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ABSTRACT. Differential estimation is required for many fields. This paper proposes novel
nonlinear tracking differential-estimators to solve the problem of phase lag of traditional
approach. In this study, the conventional structure of nonlinear tracking differentiator
is expanded. First, the lowest-order design is proposed, which improves the rapidity
by reducing one equation compared with the traditional method. Moreover, the idea of
feedforward is introduced into constructing the equations set of the differential-estimator
to improve the rapidity further. The numerical examples are given, and the practical
application experiments are implemented in a servo system. According to the results, the
proposals have smaller phase lag, and achieve better practical effect.

Keywords: Nonlinear tracking differentiator, Rapidity, Phase lag, Feedforward

1. Introduction. Recently, the necessity to estimate the time-derivative of signals arises
in many fields [1, 2]. For instance, one needs to obtain a velocity signal rapidly and
accurately from a position measurement in a robot and other servo systems, or to calculate
the rate of a reactant temperature change in chemical industry. In practice, the simplest
method is the backward difference
B(k) = v(k) Tv(k 1),
S

(1)

where 0(k) is the differential estimation of a measured signal v(k) at the kth sampling
instant. T is a sampling period. However, this normal difference amplifies the noise in
the signal, and does not provide satisfactory estimation.

Therefore, many researchers have tried to develop differentiators to estimate the differ-
ential of a signal. Levant proposed a differentiator via sliding mode technique [3]. This
method obtains the derivative of an input signal, and inhibits the influence of signal noise
in some degree. However, the information that one needs to know on the signal is an
upper bound for Lipschitz’s constant of the derivative of the signal. Besides, the chat-
tering phenomenon is inevitable [4]. J. Han et al. proposed the dynamics structure of a
nonlinear tracking differentiator (NTD) [5] which successfully realized the estimation of
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differential. The NTD method benefits from the “tracking”, and estimates the differen-
tial through integral actions. This approach has been studied widely in both theory and
practice since it came into being [3, 5-13].

Previous researches usually focus on the design of the nonlinear function in a NTD
to get faster differential estimation. However, there is always serious phase lag of the
conventional NTD no matter how to design the nonlinear function. Because of the phase
lag, the accuracy of differential estimation is degraded, which leads to the degradation of
the practical effect of the conventional NTD, especially in a high-speed and high-accuracy
servo system.

In this paper, we try to develop new differential-estimators to decrease the phase
lag of differential estimation and improve the practical effect in real system by chang-
ing the structure of the conventional NTD. Two schemes, the lowest-order nonlinear
tracking differential-estimator (LNTD) and the feedforward-constructing nonlinear track-
ing differential-estimator (FNTD), are proposed. These methods maintain the profit of
“tracking” of NTD; however, they are simpler and faster than the traditional method. A
trade-off is achieved between fast estimation and noise tolerance: the phase lag of differen-
tial estimation is effectively decreased, and the noise is not amplified seriously. Numerical
examples are given in this paper. Moreover, the practical application is researched for
high-speed and high-accuracy servo by experiments, which verify the effectiveness.

This paper is organized as follows. The problem is described in Section 2. Then,
the LNTD and the FNTD are proposed in Section 3 and Section 4, respectively. The
numerical examples are given in Section 5. The practical application research is carried
out in Section 6. Finally, the paper is concluded in Section 7.

2. Problem Formulation. In this section, the conventional design objective is given
first. Then, the power function based NTD is introduced as an example of the conventional
design. Finally, the problem of the conventional design is described.

2.1. Design objective of conventional NTD. Tracking differentiator is such a system
[5]: for a given input signal v(t), the system provides two signals x;(¢) and x5 (t) such that
the two signals track v(¢) and its derivative v(t) [12], i.e.,

z1(t) = v(t), x2(t) — 0(¢). (2)
In the previous work, researchers have given a general structure of NTD as (3)
a1 (t) = 2 (1)

io(t) = RS {xl(t) o, =2 (3)

R )

where f(e, ®) is a nonlinear function; R (R > 0) is a real constant. The traditional design
of NTD is to select appropriate f(e,®) to make the system (3) asymptotically stable.
Meanwhile, the system should make the solution z(t) satisfy

