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Abstract. In this paper, we propose a method for designing continuous gain scheduled
H-infinity observer for uncertain nonlinear continuous stirred-tank reactor system sub-
ject to time-delay and actuator saturation. Initially, gradient linearization procedure is
applied to describe such nonlinear system into several linear systems. Next, a convex
hull set is investigated in order to transform the actuator constraints into several linear
constraints, and then, a set of H-infinity observers is designed for these linear models,
which guarantees the system states belong to an ellipsoid invariant set. Finally, con-
tinuous gain-scheduled approach is employed to design continuous nonlinear observer on
the entire uncertain nonlinear system. A simulation example is given to illustrate the
effectiveness of developed techniques.
Keywords: Continuous gain scheduling, Nonlinear system, Actuator saturation, H-
infinity observer

1. Introduction. As well known, actuator saturation occurs commonly in many manu-
facture systems, and this is a very dangerous nonlinearity which cannot be avoided. It is
also a well recognized fact that actuator nonlinearity degrades system performance and
even leads a stable system to an instable one. In recent years, the problem of how to solve
actuator saturation in complex industrial systems has received increasing attention and
a number of results have been developed on linear systems subject to actuator saturation
[1-6].

Actually, fast changes in parameters of systems are commonly encountered in lots of
practical dynamical systems, and many systems are nonlinear ones, so the investigation
of control problem on nonlinear systems may be more reasonable. This motivates us to
challenge the robust observer design on nonlinear systems with actuator nonlinearity. In
this paper, we will design H-infinity observer on nonlinear systems subject to actuator
saturation, and we are more interested in getting an invariant set for such system, which
guarantees the system state starting from it will remain in it.

In the past decades, a great deal of work has been devoted to time delay systems and
some results on control problems for time delay systems have been reported (see, e.g.,
[7-10] and the references therein). However, to the best of our knowledge, there is little
work done on time delay nonlinear systems with actuator nonlinearity. These motivate
us to this study.

On another research front line, in order to design continuous nonlinear observer for the
aforementioned system, and consider some prior work we have done regarding continuous
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gain scheduling approach [11-13], and we have not done much work on systems subject
to actuation saturation; therefore, we are concerned with the continuous gain-scheduled
robust H-infinity observer design approach for a class of nonlinear system with time delay
and actuator saturation. The main advantages of our results in this paper are as follows:
first, one can obtain a continuous observer in the concerned states interval of nonlinear
systems, and second, the observer varies its parameters with the variation of the states.
By using this method, nonlinear systems with fast parameters variation can be easily
stabilized. Finally, by using Taylor fitting series method, the sufficient condition for the
existence of continuous time-varying nonlinear observer is illustrated in terms of linear
matrix inequalities.

2. Problem Statement and Preliminaries. The following nonlinear CSTR system
(continuous stirred-tank reactor system) [14] with time delay and actuator saturation is
considered in this paper:

ẋ1(t) = −(1 +Da1)x1(t) + 0.5x1(t− h)σ(u(t)) + 0.25w(t) + f1

ẋ2(t) = Da1x1(t)− x2(t)−Da2x
2
2(t) + 0.5x2(t− h) + 0.22w(t) + f2

y(t) = 0.2x1(t) + 0.3x2(t)

z(t) = 0.2x1(t) + 0.3x2(t)

(1)

This is a CSTR model in which an isothermal, liquid-phase multi-component chemical
reaction takes place. The chemical reaction system is P → Q → R, where P and Q are
highly acidic, and R is neutral. x(t) ∈ Rn is the state vector of the system, u(t) ∈ Rm is
the input vector of the system, z(t) ∈ Rp is the controlled output vector of the system,
w(t) ∈ Lq

2[0,∞] is the external disturbance vector of the system. f1 and f2 are time-
varying and norm-bounded uncertainties. The objective of the controller is to keep the
total concentration of P and Q at a constant value by adjusting the feed rate of P .
Cp is the concentration of species P , and Cp0 is the desired concentration of species P .
x1 = Cp/Cp0 is the ratio of concentration. State variable x2 = CQ/CP0 is the ratio of the
concentration CQ and the desired concentration CP0. Da1 = k1V/F , Da2 = k2V CP0/F ,
control input is given by u = NPF/FCP0, where V is the volume of the tank, F is the
volumetric feed rate and NPF is the molar feed rate of the species P , k1 and k2 are
known constants which represent the first and second-order rate respectively. We take
the following values as the parameters: Da1 = 1, Da2 = 1. σ(·) is the standard saturation

function with appropriate dimensions, σ(u(t)) =
[
σ(u1(t)) σ(u2(t)) . . . σ(um(t))

