ir

 ,

H0 = [ 0 Im 0 ], H1 = [ H −Im 0 ] (9)

Lemma 2.1. Under Assumptions 2.1 and 2.2, the state covariance matrix q(t) = E[X(t)
XT(t)] of system (5) satisfies the following recursive Lyapunov equation:

q(t+ 1) = Φ0q(t)Φ
T
0 + αΦ1q(t)Φ

T
1 + βΦ2q(t)Φ

T
2 + αΦ0q(t)Φ

T
1 + βΦ0q(t)Φ

T
2

+αΦ1q(t)Φ
T
0 + αβΦ1q(t)Φ

T
2 + βΦ2q(t)Φ

T
0 + αβΦ2q(t)Φ

T
1

+βB1u(t)u
T(t)BT

1 + β[Φ0 + αΦ1 + Φ2]X̄(t)uT(t)BT
1

+βB1u(t)X̄
T(t)[Φ0 + αΦ1 + Φ2]

T +Q0

(10)

with the initial value q(0) = diag( P0 + µ0µ
T
0 0 ), and Q0 = diag( ΓQwΓ

T αQv 0 ).
The mean X̄(t) = E[X(t)] of the state X(t) of system (5) satisfies the difference equa-

tion:
X̄(t+ 1) = Φ̄X̄(t) + B̄u(t) (11)

with the initial value X̄(0) =
[
µT
0 0

]T
.

Proof: It follows from (5) that

X(t+ 1) = [Φ0 + ξ(t)Φ1 + γ(t)Φ2]X(t) + γ(t)B1u(t) + [Γ0 + ξ(t)Γ1]W (t) (12)

So, we can obtain (10) by computing q(t + 1) = E[X(t + 1)XT(t + 1)] and the matrix
Q0 = E[(Γ0+ξ(t)Γ1)W (t)WT(t)(Γ0+ξ(t)Γ1)

T], respectively. (11) can be obtained directly
by taking expectation on both sides of (5).

3. Linear Optimal Full-Order Filters for the State and Input. In this section,
we shall present our main results on the linear optimal full-order filters for the state and
input.
From projection property [29], the linear optimal filter of the state for augmented

system (5)-(6) is given by X̂(t|t) = X̂(t|t − 1) + KX(t)[y(t) − H̄X̂(t|t − 1)] and that

of the control input is given by ˆ̃u(t|t) = ˆ̃u(t|t − 1) + Kũ(t)[y(t) − H̄X̂(t|t − 1)] where
KX(t) and Kũ(t) are the filtering gains. Note that H̄ =

[
αH (1− α)Im 0

]
and

X̂(t|t− 1) =
[
x̂(t|t− 1)T yT(t− 1) ˆ̃uT(t− 1|t− 1)

]T
, so the linear optimal full-order

state filter and input filter can be designed in Theorem 3.1.

Theorem 3.1. For system (1)-(4) with Assumptions 2.1 and 2.2, the linear optimal full-
order state filter and input filter are given by

x̂(t|t) = (In − αKx(t)H)x̂(t|t− 1) +Kx(t)y(t)− (1− α)Kx(t)y(t− 1) (13)

x̂(t+ 1|t) = Φx̂(t|t) +B ˆ̃u(t|t) (14)

ˆ̃u(t|t) = ˆ̃u(t|t− 1)− αKũ(t)Hx̂(t|t− 1) +Kũ(t)y(t)− (1− α)Kũ(t)y(t− 1) (15)

ˆ̃u(t+ 1|t) = βu(t+ 1) + (1− β)ˆ̃u(t|t) (16)

The filtering gain matrices Kx(t) for the state and Kũ(t) for the input are computed by

Kx(t) = Px(t|t− 1)HTΛ−1(t) (17)

Kũ(t) = PT
xũ(t|t− 1)HTΛ−1(t) (18)
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Λ(t) = (1− α)H1q(t)H
T
1 + αHPx(t|t− 1)HT +Qv (19)

The filtering error covariance matrices Px(t|t), Pũ(t|t), Pxũ(t|t), Px(t|t−1), Pũ(t|t−1) and
Pxũ(t|t− 1) are computed by

Px(t|t) = Px(t|t− 1)− αKx(t)Λ(t)K
T
x (t) (20)

Px(t+ 1|t) = ΦPx(t|t)ΦT +BPũ(t|t)BT + ΦPxũ(t|t)BT +BPT
xũ(t|t)ΦT + ΓQwΓ

T (21)

Pũ(t|t) = Pũ(t|t− 1)− αKũ(t)Λ(t)K
T
ũ (t) (22)

Pũ(t+ 1|t) = (1− β)[(1− β)Pũ(t|t) + βu(t+ 1)uT(t+ 1) + βCq(t+ 1)CT

−βu(t+ 1)X̄T(t+ 1)CT − βCX̄(t+ 1)uT(t+ 1)]
(23)

Pxũ(t|t) = Pxũ(t|t− 1)− αKx(t)Λ(t)K
T
ũ (t) (24)

Pxũ(t+ 1|t) = (1− β)[ΦPxũ(t|t) +BPũ(t|t)] (25)

with C = [0, 0, Ir] and the initial values x̂(0| − 1) = µ0, ˆ̃u(0| − 1) = βu(0), Px(0| − 1) =
P0, Pxũ(0| − 1) = 0 and Pũ(0| − 1) = βu(0)uT(0).