T

li — = 4

L |z1() — v(t)] dt =0, (4)

for any real number 7' > 0, which means the state variable () converges to the input

signal v(¢) in mean. Then, x9(t) converges to the generalized derivative of v(¢). The
structure of the NTD is illustrated in Figure 1 which is a nonlinear feedback system.
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FIGURE 1. The structure of the conventional NTD

2.2. Power function based NTD. There is a satisfactory design [6] based on the power
function

f(21,29) = — [(ﬁzl)g + Z1] —Qy [(522)5 + 2’2] ; (5)

where 2y, 2 are the arguments of the function; constants «;, s are greater than zero,
and S is greater than 1; constants p and ¢ (p > ¢ > 0) are both odd numbers.

This function is composed of a linear part and a nonlinear part to balance the contra-
diction between the rapidity and the stationarity of NTD. For this function, the nonlinear
part plays a major role when |8z;| > 1, i = 1,2. The linear part plays a major role
when |5z;| < 1,7 =1,2. The [ is a weighting. The p and ¢ determine the shape of the
nonlinear part. Bigger § and p/q mean faster convergence speed of the function.

Based on the function (5), the nonlinear tracking differentiator is obtained as (6).

iy(t) =R? {—al (B [ (t) = v () + [1(8) = v(0)] } — 0 { [51712%(1?)] " :rz}%t) }} (6)

Such as the power function based NTD, conventional designs use the form (3) and
choose different nonlinear function. In practice, a conventional NTD outputs z; and x»,
the tracking of the input signal and the estimation of the differential, via two integral
actions. According to control theory, an integral action leads to 90 degrees phase lag
at the most. Therefore, there is always phase lag fundamentally caused by the integral
actions in conventional NTD.

3. Lowest-Order NTD. In this section, the conventional power function based NTD
(6) is modified. The phase lag can be reduced by decreasing the number of integral actions
in solving the equations, since it is caused by the integral fundamentally. The new scheme
is proposed, which uses only one variable to realize the target of differential estimation.
To propose this differentiator, following lemmas are given first.

Lemma 3.1. For the nonlinear Equation (7) regarding the variable z(t),

(1) = —[Bz(t)]7 — (1), (7)
if
(1) constant 3 is greater than 1,
(2) p, q (p > q > 0) are both odd numbers,

then the solution of system (7) is globally asymptotically stable to zero.
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Ficure 2. Convergence of the power function and the linear function

Proof: Select the Lyapunov candidate
1
V(o) = 520, )

It is reasonable that V(z) > 0 and V' (0) = 0. The total derivative of V' (z) with respect
to time ¢ along the trajectory of system (7) is

dV(2)
dt

Because p and ¢ are odd,

ptq

= 3(t)z(t) = —Baz(t) T — 22(¢). (9)

d‘;gz) is not greater than zero. Therefore, V'(z) is a Lyapunov
function. In the neighborhood of zero, only z(t) = 0 makes d‘;gz) = 0. According to
Barbashin-Krasovskii-LaSalle Theorem [15], the solution of the system (7) is globally

asymptotically stable to zero. There is z(t) — 0 when ¢ — +oc. O

Remark 3.1. The right part of (7) is also composed of a linear function and a power
function regarding the variable z. Figure 2 shows the difference on the convergence of the
linear part and the nonlinear part using an example. According to the figure, the power
function has fast speed of convergence when the variable is far away from the equilibrium
point. However, it converges quite slowly when the variable is near the equilibrium point.
The linear function has stable and faster convergence near the equilibrium point, however,
slowly converge when the variable is far away from the equilibrium. Therefore, the function
used in (7) has fast convergence whatever the value of the variable z is.

Then, we will give the convergence of the differential-estimator which is constructed by
a first-order equation. The convergence of tracking differentiator is seen as an independent
problem which was presented the first time in [5], and re-proved in [10]. However, it is
recently pointed out that the previous proof is incomplete, and the mistake is finally
removed by B. Guo and Z. Zhao [16]. The latest result is shown in Appendix A. We
directly use this result to support the following lemma which can be seen as a corollary
of Theorem 2.1 in [16].

