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ABSTRACT. This paper proposes to take into account the deformations caused by shear,
in the method of multiple response spectrum for dynamic analysis of piping systems with
different movements at the supports and using the consistent mass or distributed. This
methodology takes the response spectrum corresponding to each of the supports, including
the flexure deformations and shear, the classical method of multiple response spectrum
considering only the flexure deformations. Also it makes a comparison between the pro-
posed method and the classical method; in the latter all values are not conservative, as
you can see the problem considered. Then, the usual practice, neglecting shear deforma-
tions is not a recommendable solution. Therefore, it is proposed to consider the shear
deformations and also more attached to the real conditions.

Keywords: Form factor, Shear deformations, Matrix of pseudostatic influence, Modal
analysis, Spectral analysis, Eigenvalues, Eigenvectors, Modal participation factor, Spec-
tral acceleration

1. Introduction. In the design of industrial facilities and nuclear, the study of its
seismic-dynamic behavior constitutes a fundamental stage within its design, since, it has
the probability that excitations appear by seismic effects during the useful life of these
plants, and the damage caused by these effects can be predominant between the diverse
requirements to consider for your design. This obviously, will be the main effect in facili-
ties that are located in zones of median seismicity and high, as it happens in several parts
of our planet.

Between the diverse industrial facilities or nuclear, it is frequent that we face with
structural systems having multiple supports at different elevations and/or that are much
extended in length. This situation implies that the seismic excitations in their supports
are different, either because the excitations of equipment in high elevations are generally
bigger than in low elevations, or because in structural systems very extended horizontally
would present movements relative between their supports as a result of the propagation
of the seismic waves through the ground [1-4].
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The pipes systems of Industrial and Nuclear Plants constitute a typical example of those
structural systems that present multiple supports, which interconnect diverse delicate
equipment, which is supported directly on floor or in special structures [5-7].

It is frequent to find secondary structures or equipment (SS) attached to main struc-
tural systems (MS) [5,8,9]. These combined systems usually with different properties are
found in buildings where there are antennas, or delicate equipment, piping in industrial
buildings, security systems, etc. This type of systems has been studied by diverse re-
searchers in the past using basically two methods to study the seismic response: analysis
of history in the time and spectrum analysis of floor response. The first method, consists
in obtaining the response spectrum of the alone MS; this response is used as excitation
of the SS, in the connection points of the MS, in a later and independent analysis, which
means that the interaction between the MS and SS is not considered; this is the case of
the pioneering work of Kassawara and Peck [10]. The second method consists in knowing
the response spectrum in the connection points between the MS and the SS by using only
the response of the MS and without considering the SS response. The first studies, in
which can be mentioned: Amin et al. [11], Shaw [12] and Vashi [5], among others, did
not consider the interaction between the systems.

The work by Lee and Penzien [13], who used a model of stationary earthquake stochastic
process to study the influence of the modal correlation in the structural response, Der
Kiureghian and Igusa [14] studied the influence of the correlation between the modes in
the response of systems MS+SS considering in addition the interaction between them.
In this study, the authors show that depending on the reasons of mass and frequency
there are many practical situations where the interaction between the MS and the SS can
be highly significant in the structural response, and therefore must be included in the
analysis. The concept of including the interaction is also adopted by Crandall and Mark
[15], Amin et al. [11], Pickel [16] and Der Kiureghian et al. [17].

Asfura and Der Kiureghian [18] using stationary stochastic vibrations studied the be-
havior of systems MS and SS with generalized configurations of connection between the
MS and the SS, determining a crossed floor spectrum for the connection points of the sys-
tem considering the interaction between them. These spectrums are used for the design
of the SS.

Authors like Suarez and Singh [1,19,20], Falsone et al. [2,21], have developed complete
analysis, modeling MS along with SS.

To calculate the response in time of complex systems of several degrees of freedom that
include systems MS+SS, Valladares [22], developed a numerical method to obtain the
crossed correlation matrix of the structures subject to simulated earthquakes like stochas-
tic processes. In this study, it is used a nonstationary earthquake model in amplitude and
frequency, developed by Crempien and Aravena [23].