]T
and σ(ul(t)) = sign(ul(t))min{1, |ul(t)|}, l = 1 . . .m.
We transform system (1) into the following form:{

ẋ(t) = f3 · x(t) + f4 · x(t− h) + g · σ(u(t)) + d · w(t) + f5(x(t), x(t− h))

x(t) = x(0), t ∈ [−h, 0]
(2)

which equals to[
ẋ1(t)

ẋ2(t)

]
=

[
−(1 +Da1)x1(t) + 0.5x1(t− h)

Da1x1(t)− x2(t)−Da2x
2
2(t) + 0.5x2(t− h)

]
+

[
1

0

]
σ(u(t))

+

[
0.25

0.22

]
w(t) + f5(x(t), x(t− h))

where f5(·) is norm-bounded uncertainty represented by f1 and f2.
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Assumption 2.1. The norm-bounded uncertainty f5(·) in (2) is assumed to satisfy

f5(x(t), x(t− h)) = 4Ax(t) +4Adx(t− h)

and
[
4A 4Ad

]
= GF (t)

[
E Ed

]
, G, E and Ed are constant matrices with appropri-

ate dimensions, F (t) is an unknown matrix with Lebesgue measurable element satisfying
F (t) ≤ 1.

In order to construct linear models of system (1) in the vicinity of selected operating
states, gradient linearization procedure [15] is applied to the above nonlinear system. And
then, based on gradient linear method, some selected working points are chosen as follows:

x2e = 1 + i/2, i = 0, 1, 2, · · · , 9
x1e = x2e + x2

2e

ue = (1 +Da1)x1e

Subsequently, a series of linear models are obtained as follows:

ẋ(t) = (A+4A)x(t) + (Ad +4Ad)x(t− h) +Bσ(u(t)) +Dw(t) (3)

where A =

[
−2 0

x2
1e + x2

2e + x1ex
2
2e/x

2
1e + x2

2e −x2
1e − x2

2e − 2x2
1ex2e + x3

2e/x
2
1e + x2

2e

]

Ad =

[
0.5 0

0 0.5

]
, B =

[
1

0

]
, D =

[
0.25

0.22

]
For simplicity, we denote A(i), A(di), B(i), D(i), K(i) as coefficient matrices and gain

matrices of the ith linear model of system (1).
The task of our work is to design a set of H-infinity observers for system (3), and then,

by using Taylor fitting approach, a continuous gain-scheduled nonlinear observer will be
obtained for the entire nonlinear system (1). One can determine a suitable state invariant
set, meanwhile, state trajectory of system stays inside the domain of attraction under
such observer. Before proceeding with the study, some concepts are presented as follows.

Definition 2.1. For given matrices P (i) > 0, and ellipsoid sets ε(P (i), 1) = {x(t) ∈
Rn : xT(t)P (i)x(t) ≤ 1}, one can denote the Lyapunov function for system (3) as
xT(t)P (i)x(t), such that if there exist V̇ < 0, then, ε(P (i), 1) are said to be contractively
invariant sets.

Definition 2.2. Given a matrix F (i) for system (3), one can denote fq(i) as the qth row
of matrix F (i), subsequently, a symmetric polyhedron set is defined as follows:

Θ(F (i)) = {x(t) ∈ Rn : |fq(i)x(t)| ≤ 1, q = 1, 2, . . . ,m}

Definition 2.3. Given a group of points t1, t2, . . ., tg, the convex hull of these points is
defined as

co{tl : l ∈ [1, g]} :=

{
g∑

l=1

βltl :

g∑
l=1

βl = 1, βl ≥ 0

}
Lemma 2.1. [4] Given matrices K(i) ∈ Rm×n and F (i) ∈ Rm×n, for system state x(t) ∈
Rn, if x(t) ∈ Θ(F (i)), then, σ(K(i)x(t)) =