Lemma 3.2. Suppose that the equilibrium point 0 of the following system is globally
asymptotically stable:

2(t) = flz(8)], 2(0) = 2, (10)
where

2o 1S any initial value,
f(®) is a locally Lipschitz continuous function, f(0) = 0.
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If a signal v(t) is differentiable and sup,cjy ;o0 [0(t)] < 400, then the solution vr(t) of
the system
Tr(t) = Bf[rr(t) —v(t)], wr(0) = ro (11)
is convergent in the sense that: for every a > 0, xr(t) is uniformly convergent to v(t) on
t € [a,4+00) as R — +o00, where xgy is any initial value.
Proof: Suppose h = Rt and yr(h) = xg (t) — v (¢). Then
dyR(h)

— 5 = Byr(h) =g (t) —0(t) = Rflor(t) — v(t)] - 0(1). (12)

Therefore, we have

o(t) o(t)

yr(h) = flzr(t) —v(t)] — 7 - flyr(h)] = T (13)
By changing the argument, (13) can be written as
yr(t) = flyr(®)] + gr(t) (14)
where gg(t) = —W—IQR).

Therefore, yr(t) is a solution to the perturbed system of (10). Since f(e) is locally
Lipschitz continuous and system (10) is globally asymptotically stable to zero, the exitance
of Lyapunov function of system (10) is confirmed. The convergence of system (11) is not
difficult to prove, which can be completed according to the line of Lemma A.1 in the
appendix. 0]

Combining Lemma, 3.1 and Lemma 3.2, the following theorem is obtained.

Theorem 3.1. If it is satisfied that

(1) constant (3 is greater than 1,

(2) constants p and q (p > q > 0) are both odd numbers,

(8) the signal v(t) is differentiable and sup,cp () |0(t)] < 400, then the solution of
following system.:

in(t) =R { =57 [or(t) = v(t))7 = [or(t) —v(®)]}, 2a(0) = wro (15)

is convergent in the sense that: for every a > 0, xgr(t) is uniformly convergent to v(t) on
t € [a,+00) as R — 400, where xgy is any initial value.

Equation (15) is the LNTD, a first-order differential equation. Since xg(t) is convergent
to v(t), £r(t) is the estimation of ©(¢). This differential-estimator uses only one variable
to estimate the differential of the input signal by solving the differential equation: & p(t)
is calculated using old xp, then the xg(t) is obtained by integrating the i () as shown
in Figure 3. This proposal decreases one integral action compared with the conventional
NTD, which reduces the phase lag of differential estimation. Moreover, two parameters
are reduced, which makes the parameters adjustment easier.

Remark 3.2. This proposed method also maintains noise-tolerance in some degree. In
the normal difference method, the noise in the input signal is amplified by 1/Ts times and
outputted into the differential estimation. In modern digital control device, T is usually
programmed as 0.001s ~ 0.0001s to guarantee the control performance. Therefore, the
noise is amplified by 1000 ~ 10000 times. However, the noise in the proposed method
s very small due to the effect of integral in Figure 3. The differential estimation g is
obtained from xgr that has tiny noise. It is to say that using indirect integral calculation
to estimate the differential leads to better noise-tolerance than direct difference method.
Although, the traditional NTD has another variable and another integral action that filter
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FI1GURE 3. The structure of the LNTD

the noise better, the integral causes more serious phase lag. Actually, the rapidity and the
noise tolerance are conflicting. The proposed method is a trade-off: it has better dynamics
than traditional NTD structure, and maintains the noise-tolerance. In fact, for a high-
speed and high-accuracy servo system, smaller phase lag in signal measurement is more
beneficial to expend the bandwidth of the system.

4. Feedforward-Constructing NTD. For a tracking differential-estimator, the real-
ization of signal tracking and differential estimation benefits from the feedback of the
estimation error. In control theory, feedforward is also important in the aspect of im-
proving system dynamic property. Therefore, this section proposes a new structure using
feedforward. In order to propose this method, the following lemmas are needed.