Proof: From the analysis before Theorem 3.1, it is known that the filters for the state
and input have the forms of (13) and (15). Furthermore, (14) and (16) can be obtained
readily from (1) and (4). Using (13), (3) and (4), we have the filtering error equation for
the state:

x̃(t|t) = (In − αKx(t)H)x̃(t|t− 1)− (ξ(t)− α)Kx(t)H1X(t)− ξ(t)Kx(t)v(t) (26)

with the estimation error x̃(t|t) = x(t) − x̂(t|t). A similar definition can be applied to
ũ(t). Then, we can derive the filtering error covariance matrix as:

Px(t|t) = E[x̃(t|t)x̃T(t|t)]
= (In − αKx(t)H)Px(t|t− 1)(In − αKx(t)H)T

+α(1− α)Kx(t)H1q(t)H
T
1 K

T
x (t) + αKx(t)QvK

T
x (t)

(27)

By arranging and completing the square, we can rewrite (27) as:

Px(t|t) = α{Kx(t)− Px(t|t− 1)HTΛ−1(t)}Λ(t){Kx(t)− Px(t|t− 1)HTΛ−1(t)}T
+Px(t|t− 1)− αPx(t|t− 1)HTΛ−1(t)HPT

x (t|t− 1)
(28)

where Λ(t) is defined by (19). From (28), we see that the first term in the right hand
side of (28) must be equal to zero to minimize Px(t|t), which yields the gain matrix Kx(t)
defined by (17) and the minimal variance Px(t|t) defined by (20).

Similarly, from (1), (4) and (14)-(16), we have the estimation error equations:

x̃(t+ 1|t) = Φx̃(t|t) +B ˜̃u(t|t) + Γw(t) (29)

˜̃u(t+ 1|t) = (γ(t+ 1)− β)u(t+ 1)− (γ(t+ 1)− β)CX(t+ 1) + (1− β)˜̃u(t|t) (30)

˜̃u(t|t) = ˜̃u(t|t− 1)− αKũ(t)Hx̃(t|t− 1)− (ξ(t)− α)Kũ(t)H1X(t)− ξ(t)Kũ(t)v(t) (31)

Then, (21) and (23) can be obtained by computing Px(t+1|t) = E[x̃(t+1|t)x̃T(t+1|t)]
and Pũ(t+1|t) = E[˜̃u(t+1|t)˜̃uT(t+1|t)]. Similarly to the derivation of (28), we can obtain
the filtering error covariance matrix Pũ(t|t) = E[˜̃u(t|t)˜̃uT(t|t)] from (31) as follows:

Pũ(t|t) = α{Kũ(t)− PT
xũ(t|t− 1)HTΛ−1(t)}Λ(t){Kũ(t)− PT

xũ(t|t− 1)HTΛ−1(t)}T
+Pũ(t|t− 1)− αPT

xũ(t|t− 1)HTΛ−1(t)HPxũ(t|t− 1)
(32)

To minimize Pũ(t|t), the first term in the right hand side of (32) must be equal to
zero, which yields the gain matrix Kũ(t) defined by (18) and the minimal variance Pũ(t|t)
defined by (22). On the other hand, (24) and (25) can be obtained readily by computing
Pxũ(t|t) = E[x̃(t|t)˜̃uT(t|t)] and Pxũ(t+ 1|t) = E[x̃(t+ 1|t)˜̃uT(t+ 1|t)] from (26), (29)-(31).
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Remark 3.1. Theorem 3.1 gives the linear optimal full-order filters for the state and input
by completing square approach. We see that they have the simple computational formulas
and derivations than the augmented filters for augmented systems in [22-24]. Without
loss of generality, we assume n ≥ m and n ≥ p. The computational cost of gain and
covariance matrices is not taken into account since they can be computed offline. Then,
the proposed filters have the online computational order of magnitude O(n2), so they have
the reduced online computational cost than the augmented filters in [22-24] which have the
online computational order of magnitude O((n+m+ p)2).

Remark 3.2. From Theorem 3.1, we see that the gain and covariance matrices of the
proposed filters are affected by the control input u(t), which cannot be obtained by simple
extension from [20] without the control input. It is different from the standard Kalman
filter with deterministic input [29] where gain and covariance matrices are not affected by
the input. The reason is that the concerned system is affected by the stochastic input ũ(t).