∑2m

t=1 θt(DtK(i) + D−
t F (i))x(t), where 0 ≤

θt ≤ 1,
∑2m

t=1 θt = 1, Dt are m×m diagonal matrices whose diagonal elements are either
1 or 0, and D−

t = I −Dt.
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Lemma 2.2. [16] Consider L, R, W , T as real matrices of appropriate dimension, and
W is assumed to satisfy WTW ≤ I; then for a positive scalar α > 0, it holds

L+RWT + TTWTRT ≤ L+ α−1RRT + αTTT

For system (3), the following observer is constructed
˙̄x(t) = A(i)x̄(t) + B(i)σ(u(t)) +H(i)(y(t)− ȳ(t))

ȳ(t) = C(1i)x̄(t)

u(t) = K(i)x̄(t)

(4)

where x̄(t) and ȳ(t) are the estimated state and output, H(i) are gains of the designed
observer, and K(i) are gains of feedback controller.
Recalling Lemma 2.1, under condition x̄(t) ∈ Θ(F (i)), then,

σ(K(i)x̄(t)) =
2m∑
t=1

θt(DtK(i) +D−
t F (i))x̄(t)

subsequently, the following estimation error dynamic system can be obtained by combining
systems (3) and (4).

ė(t) = (A(i)−H(i)C(1i))e(t) + ∆A(i)x(t) + (Ad(i) + ∆Ad(i))x(t− h) +D(i)w(t)

ẋ(t) = −B(i)M(i)e(t) + (A(i) + ∆A(i) +B(i)M(i))x(t)

+(Ad(i) + ∆Ad(i))x(t− h) +D(i)w(t)

z(t) = C(2i)x(t)
(5)

where e(t) = x(t)− x̄(t), M(i) =
∑2m

t=1 θt(DtK(i) +D−
t F (i)).

Remark 2.1. It is easy to find that Θ(K(i)) is a domain in which feedback control input
σ(u(t)) is linear in x̄(t).

3. Design of Gain-scheduled H∞ Observer. The first aim of our work is to design
a set of H-infinity observers for system (3). The second aim of our work is to design a
continuous gain scheduled nonlinear observer for the whole nonlinear system (1) by using
Taylor fitting approach.

Proposition 3.1. For given matrices Dt, D
−
t and w(t) = 0, the dynamic system (5) is

stabilizable, if there exist a set of positive definite symmetric matrices P1(i) and P2(i), a
definite symmetric matrix Q and a set of matrices K(i) and F (i) such that

Ξ1 =

 a11 a12 a13

∗ a22 a23

∗ ∗ a33

 < 0 ∀t ∈ [1, 2m] (6)

x̄(t) ∈ Θ(Fk(i)) (7)

where

a11 =(A(i)−H(i)C(1i))TP2(i) + P2(i)(A(i)−H(i)C(1i))

a12 = − (DtK(i) +D−
t F (i))TBT(i)P1(i) + P2(i)∆A(i)

a22 =(A(i) + ∆A(i) +B(i)(DtK(i) +D−
t F (i)))TP1(i)

+ P1(i)(A(i) + ∆A(i) + B(i)(DtK(i) +D−
t F (i))) +Q
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a13 =P2(i)(Ad(i) + ∆Ad(i))

a23 =P1(i)(Ad(i) + ∆Ad(i))

a33 = −Q

Proof: The Lyapunov-Krasovskii function for system (5) is constructed by using sym-
metric positive definite matrices P1(i), P2(i) and Q:

V (x(t), e(t), i) = xT(t)P1(i)x(t) + eT(t)P2(i)e(t) +

∫ t

t−h

xT(τ)Qx(τ)dτ

Under condition (7), recall Lemma 2.1, the time derivative of V (x(t), e(t), i) for system
(5) is

V̇ (x(t), e(t), i)

=xT(t)P1(i)[(A(i) + ∆A(i) + B(i)M(i))x(t) + (Ad(i)

+ ∆Ad(i))x(t− h)−B(i)M(i)e(t)]

+ [(A(i) + ∆A(i) +B(i)M(i))x(t) + (Ad(i)

+ ∆Ad(i))x(t− h)−B(i)M(i)e(t)]TP1(i)x(t)