Lemma 4.1. There is a nonlinear differential equations set regarding the variables z(t)
and zy(t)

(1) == [Ba ()] =2 (0)

a(t) = = {B20)f + 20)} —a{Ba0) + 20}, (16)

where

constant [ is greater than 1;
constants p and q (p > q > 0) are both odd;
a (0 < a < 2)isalso a constant.

Then, the solution (z1, z2) of the system (16) is globally asymptotically stable to (0,0).

Proof: Choose the Lyapunov candidate

q ,p P 1 q o "M 1
V(Zl, ZQ) :quﬁq 21 (t) + 52%(15) + mﬁq Z9 (t) + izg(t) (17)

Then, V(z1,22) > 0 and V(0,0) = 0 are tenable because p, ¢ are odd. The total
derivative of V'(zy, z2) with respect to time ¢ along the system (16) is
dV(z, z p 2 ) p 2. .
% =[azf (t)21(t) + 21(t)21 (1) + Bazg (£)22(t) + 22(t) 22(t)

= — 2(t) — 2(t) + a1 (£ 2 ()

. . . N 18
_ @ : )zf(t) _ 52%(15) _ @2 5 )zg(t) — §Z§(t) + i (t)2o(t) 1
__e - A 12() + 2()] ST = aMF <0
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Therefore, V(z1, 23) is a Lyapunov function. To satisfy W = 0, there should be
Z(t) =0 (19)
Notice that only 2;(¢) = 0 and 25(¢) = 0 satisfy the three equations in (19) at the same
time. And only when (21, 22) = (0,0), 2:(¢) and 25(¢) are both zeros at the same time.
Therefore, only (0,0) makes dV' (2, 23)/dt = 0. Also according to Barbashin-Krasovskii-
LaSalle Theorem, the solution of (16) is globally asymptotically stable to (0, 0). O

Then, we also give following Lemma 4.2 to show the convergence of the differential-
estimator which is constructed using feedforward.

Lemma 4.2. Suppose that the equilibrium point (0,0) of the following system is globally
asymptotically stable:

(o

(210, 200) 18 any initial value;
R and « are constants;
f(®) is a locally Lipschitz continuous function, f(0) = 0.

fla@)], 21(0) = 210

Flea®] + af[z1(8)], 22(0) = 29, (20)

where

If the signal v(t) is differentiable and sup,c ;o) |0()| < 400, then the solution xpy(t)
of the system

{Jle(t) = Rf[z1r(t) —v(®)], 21r(0) =219
iar(t) = R{flz2r(t) — v(t)] + aflzir(t) —v(®)]}, 22r(0) = 22,

is convergent in the sense that: for every a > 0, xog(t) is uniformly convergent to v(t) on
t € [a,4+00) as R — +00, where (x10, T2) s any initial value.

Proof: Let h = Rt, and

(21)

(22)

Then

! 0 (23)
gor(h) = fly2r(P)] + af[yir(h)] — R
Therefore, yr = (y1r, ¥2r)T is a solution to the system

(t) = Flyn(t)] + gal). (21)
where

Fiya(®)] = {Fna(®). fvee(®)] + o finn(®)]} (25)

gelt) = |-tn) ) (26)

If z= (21, 22)7 is a solution to the system (20), then Equation (20) can be rewritten as
z = F[z(t)]. (27)
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FIGURE 4. The structure of the FNTD

Therefore, (24) is a perturbed system of (27). It is not difficult to verify the convergence
of system (21) according to Lemma A.1 in the appendix. O
Then, combining Lemma 4.1 and Lemma 4.2, the following theorem is obtained.

Theorem 4.1. If it is satisfied that

(1) 0 < <2,

(2) B is greater than 1,

(8) constants p and q (p > q > 0) are both odd numbers,

(4) the signal v(t) is differentiable and sup,cp ;) [0(t)| < 400, then the solution x gy (t)
of the system

ina(t) =R {57 [1a(t) = v(®)]" = [#1(t) = v(®)]}, 210(0) = 210

) ) (28)
.’i’gR(t) =R {—BE [IQR(t) - U(t)]g — [.’L’QR(t) - U(t)]} + Oéi'lR(t), IIIQR(O) = T

is convergent in the sense that: for every a > 0, x5 (t) is uniformly convergent to v(t) on
t € [a,4+00) as R — +o00o, where (x19, T2) s any initial value.