Remark 3.3. The optimal linear full-order filters designed only depend on the knowledge
of the distribution α but do not depend on the values of (ξ(0), ξ(1), . . ., ξ(t)), which implies
that the proposed filters can be computed offline and the steady-state filters can be obtained
(see the later Section 5). They are different from the filter given in [3] where the inter-
mittent Kalman filter depends on the values of (ξ(0), ξ(1), . . ., ξ(t)), which implies that the
filter in [3] must be computed online and the steady-state filter cannot be obtained.

4. Linear Optimal Full-Order Predictors and Smoothers. In this section, we will
derive the linear optimal full-order predictors and smoothers for the state and input based
on Theorem 3.1. The following Theorem 4.1 and Theorem 4.2 give the results.

Theorem 4.1. For system (1)-(4) with Assumptions 2.1 and 2.2, the linear optimal full-
order N-step (N > 1) predictors for the state and input are given by

x̂(t+N |t) = Φx̂(t+N − 1|t) +B ˆ̃u(t+N − 1|t) (33)

ˆ̃u(t+N |t) = βu(t+N) + (1− β)ˆ̃u(t+N − 1|t) (34)

where the initial values x̂(t|t) and ˆ̃u(t|t) are computed by Theorem 3.1. The prediction
error covariance matrices are given by

Px(t+N |t) = ΦPx(t+N − 1|t)ΦT

+BPũ(t+N − 1|t)BT + ΦPxũ(t+N − 1|t)BT

+BPT
xũ(t+N − 1|t)ΦT + ΓQwΓ

T
(35)

Pũ(t+N |t) = β(1− β)u(t+N)uT(t+N) + β(1− β)Cq(t+N)CT

+(1− β)2Pũ(t+N − 1|t)− β(1− β)u(t+N)X̄T(t+N)CT

−β(1− β)CX̄(t+N)uT(t+N)
(36)

Pxũ(t+N |t) = (1− β)ΦPxũ(t+N − 1|t) + (1− β)BPũ(t+N − 1|t) (37)

where the initial values Px(t+1|t), Pũ(t+1|t) and Pxũ(t+1|t) are computed by (21), (23)
and (25), and q(t+N) and X̄(t+N) are computed by (10) and (11).

Proof: (33) and (34) directly follow from (1) and (4). Further, we have the prediction
error equations

x̃(t+N |t) = Φx̃(t+N − 1|t) +B ˜̃u(t+N − 1|t) + Γw(t+N − 1) (38)

˜̃u(t+N |t) = (γ(t+N)−β)u(t+N)−(γ(t+N)−β)CX(t+N)+(1−β)˜̃u(t+N−1|t) (39)

with the prediction errors x̃(t+N |t) = x(t+N)−x̂(t+N |t) and ˜̃u(t+N |t) = ũ(t+N)− ˆ̃u(t+
N |t). Then, the covariance matrices (35)-(37) can be obtained readily from (38) and (39)



LINEAR OPTIMAL STATE AND INPUT ESTIMATORS FOR NCSS 7295

by computing Px(t+N |t) = E[x̃(t+N |t)x̃T(t+N |t)], Pũ(t+N |t) = E[˜̃u(t+N |t)˜̃uT(t+N |t)]
and Pxũ(t+N |t) = E[x̃(t+N |t)˜̃uT(t+N |t)].

Theorem 4.2. For system (1)-(4) with Assumptions 2.1 and 2.2, the linear optimal full-
order fixed-lag N -step (N < 0) smoothers for the state and input are given by

x̂(t+N |t) = x̂(t+N |t− 1) +Mx(t+N |t)[y(t)− αHx̂(t|t− 1)− (1− α)y(t− 1)] (40)

ˆ̃u(t+N |t) = ˆ̃u(t+N |t− 1) +Mũ(t+N |t)[y(t)− αHx̂(t|t− 1)− (1− α)y(t− 1)] (41)

where the initial values x̂(t+N |t+N) and ˆ̃u(t+N |t+N) are computed by Theorem 3.1.
The smoothing (N < 0) gain matrices Mx(t+N |t) and Mũ(t+N |t) are computed by

Mx(t+N |t) = ∆(1)
x (t+N, t|t−1)HTΛ−1(t), Mũ(t+N |t) = ∆

(1)
ũ (t+N, t|t−1)HTΛ−1(t)

(42)
where

∆
(1)
x (t+N, t|t− 1) = ∆

(1)
x (t+N, t− 1|t− 2)[Φ− α(ΦKx(t− 1)

+BKũ(t− 1))H]T +∆
(2)
x (t+N, t− 1|t− 2)BT,

∆
(2)
x (t+N, t|t− 1) = (1− β)[∆

(2)
x (t+N, t− 1|t− 2)

−α∆
(1)
x (t+N, t− 1|t− 2)HTKT

ũ (t− 1)]
(43)

∆
(1)
ũ (t+N, t|t− 1) = ∆

(1)
ũ (t+N, t− 1|t− 2)[Φ− α(ΦKx(t− 1)

+BKũ(t− 1))H]T +∆
(2)
ũ (t+N, t− 1|t− 2)BT,

∆
(2)
ũ (t+N, t|t− 1) = (1− β)[∆

(2)
ũ (t+N, t− 1|t− 2)

−α∆
(1)
ũ (t+N, t− 1|t− 2)HTKT

ũ (t− 1)]
(44)

where the initial values ∆
(1)
x (t+N, t+N |t+N −1) = Px(t+N |t+N −1), ∆

(2)
x (t+N, t+

N |t+N − 1) = Pxũ(t+N |t+N − 1), ∆
(1)
ũ (t+N, t+N |t+N − 1) = PT

xũ(t+N |t+N − 1)

and ∆
(2)
ũ (t + N, t + N |t + N − 1) = Pũ(t + N |t + N − 1) are computed by Theorem 3.1.