Indeed, stationary stochastic vibration approach has also been used to study the behav-
ior of the SS structure, considering different excitations, i.e., taking the response spectrum
corresponding to each of the supports and not considering the envelope the response spec-
trum of all the supports, as usually these analyses were developed. This method is more
realistic, since it allows to consider different excitations in each support and it is attached
to the requirements of the code ASME Section III that specifies that the efforts developed
in a structure are decomposed in primary part and secondary, with different permissible
limits in each one [3].

The approach adopted in this work is for secondary systems, as it is the case of pipes
for industrial facilities and nuclear. Nevertheless, with this methodology it is possible to
model the main structure and the secondary structure, for a complete analysis.
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In this paper, the spectrum method of multiple response has been employed with con-
sistent or distributed mass, and consider the shear deformations that is the important
part of the present research, and addition is developing a comparison with the traditional
method, when shear deformations are not considered.

2. Development.

2.1. Theoretical principles. Consider the system “pipe-equipment-structure” shown
in Figure 1, in which the multiple excitations in the supports of the pipe are induced and

furthermore they are non-uniform.
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FIGURE 1. The system “pipe-equipment-structure”

The general equations of motion for the pipe system, without including conditions of
border [24,25], can be written in matrix form [26]:

{Mn M12] {[__h]jL[Cn C12] {U1}+{K11 K12] {U1}_[P1] (1)
My My, Usy Cor Gy U,y Ko Ko Uy | [ Pe
where

U; = a vector of n x 1 of absolute generalized displacements (not known), corresponding
to the degrees of freedom not restricted “n”.

U, = a vector of m x 1 of absolute generalized displacements (null or prescribed),
corresponding to the degrees of freedom of the support points “m”.

M;;, Cij, K;; = mass matrices, damping and stiffness, which are associated to the
degrees of freedom “n” and/or “m” respectively.

P; = Vector of n x 1 that represents associates dynamics requirements to the degrees
of freedom “n”.

P, = Vector of m x 1 that represents the reactions (not known) associates to the degrees
of freedom of the supports “m”. o

For the case of seismic excitations, “P; = 0” and the values of “U,, Uy, Uy”, they are
considered known. Therefore, the first expression of Equation (1) of the system is:

MHUI + CHUI + KU = —M12U2 - 012U2 — Ki2Uy (2)

The total displacement “U;” can be expressed like the sum of the relative displacement
“U7” and the pseudostatic displacement “U}” that would be from a static displacement
of the support according to be seen in Figure 2, this is:

U=U + U (3)
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where
U=U 40 U, =040 U,=0+7 (4)
U, =U5; Us=0; ngU;; ngU; (5)

Ui

A
A 4
[

Ficure 2. Total displacements
Substituting Equation (4) into Equation (2) gives:
My (U] +0)) + Cu (U + U)) + Ky (U + U3) = =M Uy — CoUs — Ki1oUs — (6)

The pseudostatic displacements will be evaluated by the static equilibrium condition,
which is obtained from Equation (6), that is:

K1 U = =Ko U, (7)

U =1U, (8)
Being “t” the pseudostatic influence matrix may be expressed as:

b= K 'K (9)
Substituting Equation (8) into Equation (4) gives:

U, =U] +1U; (10)
The dynamic component of displacements will be expressed as:

Ui =U; —1Uy (11)

Substituting Equation (10) into Equation (2), the equations of motion in terms of the
component of dynamic displacements are obtained exclusively, with the result:

My (U] 4 #Us) 4 Cp1 (U} 4 #Us) 4+ K11 (UL + £Us) = =M Us — CpoUs — KppUs  (12)
Or:
M U] 4+ C Uy + K U = —(My# 4 Myo)Us — (Cpif + Ci2)Us — (Kif 4+ Ki2) Uy (13)

Then, substituting Equation (9) in the final member of Equation (13), the equations of
motion in terms of the component of dynamic displacements may be rewritten:

Mnﬂi + CnUi + K Ul = —(Myit + M12)ﬂ2 — (Cnt+ C12)U2 (14)
It is important to indicate that when using a formulation of concentrated mass as is
normal, implies that the term “M;,Uy” is null.