Equation (28) is the FNTD. @55 (t) is used as the differential estimation of the input
signal v(t). This differential-estimator is composed of two LNTDs as shown in Figure 4.
The output of the first LNTD is injected into the second one, which realizes the effect of
feedforward. Here, a is the gain of feedforward. According to control theory, bigger «
allows smaller phase lag. However, excessive o can also lead to an overshoot. Therefore,
the design of a should trade off the rapidity and the overshoot. In practice, a can be
designed between 0 to 0.5 to decrease phase lag effectively without causing large overshoot.
This differential-estimator responds faster, which is more suitable for the requirement of
higher accuracy of the differential estimation.

5. Numerical Examples. In order to test the performance of the proposed differential-
estimators, the numerical examples are given using sine signals as the inputs with the
magnitude of 0.005 m and the frequencies from 0.2 Hz to 10 Hz.

In this section, the conventional NTD (6) is also implemented for comparison. The
parameters are adjusted by the method of trial-and-error as shown in Table 1. These
parameters make the status of every approach similar to each other. Euler method is
employed to solve the differential equations numerically. The integration step is 0.1 ms.
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TABLE 1. The parameters of the conventional and the proposed methods

Parameters Conventional NTD LNTD FNTD
Equation (6) Equation (15) | Equation (28)
R 500.0 500.0 500.0
Qq 1.0 - -
(0%} 2.0 - -
o) - - 0.35
B 30.0 30.0 30.0
P 3 3 3
q 1 1 1

TABLE 2. The phase lags of each method

Frequency (Hz) | Conventional NTD (deg) | LNTD (deg) | FNTD (deg)
0.2 —-0.2772 -0.1404 -0.0900
0.4 —-0.5543 -0.2808 -0.1800
0.6 -0.8315 —-0.4212 -0.2700
0.8 -1.1087 -0.5616 -0.3600
1.0 -1.3860 -0.7020 -0.4500
2.0 -2.7708 -1.4036 -0.9001
4.0 -2.5160 -2.8021 -1.8002
6.0 -8.2210 -4.1909 -2.7002
8.0 -10.8955 -9.5680 -3.5991
10.0 —-13.4906 -6.9307 —4.5009

s S ignal velocity

———— Diflerence
Conventional NTD

Zoom in

Zoom in

Velocity estimation (m/s)

-0.05

-0.1

Time(s)

FIGURE 5. A numerical example with noise

Table 2 illustrates the least square analysis of the phase lag of each method. The phase
lags of the proposed LNTD and FNTD are significantly smaller than the conventional
method. The FN'TD achieves the smallest phase lag. The improvements effectively reduce
the phase lag for differential estimation.

Figure 5 shows the situation when noise exists in the input signal. The input is a sinu-
soid with the magnitude of 0.005 m and the frequency of 2 Hz. A random noise between
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+1 pm that is ten times of the resolution of the sensor used in the next section is added
into the input signal. For comparison, normal difference method is also implemented here.
According to the results, there is serious noise in the estimation of the normal difference
method that is difficult to use in practical engineering. The conventional NTD has smallest
noise; however, there also exists the largest phase lag which is adverse to implement some
robust controller in practical engineering. The noise in the proposed methods is a little
bigger than traditional NTD, but is limited in in a small and certain extent and obviously
smaller than the normal difference method. Meanwhile, the estimation of the proposed
methods is faster, and closer to the real value comparing with the conventional NTD.

6. Practical Application Research. The application of the proposed methods is stud-
ied for a high-speed and high-accuracy servo control in this section. The control plant is
a linear motor (GMC Hillstone) servo system as shown in Figure 6. The position sensor
is a photoelectric encoder (RENISHAW RCH24Y15A30A) with the resolution of 0.1 pm.