The smoothing error covariance matrices are computed by

Px(t+N |t) = Px(t+N |t− 1)− αMx(t+N |t)Λ(t)MT
x (t+N |t) (45)

Pũ(t+N |t) = Pũ(t+N |t− 1)− αMũ(t+N |t)Λ(t)MT
ũ (t+N |t) (46)

where the initial values Px(t +N |t +N) and Pũ(t +N |t +N) are computed by Theorem
3.1.

Proof: Here, the proof of the state smoother is only given. The proof of the input
smoother is similar. From Kalman filtering approach, we design the following unbiased
smoother for the state

x̂(t+N |t) = x̂(t+N |t− 1) +Mx(t+N |t)[y(t)− H̄X̂(t|t− 1)] (47)

Note that H̄X̂(t|t− 1) = αHx̂(t|t− 1)+ (1−α)y(t− 1) from (7) and (8), which together
with (47) yields (40). Then smoothing error equation is given by

x̃(t+N |t) = x̃(t+N |t− 1)− (ξ(t)− α)Mx(t+N |t)H1X(t)
−αMx(t+N |t)Hx̃(t|t− 1)− ξ(t)Mx(t+N |t)v(t) (48)
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with the smoothing error x̃(t+N |t) = x(t+N)− x̂(t+N |t). Hence, the smoothing error
covariance matrix is given by

Px(t+N |t) = E[x̃(t+N |t)x̃T(t+N |t)]
= Px(t+N |t− 1) + α(1− α)Mx(t+N |t)H1q(t)H

T
1 M

T
x (t+N |t)

+α2Mx(t+N |t)HPx(t|t− 1)HTMT
x (t+N |t)

+αMx(t+N |t)QvM
T
x (t+N |t)

−αE[x̃(t+N |t− 1)x̃T(t|t− 1)]HTMT
x (t+N |t)

−αMx(t+N |t)HE[x̃(t|t− 1)x̃T(t+N |t− 1)]

(49)

Let ∆
(1)
x (t + N, t|t − 1) = E[x̃(t + N |t − 1)x̃T(t|t − 1)], ∆

(2)
x (t + N, t|t − 1) = E[x̃(t +

N |t − 1)˜̃uT(t|t − 1)], and note that x̃(t + N |t − 1) = x(t + N) − x̂(t + N |t − 1) where

x̂(t+N |t−1) is uncorrelated with x̃(t|t−1) and ˜̃u(t|t−1), then we have ∆
(1)
x (t+N, t|t−1) =

E[x(t + N)x̃T(t|t − 1)] and ∆
(2)
x (t + N, t|t − 1) = E[x(t + N)˜̃uT(t|t − 1)]. Further, from

(26), (29)-(31) we have

∆(1)
x (t+N, t|t− 1) = E[x(t+N)x̃T(t− 1|t− 1)]ΦT + E[x(t+N)˜̃uT(t− 1|t− 1)]BT

= E[x(t+N)x̃T(t− 1|t− 2)][Φ− α(ΦKx(t− 1) +BKũ(t− 1))H]T

+E[x(t+N)˜̃uT(t− 1|t− 2)]BT (50)

∆(2)
x (t+N, t|t− 1) = (1− β)E[x(t+N)˜̃uT(t− 1|t− 1)]

= (1− β)E[x(t+N)˜̃uT(t− 1|t− 2)]

−α(1− β)E[x(t+N)x̃T(t− 1|t− 2)]HTKT
ũ (t− 1) (51)

From (50), (51) and the definitions of ∆
(1)
x (t + N, t|t − 1) and ∆

(2)
x (t + N, t|t − 1), we

have (43). Then, (49) can be rewritten as

Px(t+N |t) = α[Mx(t+N |t)−∆
(1)
x (t+N, t|t− 1)HTΛ−1(t)]Λ(t)[Mx(t+N |t)

−∆
(1)
x (t+N, t|t− 1)HTΛ−1(t)]T + Px(t+N |t− 1)

−α∆
(1)
x (t+N, t|t− 1)HTΛ−1(t)H∆

(1)
x (t+N, t|t− 1)T

(52)

From (52), the first term in the right hand side of (52) must be equal to zero to minimize
the error covariance matrix Px(t + N |t). Then, we have (45) and the first equation of
(42).