By other part, the damping in the excitation [26-28] is demonstrated that the second
term of the right side in Equation (14) is very small in comparison with first, reason why
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usually it is not considered. In addition, when realizing a spectral analysis, the effect of
the damping of the excitation, comes implicit in the spectrums.
Then, Equation (14) may be written:

MuUi + CHU; + KuUi = —(Mnf“ + M12)ﬂ2 (15)
Substituting Equation (9) into Equation (15) gives:
Mllﬂi + CllUi + KHUI{ - (MllKﬁlKlZ - M12)U2 (16)
Doing:
D - M11K1_11K12 - M12 (]_7)
Substituting Equation (17) into Equation (16), with the result:
Mllﬂi + CllUi + KllUli = DU2 (18)

Consequently, the vector of effective or equivalent forces “P,,” acting in each one of
the freedom degrees “n” of the structure or system will be expressed as:

[Peq]nxl — [D]nxm[GZ]mxl (19)
With this, the equations of motion may be written:

In case in that the movement of all the support is identical and is defined: the acceler-
ation of the floor “Uy(t)”, the vector “Uy”, that is:

1
U =4 b0, (21)
1

The vector of equivalent forces may be expressed as:

[Peq]nxl = [D]nxm[l]mxlﬁg(t) (22)

”

In case that a supports receive one excitation “a;U,(t)” and the other points receive
an excitation “a;U,(t)”, where “a;” and “ay” are scalar, the vector of accelerations of the
supports “Us” is presented as:

(al\

U= 9 30,0 (23)

a2

a2

\ /

This procedure can be extended to the case of arbitrary excitations “m”, “U,,(t)” in
each one of the supports “m”. The result is

Ui (1)
Uy = : (24)
Un (1)
According to Equation (23) and Equation (24) it may be rewritten:

0, = S (VY1) (%)
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(1Pl

where each vector “{VW}” is defined, unit for line “5” and zero for the others.
For each vector “{VW}” an equivalent force “PU)” on the structure or system is defined
as:

Pl = D{VI}U;(1) (26)

The total force as:
PO => (PO} (27)
j=1

For each one of the equivalent forces is originated a problem of response given as:

LKy U = pY) (28)

eq

MHUIi(J') n CllUi(j

The relative displacement (dynamic) will be expressed as:
t,=3 U (29)
j=1

According to the previously described, it is determined the dynamic response of a
subject structure to different accelerations “m” in the supports “m” are decomposed in
the solution of problems “m”, each one corresponds to the excitation of a single support
[26].

Considering linear systems, where conditions of orthogonality for stiffness matrices “K”,
Mass “M” and damping “C” exist; it turns out advisable to diagonalize the system of
transformed equations of motion to a normal modal coordinate system. Considering the
system of Equation (20), under the condition of free vibration without damping, which
can exist in the absence of any excitation of the supports [29], may be expressed as:

My U + Ky UL =0 (30)

Its solution is defined as:
Uy = et (31)

where w = natural frequency of vibration, 8 = modal vector (mode-shape vector) asso-
ciated to “w”.
The values of “w” and “

”

are determined by the solution of eigenproblems [20,30] as:

(Ky — w2M11)8 =0 (32)

With this, the equations of motion in the system are defined by Equation (20), it can be
diagonalized if transformed to a normal modal coordinate system “Y,,(¢)” is defined as:

Ut = XN: 3,Y, = oY (33)

where: ® = modal matrix (mode-shape matrix), Y = vector of normal coordinates.
Substituting Equation (33) into Equation (20) and premultiplying by the transpose of

the modal vector corresponding to mode “n” and applying conditions of orthogonality; it

is obtained the undocking equations of motion [29]. Being the corresponding equation to

mode “n” presented as:

where 7, = percent of damping to the mode “n”.
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Being:

M, = G\ M;, G, (35)
= BZ;Peq (37)

Now, when transforming to normal modal coordinates “Y,,”, in the system of equations

(1992

of motion of Equation (28) is obtained, for the system the degrees of freedom, “n”,

equations of motion uncoupled “n”. In this case Equation (34) may be written:
MY+ M o, VY + M,w2Y9) = Gt pY) (38)

Being “w,” and “B ” the eigenvalues and eigenvectors [30] corresponding to mode “n”.