In this system, the algorithms of velocity loop disturbance observer (DOB) [17], the
velocity feedback, the velocity feedforward, and the acceleration feedforward are realized
by the traditional NTD and the proposed differential-estimators respectively with the
parameters in Table 1. The whole control strategy is shown in Figure 7.

The control algorithms are realized in the Linux-RTATI real time system. The sampling
interval is 0.1 ms. The experiments are composed of two cases: the state of low speed and
the state of high speed. The position command is correspondingly set as 0.001[cos(0.47t)—
1] (m) and 0.001[cos(207t) — 1] (m). The experimental parameters are shown in Table 3.

Motor | |Encoder|

FIGURE 6. Experimental setup

Velocity Acceleration
feedforward feedforward _
» NTD —» NTD d (Disturbance) Real
Position + + C\(/);lt:gl + Piant | Posiion
1 response
command o—» K K, + M PO > 2 R
+ A il + 3 "|+ & Ms
~| Podtiongain —| Veocity gan -
d| L Hoe o\ '
Velocity i NTD
feedback g
Velocity loop s+q <
NTD | | disturbance observer g
%L M, |-

FIGURE 7. Application of NTD in high accuracy servo system
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TABLE 3. The experimental parameters

Parameters Marks Value
Position gain K 10.0 s2
Velocity gain K, 40.0 s71
DOB cutoff frequency g 500.0 rad/s
Nominal mass M, 0.5 kg
3
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FI1GURE 8. The results of application experiment

The results are illustrated in Figure 8 and Figure 9. Each one is composed of five sub-
figures: velocity of the position command, acceleration of the position command, velocity
response of the servo system, disturbance observer output, and the servo error.

In the state of low speed, according to the first two sub-figures of Figure 8, each method
successfully achieves the estimations of the velocity and the acceleration of the position
command. However, the proposed LNTD and FNTD have smaller phase lag than the
conventional NTD. In which, the FNTD provides the fastest differential estimation.

The third sub-figure of Figure 8 illustrates the velocity response of the real servo system.
The quality of the differential estimation is guaranteed effectively. However, there is
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F1GURE 9. The results of application experiment

obvious oscillation in the response using the conventional NTD method. This is caused
by the oscillation in the disturbance compensation value of the disturbance observer.

The output of the disturbance observer is illustrated in the fourth sub-figure of Figure
8. Due to the phase lag in the velocity estimation, the observed disturbance is fluctuant
using the conventional NTD. This fluctuation does not only influence the velocity of the
servo system, but also degrades the accuracy. According to the fifth sub-figure of Figure
8, the servo error is smaller when the proposed methods are used.

In the state of high speed, the responses are similar to the situation of low speed
according to Figure 9. The rapidity and effectiveness in practice of the proposed method
is more obvious. Especially, according to the third sub-figure of Figure 9, the noise is
hardly to watch for the proposals. This profits from two aspects. On the one hand, the
device is high-accuracy mechatronics system which has big signal-to-noise ratio in the state
of high speed. On the other hand, the proposed methods still maintain noise-tolerance in
some degree due to the integral action.

According to the last two sub-figures of Figure 9, the phase lag and the oscillation in
the output of the DOB is more obvious when the conventional NTD is used. The DOB
method is a highly robust method against disturbances and parameter uncertainties [18].
The phase lag in velocity estimation degrades the stability and the performance of DOB.
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The phase lag and the oscillation are effectively weakened when the new approaches are
used. Correspondingly, the servo error is 1.84 x 10~* (m) at the most when conventional
NTD is used. However, it is decreased to 0.33 x 10™* (m) when we use the LNTD.
Moreover, smaller servo error of 0.14 x 10™* (m) is achieved by employing the FNTD. The
performance of the servo system is effectively improved.

7. Conclusions. This paper considers the problem of the phase lag of nonlinear tracking
differentiator method, and proposes two kinds of new structures. First, the lowest-order
nonlinear tracking differential-estimator (LN'TD) is proposed. This proposal decreases one
differential equation and two parameters compared with the traditional method, which
achieves smaller phase lag and easier parameters adjustment.