Remark 4.1. Theorems 3.1, 4.1 and 4.2 give the linear optimal full-order estimators
for system (1)-(4). When there is no control input, i.e., B = 0, the proposed full-order
estimators are reduced to the results in [20] with only packet dropouts of single side from
the sensor to the estimator. When there are no packet dropouts of both sides, i.e., α = 1
and β = 1, they are reduced to the standard Kalman estimators [29].

5. Stability Analysis and Steady-State Estimators. In the preceding sections, we
have obtained the linear optimal full-order estimators including filter, predictor and
smoother. In this section, we will investigate their stability and steady-state property
for 0 < α, β < 1.
We combine the state error x̃(t|t) and input error ˜̃u(t|t) into a vector [x̃T(t|t), ˜̃uT(t|t)]T.

Now we check its covariance

P (t|t) = E{[x̃T(t|t), ˜̃uT(t|t)]T[x̃T(t|t), ˜̃uT(t|t)]} =

[
Px(t|t) Pxũ(t|t)
Pũx(t|t) Pũ(t|t)

]
by (26), (29)-(31), i.e., combining (21)-(25), and have the covariance matrix as

P (t|t) = Ψ(t)P (t− 1|t− 1)Ψ(t)T +Q(t)−K(t)ST − SKT(t) +K(t)R(t)KT(t) (53)
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where Ψ(t), Q(t), K(t), S and R(t) are defined by

Ψ(t) =

[
(In − αKx(t)H)Φ (In − αKx(t)H)B

−αKũ(t)HΦ (1− β)− αKũ(t)HB

]
,

K(t) =

[
Kx(t)
Kũ(t)

]
, S = α

[
ΓQwΓ

THT

0

]
,

Q(t) = β(1− β)

[
0 0
Ir −C

] [
u(t)uT(t) u(t)X̄T(t)
X̄(t)uT(t) q(t)

] [
0 0
Ir −C

]T
+

[
ΓQwΓ

T 0
0 0

]
,

R(t) = α[(1− α)H1q(t)H
T
1 + αHΓQwΓ

THT +Qv] (54)

Note that (53) and (54) contain the terms relative to the input u(t), the covariance
matrix P (t|t) is time-varying generally. The following theorem states the stability.

Theorem 5.1. For system (1)-(4), if the matrix Φ is stable and the input u(t) is bounded,
the solution P (t|t) to Equation (53) with an any initial condition P (0|0) ≥ 0, i.e.,
Px(0|0) ≥ 0, Pũ(0|0) ≥ 0, Pxũ(0|0), q(0) ≥ 0 and X̄(0), is bounded.

Proof: From the stability of Φ and 0 < α, β < 1, it can be known that Φ̄ is stable.
Then, X̄(t) computed by (11) is bounded from the bounded input u(t). Further, let

A = Φ0 ⊗ Φ0 + αΦ1 ⊗ Φ1 + βΦ2 ⊗ Φ2 + αΦ0 ⊗ Φ1 + βΦ0 ⊗ Φ2

+αΦ1 ⊗ Φ0 + αβΦ1 ⊗ Φ2 + βΦ2 ⊗ Φ0 + αβΦ2 ⊗ Φ1
(55)

We readily verify ρ(A) < 1 where ρ(A) is the spectrum radius of the matrix A and ⊗ is
the Kronecker product. In this situation, we have that q(t) computed by (10) is bounded
from the bounded u(t) and X̄(t). Then, we have that Q(t), S and R(t) are bounded.

From the stability of Φ and 0 < β < 1, we know that

[
Φ B
0 (1− β)Ir

]
is stable. This

means that the pair

([
Φ B
0 (1− β)Ir

]
, [ H 0 ]

)
is detectable. Then there is a matrix[

K̄x

K̄ũ

]
such that

([
In 0
0 Ir

]
− α

[
K̄x

K̄ũ

]
[ H 0 ]

)[
Φ B
0 (1− β)Ir

]
=

[
(In − αK̄xH)Φ (In − αK̄xH)B

−αK̄ũHΦ (1− β)Ir − αK̄ũHB

]
is stable. So, we define two stable suboptimal filters as follows

x̂so(t|t) = (In − αK̄xH)Φx̂so(t− 1|t− 1) + (In − αK̄xH)B ˆ̃uso(t− 1|t− 1)
+K̄xy(t)− (1− α)K̄xy(t− 1)

(56)

ˆ̃uso(t|t) = ((1− β)Ir − αK̄ũHB)ˆ̃uso(t− 1|t− 1)− αK̄ũHΦx̂so(t− 1|t− 1)
+βu(t) + K̄ũy(t)− (1− α)K̄ũy(t− 1)

(57)

Combining (56) and (57), let the covariance matrix of the suboptimal filter [x̂T
so(t|t),

ˆ̃uT
so(t|t)]T be Pso(t|t) under the same initial values with (53). From the suboptimality, we

have P (t|t) ≤ Pso(t|t). From the stability of (56) and (57), we have the bounded solution
Pso(t|t) for any initial value. So, P (t|t) is bounded.