Substituting Equation (26) into Equation (38) and realizing some transformations gives:

Y9 42w YY) 4 w2Y) = GEDIVOYT, ()M, (39)
Or:
Y(j) + 277nwnY(j) +w2YD =TOU;(t) /M, (40)
o) = Grogvoy (41)
09 =[Gk K - 0L Mia| (V0) (42)
where “Y{)” represents the modal response for mode “n” due to the excitation of support

(4 7

(4 *9 “1"( )77

represents the participation factor for the mode and the seismic excitation

in support “a7.
The solution of Equation (40) can be obtained considering the first integral of Duhamel

[29], as follows:

YO = (%) (i> /0 t U, (T)[e=m» =D sin w, (t — T)dT (43)

Wn
It is denoted:
t
SU) (1) = / U;(r) e~ ¢ sin w, (¢ — 7)dr (44)
0

AW
YO = <M—) ( ” (45)
where S§) = spectral velocity.

Now, according to the procedure, the spectrum of seismic response [29], will be sufficient
to determine solely the maximum values of response, and not all the complete history.
Of the expressions, Equation (43) and Equation (44), it is observed that the maximum
responses are defined when considering the rnaxnnum value of the response function.

That in terms of the spectral acceleration “San 7, is obtained for mode “n” from the
response spectrum corresponding to the excitation of the support “;” may be written:

Thus, in general:

(4)
SU) — Sari (46)

wn
Wn
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Substituting Equation (46) into Equation (45), it is obtained the maximum modal

responses due to each excitation of the supports (Y,(f )> 7, [29] is presented as:
max

, i [ g
7) = | an
(Yn )max [ Mn ]

wy

The maximum modal responses due to each excitation of the supports could not happen
simultaneously, and total maximum modal response obtained by modal simple superposi-
tion, would give a quite preservative prediction. Reason why a maximum modal response,
based in a probabilistic consideration, can be obtained considering the “Square Root of
the Sum of the Squares”; procedure known as method “SRSS” [29], is defined as:

n 1/2
(V) = {Z (Yfﬁ);x} (48)

Jj=1

(47)

The vectors corresponding to the components of the maximum relative displacement vec-
tor for each mode “{Uj, }max” [29], is denoted as:

(U = { B} (Yoo (49)

Once that was obtained the maximum responses for each one of the modes, the maximum
value of the vector of relative displacements of the pipe system “{U} }max” [29], is obtained

as: i /2
(U e = {Z( ij)im} (50)

j=1
The value of the equivalent mechanical elements that act in free joints “P” [29] may be
expressed as:

P= Kll{Ui}max (51)
Finally the mechanical elements that act on members “F” [29], is defined as:
F=KU, (52)

({9l

where K = stiffness matrix of member “/”, in the global or general system, U; = dis-

(19

placements vector of member “/”, in global system.

3. Application. The illustration of the methods of analyses previously considered to
study the behavior of structural systems subjected to multiple excitation in its supports
during seismic effects. In addition, it is presented the analysis of a typical pipe system,
that is interconnecting equipment to two different elevations that induce different excita-
tions in the ends of the pipe, according to that is observed in Figure 3 and in Figure 4 it
is showed the excitations in each one of the supports, also the surrounding of these move-
ments in the supports, whereas in Table 1 the nomenclature used for these excitations of
the considered problem.

Data of the pipe:

d (diameter) = 76.2cm

t (thickness) = 0.635cm

I (the inertia moment) = 107637.4467cm*

A (total area) = 150.9674cm?

Ac (shear area) = 0.53A = 0.53(150.9674) = 80.0127cm?

E (elasticity modulus) = 17258.277kN /cm?

W (weight) = 17.5344N/cm = 1753.44N/m
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m (mass) = 18.22kg/m
v (Poisson’s ratio) = 0.25
g (acceleration of the gravity) = 9.80665m /seg?

TABLE 1. Direction and joint where the excitation spectrum is applied

Spectrum Direction Joint Type
1 X N
2 X E - -
3 X envelope —
2% damping
C Li=3m D
ﬁ; =2m
LI
L;=20m D D D D D

..
.
.
O I
..