+ eT(t)P2(i)[(A(i)−H(i)C1(i))e(t) + ∆A(i)x(t) + (Ad(i) + ∆Ad(i))x(t− h)]

+ [(A(i)−H(i)C1(i))e(t) + ∆A(i)x(t) + (Ad(i) + ∆Ad(i))x(t− h)]TP2(i)e(t)

+ xT(t)Qx(t)− xT(t− h)Qx(t− h)

Thus, it follows that
V̇ (x(t), e(t), i) = ξ(t)ΞξT(t)

where

ξ(t) =
[
eT(t) xT(t) xT(t− h)

]
Ξ =

 Θ1 −MT(i)BT(i)P1(i) + P2(i)∆A(i) P2(i)(Ad(i) + ∆Ad(i))

∗ Θ2 P1(i)(Ad(i) + ∆Ad(i))

∗ ∗ −Q


Θ1 =(A(i)−H(i)C1(i))

TP2(i) + P2(i)(A(i)−H(i)C1(i))

Θ2 =(A(i) + ∆A(i) + B(i)M(i))TP1(i) + P1(i)(A(i) + ∆A(i) +B(i)M(i)) +Q

Obviously, a sufficiently stabilizable condition for system (5) is that all the vertex of
the convex hull satisfy the desired stable requirements.

Subsequently, under condition (7), for dynamic system (5), condition (6) implies

V̇ (x(t), e(t), i) < 0 ∀t ∈ [1, 2m]

Therefore, the dynamic error system (5) is stabilizable with w(t) = 0, and this concludes
the proof.

Remark 3.1. In order to minimize the influences of the disturbances, we will design H-
infinity performance index for system (5) subject to all admissible disturbances, such that
the dynamic system (5) is stable.

Condition (8) is investigated in order to decrease the influences of the disturbances and
design the matrices K(i) and H(i) subject to H-infinity performance index λ, such that
the dynamic system (5) is stable.∫ ∞

0

zT(t)z(t)dt ≤ λ2

∫ ∞

0

wT(t)w(t)dt (8)
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Theorem 3.1. For given matrices Dt and D−
t , the dynamic system is stabilizable in the

region ε(P (i), 1), and it also satisfies condition (8), if there exist a set of positive definite
symmetric matrices P1(i) and P2(i), a definite symmetric matrix Q and a set of matrices
K(i) and F (i) such that

Ξ2 =


b11 b12 b13 b14

∗ b22 b23 b24

∗ ∗ b33 b34

∗ ∗ ∗ b44

 < 0 ∀t ∈ [1, 2m] (9)

x̄(t) ∈ Θ(F (i)) (10)

where

b11 = (A(i)−H(i)C(1i))TP2(i) + P2(i)(A(i)−H(i)C(1i))

b12 = −(DtK(i) +D−
t F (i))TBT(i)P1(i) + P2(i)∆A(i)

b13 = P2(i)(Ad(i) + ∆Ad(i))

b14 = P2(i)D(i), b22 = a22 + CT
2 (i)C2(i)

b23 = P1(i)(Ad(i) + ∆Ad(i)), b24 = P1(i)D(i)

b33 = −Q, b34 = 0, b44 = −λ2I

M̃(i) = (DtK(i) +D−
t F (i))

Proof: Introduce the following cost function for system (5) as T > 0

J(T ) =

∫ T

0

zT(t)z(t)dt− λ2

∫ T

0

wT(t)w(t)dt (11)

Under zero initial condition, index J(T ) can be rewritten as

J(T ) =

∫ T

0

[
zT(t)z(t)− λ2wT(t)w(t) + V̇ (x(t), e(t), i)

]
− V (x(t), e(t), i) (12)

Recalling Proposition 3.1, under condition (10), for each vertex of convex hull, it follows
that

J(T ) =

∫ T

0

{
xT(t)CT(2i)C(2i)x(t)− λ2wT(t)w(t)

+ xT(t)P1(i)[(A(i) + ∆A(i) +B(i)M̃(i))x(t) + (Ad(i) + ∆Ad(i))x(t− h)

+D(i)w(t)−B(i)M̃(i)e(t)] + [(A(i) + ∆A(i) +B(i)M̃(i))x(t) + (Ad(i)

+ ∆Ad(i))x(t− h)−B(i)M̃(i)e(t) +D(i)w(t)]TP1(i)x(t) + eT(t)P2(i)[(A(i)