Since the covariance matrix P (t|t) depends on the input u(t), the covariance matrix
P (t|t) has not the steady-state value generally, particularly for the time-varying u(t). To
investigate the steady-state filter, we first check Equations (10) and (11).
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Theorem 5.2. For system (1)-(4), if matrix Φ is stable and the input is constant, i.e.,
u(t) = u, the solutions q(t) and X̄(t) to Equations (10) and (11) with arbitrary initial
conditions q(0) ≥ 0 and X̄(0) converge exponentially to the unique solutions q ≥ 0 and X̄
to the following algebraic Lyapunov equation and simple difference equation

q = Φ0qΦ
T
0 + αΦ1qΦ

T
1 + βΦ2qΦ

T
2 + αΦ0qΦ

T
1 + βΦ0qΦ

T
2 + αΦ1qΦ

T
0

+αβΦ1qΦ
T
2 + βΦ2qΦ

T
0 + αβΦ2qΦ

T
1 + βB1uu

TBT
1

+β[Φ0 + αΦ1 + Φ2]X̄uTBT
1 + βB1uX̄

T[Φ0 + αΦ1 + Φ2]
T +Q0

(58)

X̄ = Φ̄X̄ + B̄u (59)

i.e., q = lim
t→∞

q(t) and X̄ = lim
t→∞

X̄(t). Moreover, we have lim
t→∞

Q(t) = Q and lim
t→∞

R(t) = R.

Q and R are defined by (54) where q(t) and X̄(t) are replaced by q and X̄, respectively.

Proof: From the proof of Theorem 5.1, we know that the stability of Φ and 0 <
α, β < 1 mean the stability of Φ̄ and ρ(A) < 1. Note that the input is a constant u, then
X̄(t) computed by (11) with an any initial value X̄(0) will converge exponentially to X̄
computed by (59), i.e., X̄ = lim

t→∞
X̄(t), and q(t) computed by (10) with any initial value

q(0) ≥ 0 will converge exponentially to the solution q to the algebraic Lyapunov Equation
(58), i.e., q = lim

t→∞
q(t). Further, we have lim

t→∞
Q(t) = Q and lim

t→∞
R(t) = R.

The following theorem gives a sufficient condition for the existence of the steady-state
filters for systems with packet dropouts of both sides.

Theorem 5.3. For system (1)-(4) with the constant input u, if matrix Φ is stable and

the pair

([
Φ B
0 (1− β)Ir

]
− SR−1

[
H 0

]
, Q̄

)
is stabilizable where Q̄ satisfies Q̄Q̄T =

Q − SR−1ST, the solution P (t|t) to Equation (53) with an arbitrary initial condition
P (0|0), i.e., Px(0|0) ≥ 0, Pũ(0|0) ≥ 0, Pxũ(0|0), q(0) ≥ 0 and X̄(0), converges expo-
nentially to the unique positive semi-definite solution Σ to the following algebraic Riccati
equation

Σ = ΨΣΨT +Q−KST − SKT +KRKT (60)

with Ψ =

[
(In − αKxH)Φ (In − αKxH)B

−αKũHΦ (1− β)− αKũHB

]
. Furthermore, we have that Σ =

lim
t→∞

P (t|t), Kx = lim
t→∞

Kx(t), Kũ = lim
t→∞

Kũ(t) and K =

[
Kx

Kũ

]
, and the steady-state

filters

x̂(t|t) = (In − αKxH)Φx̂(t− 1|t− 1) + (In − αKxH)B ˆ̃u(t− 1|t− 1)
+Kxy(t)− (1− α)Kxy(t− 1)

(61)

ˆ̃u(t|t) = ((1− β)Ir − αKũHB)ˆ̃u(t− 1|t− 1)− αKũHΦx̂(t− 1|t− 1)
+βu+Kũy(t)− (1− α)Kũy(t− 1)

(62)

are asymptotically stable.

Proof: For system (1)-(4) with the constant input, we introduce a new Riccati equation

^

P (t|t) =
^

Ψ(t)
^

P (t− 1|t− 1)
^

Ψ
T

(t) +Q−
^

K(t)ST − S
^

K
T

(t) +
^

K(t)R
^

K
T

(t) (63)

with the initial value
^

P (0|0) = P (0|0).
^

Ψ(t) and
^

K(t) have the same definitions as
Ψ(t) and K(t) except that q(t) and X̄(t) are replaced by q and X̄. Then, from q =

lim
t→∞

q(t) and X̄ = lim
t→∞

X̄(t), we have lim
t→∞

∥∥∥Ψ(t)−
^

Ψ(t)
∥∥∥ = 0, lim

t→∞

∥∥∥K(t)−
^

K(t)
∥∥∥ = 0 and

lim
t→∞

∥∥∥P (t)−
^

P (t)
∥∥∥ = 0.