Then, the idea of feedforward is introduced into the design of differential-estimator. The
feedforward-constructing nonlinear tracking differential-estimator (FNTD) is proposed
by composing two LNTDs. This method improves the rapidity of differential estimation
further. Faster and more accurate differential estimation is achieved, which satisfies higher
requirement, of engineering practice.

The numerical examples are given. Moreover, the practical application research is
implemented for servo control. According to the results, the validity is confirmed. The
proposed methods have smaller phase lags and also satisfactory noise tolerance. By using
the new approaches, the accuracy of the servo system is effectively improved.

In the future work, the adaptive law of the parameter R will be investigated for the
proposed methods. Although the experiments in practical servo system show the effec-
tiveness of the proposed structures, the noise in the estimated velocity response is also
observable when the speed of the system is slow, however, is small in the state of high
speed. Therefore, fixed R is not optimal. Future research will focus on this limitation by
adjusting R according to the working condition of the system.
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Appendix A. Recently, the convergence of the tracking differentiator is rigorously
proved by B. Guo and Z. Zhao [16]. According to the proof process, the main results
are summarized as the following format.

Lemma A.1. Suppose that the equilibrium point O of the following system is globally
asymptotically stable:

z(t) = Flz(t)], z(0) = 2o, (29)
where

z(t) = [21(t), 22(t), ..., zo(t)]F is a n-dimension argument vector;

Flz(t)] = [fi(2), f2(2), ..., fo(2)]" is a function vector;

Zo 1S any initial value.

There exists a smooth, positive definite function V : R® — R and a continuous, positive
deﬁne function W ]R” — R such that: (1) V(z) — 400 as |z| — +oo;
321 Vi + 82222 +...+2 Sty < =W(z); (3) {z € R"|V(2) < d} is a bounded closed set of
R™ for any given d > O.

If there is a perturbed system of (29)

yr(t) = Flyr(t)] + gr(t), yr(0) = Yo, (30)

where

yr(t) = [y1(t), y2(1), - . ., yn(t)]" is a n-dimension vector;

gr(t) = a(t) is a perturbation term, a(t) = [a1(t), a2(t), ..., an ()], SUDio o0
la;(t)| is bounded constant A; fori=1,2,...,n;

yr(0) is non-increasing with R,

then there exists an R, such that |yr(Rt)| < e for any e > 0 and a > 0 when R > R, and
t € [a,+00).

Remark A.1. This lemma is summarized from the proof process of the Theorem 2.1 in
[16]. It was proved as the following line.

Firstly, due to the existence of the functions V(z) and W (z), there exist class K func-
tions K; : [0, +00) — [0,400), i = 1,2,3,4 such that

K, (|z]) < V(z) < Ky(|z]), rLigrnm K;(r) =400, i=1,2,

Ks(|z]) < W(z) < Ky(|z]).
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Use yr(t;0,yro) to express the solution of (30), which means that'y changes ast and
R with the situation of equilibrium point 0 and initial value ygg.

Secondly, according to the monotonicity of the class IC functions and using the method
of proof by contradiction, it is proved that for each yro € R", there exists an Ry > 1 such
that when R > Ry,

{yr(t;0,yro)[t € [0,+00)} C{y[V(y) < ¢}, ¢=max{K>(|ywl),1} > 0.

Thirdly, according to the result of the second step and also using the method of proof
by contradiction, it is proved that an Ry > Ry exists such that for R > Ry, there is a
Tr € [0, ﬁ] such that |y r(Tr;0,¥ro)| < 0. Here, § > 0 is any constant.

Finally, it is proved that for each R > Ry, if there exists a tl € [0, +00) such that

yr(ty;0,¥ro) € {y| ly| <4},

then, for any ¢ > 0 there is

{yr(t;0,yro)|t € (T, +00)} C {y] |y| < e}

Combining the third step and the fourth step, there exists an R. such that |[yr(Rt)| < e
for any e >0 when R > R, and a > 0, t € [a, +00).

Remark A.2. In fact, the validity of this lemma is guaranteed by the existence of the
Lyapunov function of the original system (29). Moreover, the supremum of the perturba-
tion is bounded in the perturbed system (30), and the term of perturbation decreases as R
imcreases.