−H(i)C1(i))e(t) + ∆A(i)x(t) + (Ad(i) + ∆Ad(i))x(t− h) +D(i)w(t)]

+ [(A(i)−H(i)C(1i))e(t) + ∆A(i)x(t) + (Ad(i) + ∆Ad(i))x(t− h)

+D(i)w(t)]TP2(i)e(t) + xT(t)Qx(t)− xT(t− h)Qx(t− h)
}
dt− V (x(t), e(t), i)

Thus,

J(T ) ≤
∫ T

0

{S · Ξ2 · ST}dt (13)

where

S =
[
eT(t) xT(t) xT(t− h) wT(t)

]T
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It is clear that under the condition (10), Ξ2 < 0 can be reduced to inequality (6) by
denoting w(t) = 0, so the dynamic error system (5) is stabilizable in the proposed region.
On the other hand, for T → ∞, Ξ2 < 0 results in J(∞) < −V (∞) < 0, that is∫ ∞

0

zT(t)z(t)dt ≤ λ2

∫ ∞

0

wT(t)w(t)dt (14)

Now we are ready to present the following result.

Theorem 3.2. For given matrices Dt, D
−
t , and initial state x0, x̄0, system (5) is stabi-

lizable in the region ε(P (i), 1) under such observer, and it also satisfies condition (14), if
there exist a set of positive definite symmetric matrices P (i), a definite symmetric matrix
Q, and a set of matrices K(i) and F (i) such that

Ξ3 =

[
c1 c2

c3 c4

]
< 0 (15)

fT
q (i)fq(i) ≤ P (i) (16)

x̂T
0 (t)P̂ (i)x̂0(t) ≤ 1 (17)

where fq(i) is the qth row of matrix F (i), q = 1, 2, . . . ,m

P̂ (i) =

[
P (i) 0

0 P (i)

]
, x̂0(i) =

[
x0(i)

x̄0(i)

]
and

c1 =


c11 c12 Ad(i) D(i) X(i)CT(1i)
∗ c22 Ad(i) Dk(i) 0
∗ ∗ −Q 0 0
∗ ∗ ∗ −λ2I 0
∗ ∗ ∗ ∗ −I/2



c2 =


0 0

X(i)CT(2i) X(i)ET(i)

0 ET
d (i)

0 0

0 0


c4 = − diag

{
I αI

}
, c3 = cT2

c11 =X(i)AT(i) + A(i)X(i) + αG(i)GT(i)

c12 = − (K̂T(i)DT
t + F̂T(i)(D−

t )
T)BT(i) + αG(i)GT(i)

c22 =(A(i)X(i) + B(i)DtK̂(i) +B(i)D−
t F̂ (i))T

+ αG(i)GT(i) + A(i)X(i) +B(i)DtK̂(i) +B(i)D−
t F̂ (i) + Q̂

K̂(i) =Kk(i)X(i), H(i) = −X(i)CT
d (i), F̂ (i) = F (i)X(i)

Proof: Recalling Theorem 3.1, one can obtain the following equation:

Ξ2 = Ξ4 +M(i)Υk(i)N(i) +NT(i)ΥT(i)MT(i) (18)
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where

Ξ4 =


d11 d12 d13 d14

∗ d22 d23 d24

∗ ∗ d33 d34

∗ ∗ ∗ d44


d11 = b11, d12 = −(DtK(i) +D−

t F (i))TBT(i)P1(i),

d13 =P2(i)Ad(i), d14 = b14,

d22 =(A(i) +B(i)(DtK(i) +D−
t F (i)))TP1(i)

+ P1(i)(A(i) +B(i)(DtK(i) +D−
t F (i))) +Q+ CT(2i)C(2i)

d23 =P1(i)Ad(i), d24 = b24, d33 = b33, d34 = 0, d44 = b44

and

M(i) =


P2(i)G(i)

P1(i)G(i)

0

0

 , N(i) =
[
0 E(i) Ed(i) 0

]