LINEAR OPTIMAL STATE AND INPUT ESTIMATORS FOR NCSS 7299

On the other hand, from the proof of Theorem 5.1, we have that the pair([
Φ B
0 (1− β)Ir

]
,
[
H 0

])
is detectable. Also, the pair([

Φ B
0 (1− β)Ir

]
− SR−1

[
H 0

]
, Q̄

)
is stabilizable where Q̄ satisfies Q̄Q̄T = Q − SR−1ST, then the solution

^

P (t|t) to Equa-
tion (63) will converge exponentially to the unique positive semi-definite solution Σ to

the algebraic Riccati Equation (60), i.e., lim
t→∞

^

P (t|t) = Σ, as well as lim
t→∞

^

Ψ(t) = Ψ and

lim
t→∞

^

K(t) = K. Also, the matrix Ψ is stable, which means the stability of the filters (61)

and (62) [29].
Based on the preceding analysis, we have

0 ≤ lim
t→∞

‖P (t|t)− Σ‖

= lim
t→∞

∥∥∥P (t|t)−
^

P (t|t) +
^

P (t|t)− Σ
∥∥∥

≤ lim
t→∞

∥∥∥P (t|t)−
^

P (t|t)
∥∥∥+ lim

t→∞

∥∥∥^

P (t|t)− Σ
∥∥∥ = 0

(64)

which means lim
t→∞

P (t|t) = Σ. Furthermore, we also have lim
t→∞

Ψ(t) = Ψ and lim
t→∞

K(t) =

K.
From Theorems 3.1, 4.1 and 4.2, it can be known that the existence of the steady-state

filter implies that of the steady-state predictor and smoother.

Remark 5.1. The proof of the existence of steady-state filters is different from [24] where
the packet dropout rate from the controller to the actuator is removed by approximately
treating. Here, we introduce an additional Riccati equation (63) which plays a bridge
between (53) and (60). Furthermore, we do not remove the packet dropout rate from the
controller to the actuator since the packet dropout rate almost exists in networks and it is
independent of the transmitted signals. Certainly, they have the same steady-state value
when the time t approaches infinite except for the different transient process.

Remark 5.2. In Theorems 5.1-5.3, the stability and the steady-state property require
matrix Φ to be stable. This condition is, in fact, necessary as in robust filtering [30]
because the presence stochastic or deterministic parameter uncertainty implies that the
filtering error dynamics cannot be decoupled from the system state. It is clear from (26)
if the system is unstable, its unbounded state will drive the filtering error to infinite.

6. Simulation Examples.

Example 6.1. Consider an example (1)-(4) similar to [22-24]

Φ =

[
1.7240 −0.7788

1 0

]
, B =

[
1
1

]
, Γ =

[
0.5
1

]
, H = [ 0.0286 0.0264 ], (65)

In simulation, we set the variance Qw = 1 and Qv = 1. We take 100 sampling data.
The initial values x(0) = [2,−2]T and P0 = 0.1I2, where I2 is the 2 × 2 identity matrix.

Our aim is to find the linear optimal full-order filters x̂(t|t) and ˆ̃u(t|t), predictors x̂(t|t−1)

and ˆ̃u(t|t− 1), and smoothers x̂(t|t+ 1) and ˆ̃u(t|t+ 1).
Under α = 0.2, β = 0.8 and u(t) = 2 sin(0 : 0.1 : 0.1 ∗ 100), the linear optimal filter

for the first state component is shown in Figure 1. Figure 2 shows the estimation error
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Figure 1. Linear optional fil-
ter for the first state compo-
nent under α = 0.2 and β =
0.8

Figure 2. Estimation error
variances for the first state
component of the optimal esti-
mators under α = 0.2 and β =
0.8

(a) Measurements at sensor and estimator (b) Controller u(t), system input ũ(t) and filter
ˆ̃u(t|t)

Figure 3. Packet dropouts of measurement and input under α = 0.2 and
β = 0.8 and input filter

variances of the state filter, predictor and smoother within 20 ≤ t ≤ 100. From Figure 2,
it can be seen that the smoother has the best accuracy while the predictor has the worst,
and the variances are bounded, which means the stability of the estimators. Figure 3 with
α = 0.2, β = 0.8 and Figure 4 with α = 0.8, β = 0.2 show the effects of packet dropouts
on the measurements and control inputs, respectively, where (a)s of Figure 3 and Figure
4 compare the difference between the measurements z(t) and y(t), and (b)s of Figure 3
and Figure 4 compare the difference between the controllers u(t) and ũ(t). Moreover,

the input filters ˆ̃u(t|t) are also shown in (b)s of Figure 3 and Figure 4. We see that the
input filters have effective estimation accuracy. Figure 5 shows the comparison of square
roots of mean square errors (SRMSE) of our prior filter and those in [22-24] by 100-time
Monte-Carlo test. We see that our filter has better accuracy than [22,24]. Moreover, our
full-order filter has the reduced online computational cost than the augmented filter in
[24] though they have the same accuracy.
Figures 1-5 have shown the performance of the state and input estimators under the

bounded time-varying input. Next, we check the steady-state property under the time-
invariant input. We set u(t) = 10, α = 0.5 and β = 0.1. Figure 6 shows the performance
of the filter, predictor and smoother for the input. Figure 7 shows that estimation error
variances for the input, where (a) shows the variances via time t, and (b) shows the
variances via α under β = 0.1 or β under α = 0.5 at time t = 15. It can be seen that the
estimation accuracy becomes better as α or β increases. Moreover, the accuracy improves
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(a) Measurements at sensor and estimator (b) Controller u(t), system input ũ(t) and filter
ˆ̃u(t|t)

Figure 4. Packet dropouts of measurement and input under α = 0.8 and
β = 0.2 and input filter

Figure 5. Comparison of
SRMSEs for the first state
component of our filter and
filters in [22-24] under α = 0.8
and β = 0.2

Figure 6. Controller u(t),
system input ũ(t) and estima-

tors ˆ̃u(t|t), ˆ̃u(t|t−1) and ˆ̃u(t|t+
1) under α = 0.5 and β = 0.1

(a) Estimation error variances for the system in-
put ũ(t) under α = 0.5 and β = 0.1

(b) Estimation error variances for system input
ũ(t) under α = 0.5, 0.1 ≤ β ≤ 1 and β = 0.1,
0.1 ≤ α ≤ 1, at t = 15

Figure 7. Estimation error variances for the linear optimal filter, predictor
and smoother of the system input

faster as β increases, which is reasonable since the input is time-invariant and it will
almost be used later once it is received. Figure 8 shows the estimation error variances of
the filter, predictor and smoother for the first component of the state. Figure 9 shows the
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Figure 8. Estimation error
variances for the first state
component under α = 0.5 and
β = 0.1

Figure 9. SRMSE for the
first state component of our fil-
ter and filters in [22-24] under
α = 0.5 and β = 0.1

comparison of square roots of mean square errors (SRMSEs) for our filter and those in [22-
24] by 100-time Monte-Carlo test. We see that our filter has better accuracy than [22-24]
before the filters enter the steady state. Furthermore, our filter has the same steady-state
performance as [24] and better accuracy than [22,23] as the time t approaches infinity.
Though our filter and the augmented filter in [24] have the same steady-state performance,
our filter has the reduced online computational cost (see Remark 3.1). At the same time,
the H∞ filter in [23] has the bad accuracy in mean square error.

Example 6.2. Consider the following mass-spring system shown in Figure 10.

ẋ(t) =


0 0 1 0
0 0 0 1

−k1+k2
m1

k2
m1

− µ
m1

0
k2
m2

− k2
m2

0 − µ
m2

x(t) +


0
0
0
1
m2

 ũ(t) +


1
1
1
1

w(t) (66)

z(t) = Hx(t) + v(t) (67)

where x(t) = [ x1(t) x2(t) ẋ1(t) ẋ2(t) ]T, x1, x2 and m1, m2 are the positions and
masses, respectively, k1 and k2 are the spring constants, µ is the viscous friction coefficient
between the masses and the horizontal surface. The process noise and measurement noise
are uncorrelated. Our aim is to find the linear optimal full-order filters x̂(t|t) and ˆ̃u(t|t).

In the simulation, we take Qw = 1, Qv = I2, α = 0.8, β = 0.5, u(t) = sin(4πt/100),
m1 = 1, m2 = 0.5, k1 = 1, k2 = 1, µ = 0.5, and the sampling period T = 1s, then we have
the parameters of the corresponding discretized system of system (66)-(67) as follows:

Φ =


0.3273 0.3089 0.5610 0.0951
0.5227 0.4224 0.1902 0.4541
-0.9318 0.3708 0.0468 0.2138
0.5278 -0.7180 0.4276 -0.0317

 , B =


0.0549
0.6325
0.1902
0.9082

 ,

Γ =


1.2567
1.3592
0.2924
0.5895

 , H =

[
1 0 0 0
0 1 0 0

]
.

(68)

Optimal linear filters for the mass positions are shown in Figure 11. Figure 12 gives
the filter of the input ũ(t). It can be seen that our filters designed are effective.

7. Conclusions. For NCSs with multiple packet dropouts in data transmissions of both
sides from the sensor to the estimator and from the controller to the actuator, we have
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Figure 10. Mass-spring system

(a) Filter for the position of mass 1 (b) Filter for the position of mass 2

Figure 11. Linear optimal filters for the mass positions under α = 0.8
and β = 0.5

Figure 12. Controller u(t), system input ũ(t) and filter ˆ̃u(t|t) under α =
0.8 and β = 0.5

derived the linear optimal full-order filter, predictor and smoother for the state and input
in the least mean square sense via completing square approach. Our solutions are given in
terms of a Riccati recursion, a Lyapunov recursion and a simple difference recursion. They
have the reduced online computational cost. The sufficient conditions for the stability of
the estimators and the existence of the steady-state estimators have been given.
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