From Lemma 2.2, it is easy to find that Ξ2 < 0 equals to Ξ5 < 0

Ξ5 =



e11 e12 e13 e14 e15 e16 e17

∗ e22 e23 e24 e25 e26 e27

∗ ∗ e33 e34 e35 e36 e37

∗ ∗ ∗ e44 e45 e46 e47

∗ ∗ ∗ ∗ e55 e56 e57

∗ ∗ ∗ ∗ ∗ e66 e67

∗ ∗ ∗ ∗ ∗ ∗ e77


< 0

where

e11 =AT(i)P2(i) + P2(i)A(i) + αP2(i)G(i)GT(i)P2(i)

e12 =(DtK(i) +D−
t F (i))TBT(i)P1(i) + αP2(i)G(i)GT(i)P1(i)

e13 =P2(i)Ad(i), e14 = b14, e15 = CT(1i), e16 = 0, e17 = 0

e22 =(A(i) + B(i)(DtK(i) +D−
t F (i)))TP1(i)

+ P1(i)(A(i) +B(i)(DtK(i) +D−
t F (i))) +Q+ αP1(i)G(i)GT(i)P1(i)

e23 =P1(i)Ad(i), e24 = b14, e25 = 0, e26 = CT(2i), e27 = ET(i)

e33 = −Q, e34 = 0, e35 = 0, e36 = 0, e37 = ET
d (i)

e44 = − λ2I, e45 = 0, e46 = 0, e47 = 0

e55 = − I/2, e56 = 0, e57 = 0

e66 = − I, e67 = 0, e77 = −αI

In order to bring convenience, we denote P1(i) = P2(i) = P (i), subsequently, one
can pre- and post-multiply Ξ5 by diag

{
P−1(i) P−1(i) I I I I I

}
, and denote

X(i) = P−1(i), K̂(i) = K(i)X(i), F̂ (i) = F (i)X(i), then condition (15) can be obtained.
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On the other hand, for given initial state ellipsoid set (17), if condition (16) is satisfied,
then condition (7) is held; subsequently, condition (15) guarantees that the given initial
state belongs to the invariant set, and then, the observer designed will make the system
stochastically stable.

This completes the proof.
Next, we will design continuous gain-scheduled observer.
First, from Theorem 3.2, the gain matrices K(i) ∈ Rm×n and F (i) ∈ Rm×n can be

obtained for the kth linear error dynamic system (5), and we will define K(a, b, i) and
F (a, b, i) as each element of K(i) and F (i) where a = 1, 2, 3, . . . ,m, b = 1, 2, 3, . . . , n and

K(i) =


K(1, 1, i) K(1, 2, i) . . . K(1, n, i)

K(2, 1, i) K(2, 2, i) . . . K(2, n, i)
...

...
...

...

K(m, 1, i) Kk(m, 2, i) . . . K(m,n, i)



F (i) =


F (1, 1, i) F (1, 2, i) . . . F (1, n, i)

F (2, 1, i) F (2, 2, i) . . . F (2, n, i)
...

...
...

...

F (m, 1, i) F (m, 2, i) . . . F (m,n, i)


Second, we denote the matrices K̂(i) and F̂ (i) as follows:

K̂(i) =


K̂(1, 1, i) K̂(1, 2, i) . . . K̂(1, n, i)

K̂(2, 1, i) K̂(2, 2, i) . . . K̂(2, n, i)
...

...
...

...

K̂(m, 1, i) K̂(m, 2, i) . . . K̂(m,n, i)



F̂ (i) =


F̂ (1, 1, i) F̂ (1, 2, i) . . . F̂ (1, n, i)

F̂ (2, 1, i) F̂ (2, 2, i) . . . F̂ (2, n, i)
...

...
...

...

F̂ (m, 1, i) F̂ (m, 2, i) . . . F̂ (m,n, i)


x̃e(t) =

[
x
(1)
e (t) x

(2)
e (t) . . . x

(s)
e (t)

]
, e ∈ {1, 2, 3 . . . n}

where

K̂(1, 1, i) =
[
K1(1, 1, i) K2(1, 1, i) . . . Ks(1, 1, i)

]
K̂(1, 2, i) =

[
K1(1, 2, i) K2(1, 2, i) . . . Ks(1, 2, i)

]
. . .

K̂(m,n, i) =
[
K1(m,n, i) K2(m,n, i) . . . Ks(m,n, i)

]
F̂ (1, 1, i) =

[
F1(1, 1, i) F2(1, 1, i) . . . Fs(1, 1, i)

]
F̂ (1, 2, i) =

[
F1(1, 2, i) F2(1, 2, i) . . . Fs(1, 2, i)

]
. . .

F̂ (m,n, i) =
[
F1(m,n, i) F2(m,n, i) . . . Fs(m,n, i)

]
Next, a fixed and appropriate value of e is selected and polynomial fitting approach

is applied to matrices K̂(a, b, i), F̂ (a, b, i) and x̃e(t), and then, each element of the gain
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matrices is described as a polynomial, and continuous observer is obtained for nonlinear
system (1).

K(i) =


K(1, 1, i) K(1, 2, i) . . . K(1, n, i)

K(2, 1, i) K(2, 2, i) . . . K(2, n, i)
...

...
...

...

K(m, 1, i) K(m, 2, i) . . . K(m,n, i)



F (i) =


F (1, 1, i) F (1, 2, i) . . . F (1, n, i)

F (2, 1, i) K(2, 2, i) . . . F (2, n, i)
...

...
...

...

F (m, 1, i) F (m, 2, i) . . . F (m,n, i)


where

K(1, 1, i) = q0(1, 1) + q1(1, 1)xe(t) + q2(1, 1)x
2
e(t)

+ q3(1, 1)x
3
e(t) + . . .+ qg(11)(1, 1)x

g(11)
e (t)

K(1, 2, i) = q0(1, 2) + q1(1, 2)xe(t) + q2(1, 2)x
2
e(t)

+ q3(1, 2)x
3
e(t) + . . .+ qg(12)(1, 2)x

g(12)
e (t)

. . .

K(m,n, i) = q0(m,n) + q1(m,n)xe(t) + q2(m,n)x2
e(t)

+ q3(m,n)x3
e(t) + . . .+ qg(mn)(m,n)xg(mn)

e (t)

F (1, 1, i) = l0(1, 1) + l1(1, 1)xe(t) + l2(1, 1)x
2
e(t)

+ l3(1, 1)x
3
e(t) + . . .+ lg(11)(1, 1)x

g(11)
e (t)

F (1, 2, i) = l0(1, 2) + l1(1, 2)xe(t) + l2(1, 2)x
2
e(t)

+ l3(1, 2)x
3
e(t) + . . .+ lg(12)(1, 2)x

g(12)
e (t)

. . .

F (m,n, i) = l0(m,n) + l1(m,n)xe(t) + l2(m,n)x2
e(t)

+ l3(m,n)x3
e(t) + . . .+ lg(mn)(m,n)xg(mn)

e (t)

g(11), g(12), . . . , g(mn) are selected and fitted values subject to the fitted error; q0(1, 1),
. . . , qg(mn)(m,n), l0(1, 1), . . . , lg(mn)(m,n) are fitted coefficients which are found in poly-
nomial fitting approach.

Remark 3.2. We proposed a sufficient condition for the existence of nonlinear observer
via linear matrix inequality approach. It is obvious that more working points we select,
less conservativeness we obtain.

4. Numerical Example. The initial condition for uncertain CSTR system is given as
x0 = [ 0.5 0.5 ]T, disturbance is given as w(t) = [ 0.5 sin 0.25πt 0.5 + 0.5 sin 0.25πt ]T,
and the system state trajectories under the observer are obtained as shown in Figures 1
and 2.

Remark 4.1. It is worth mentioning that the continuous gain-scheduled observer approach
designed in this paper can be applied to many practical nonlinear systems, the SCTR
system mentioned above is only a successful application example. The continuous H-
infinity observer designed in this paper varies its parameters with the variation of states
over the time interval one concerned; this observer is applicable, in practice, such as
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Figure 1. Trajectory of state x1

Figure 2. Trajectory of state x2

manufacturing systems, bioreactor systems and networked systems, and there is no sudden
switch of the observer parameters.

5. Conclusions. In this paper, the issue on gain-scheduled H-infinity observer for a class
of uncertain nonlinear systems is addressed. Gradient linearization approach is applied
to such systems and linear error dynamic systems are obtained. Actuator saturation is
expressed in terms of linear matrix inequalities. Taylor fitting approach is investigated
and continuous gain-scheduled observer is designed. The simulation shows the potential
of the proposed techniques.
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