A Ly=10m |B

FiGURE 3. Typical system of pipe

0.01 0.1 1

mis?
1
/
1
(3% ]

Spectral Acceleration

Period (Seconds)

FIGURE 4. The response spectrum
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FIGURE 5. Model vector of the pipes system

In Figure 5 is shown the vector model of the pipes system of the problem considered

for the obtaining of the mass matrix and stiffness.
Matrix of consistent mass of a member [31] can be written:

Mi:

F140 0 0 0

0 156 22L

mo | 0 220 412
20770 0 0
0 54 13

0 —13L —3L

70 0

0 54
0 13L
140 0

0 156
0 —-22L

0
—13L
—3L*

0
—22L

412

Stiffness matrix for a member without considering the shear deformations [31] is:

B0 0
0 12E1 6T
L3 I?
0 6ET 4EI
_ I? L
0
0 _12EI _ 6EI
3 L2
0 6EL 2E1
L 2 L

12E1
L3
__6EI
L2

o ow|§o oh|§

__6EI
L2
4E1
L

Stiffness matrix for a member considering the shear deformations [31], that is,

- FEA
£A 0 0
12E1 6E1
L3(14+X) L2(14X)
OB (4£) I
K, — L2(14)) 1+x/) L
' —Z4 0 0
0 __12EI __BEI
L3(14)) L2(14X)
6K1 2—)\\ EI
L 0 iy (R T
1261 . FE
- GALY C2(1+v)

where A\ = form factor, G = shear modulus.
For the considered problem is:

A1 = 0.04035761393;

Ao = 0.01008940348;

B0 0
0  __l12EI 6ET
3(1+)) L2(1+N)
0 __6EI (2—)\) EI
?(1+n) \1+A/) T
B0 0
0 12E1 —_BI)
L3(1+N) L2(1+X
0  __S6EBI (4+>\) EI
2(0+n  \1x/) T

A3 = 0.4484179326;

Ay = 1.008940348
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The mass matrix of the resulting global system, defined as

[ MY MY 0 0 0 ]
My Mg+ M M 0 0
M= 0 M@ MP M M) 0
R S VRV Y
| 0 0 0 ME M

The stiffness matrix of the resulting global system as

Tk K 0 0 0
KO KPkE K 0 o
K= 0 K K@Y +x®  KY 0
o0 KY KDeR K
0 0 0 K K |

Calculate mass matrix and stiffness of each member. Later making the change of
the local system to the general system and then to realize the coupler of each mass
matrix and stiffness, in order to obtain the general matrix system. Immediately a “similar
transformation” would be applied, which is the matrix of interchange of lines and columns,
to separate the degrees of freedom of the structure “M;; and K;;” and degrees of freedom
of the supports “Msyy and Ky,

Without considering the effect of the damping, under the condition of free vibration
this dice by Equation (30). Being “U}” a vector of “9 x 17 of relative displacements corre-
sponding to the nine degrees of freedom of the pipe system. Later solving the determinant
of Equation (32), it gives the eigenvalues and eigenvectors [30].

Using Software: MATLAB solve the determinant obtains the polynomial and the roots.
The results appear in Table 2.

In Table 3, the values are obtained of the response spectrum of Figure 4, for each
support in mode “n”.

TABLE 2. Eigenvalues

Circular frequency

Mode (rad/sec)
M1 M 2 M1 M 2 M1 | M2 M1 M 2

1 38.5867 | 38.1678 | 6.1413 | 6.0746 |0.1628]0.1646| 1489 1457

2 83.8672 | 80.9134 | 13.3479 | 12.8778 [0.0749]0.0777| 7034 6547

3 | 184.4477 | 174.4133 | 29.3558 | 27.7587 {0.0341|0.0360| 34021 30420
4 1 453.1971 | 391.2515 | 72.1286 | 62.2696 |0.0139]0.0161| 205388 | 153078
5 | 538.3848 | 498.3707 | 85.6866 | 79.3182 |0.0117|0.0126| 289858 | 248373
6 | 587.1852 | 580.7751 | 93.4534 | 92.4332 |0.0107|0.0108| 344786 | 337300
7

8

9

h

Frequency (hz) | Period (sec) w? (rad/sec)?

n

2023.332211930.3692 | 322.0233 | 307.2278|0.0031 | 0.0033 | 4093873 | 3726325
2661.747612580.0766 |423.6303 |410.6319|0.0024 | 0.0024 | 7084900 | 6656795
4411.0047|3884.1340(702.0332(618.1791|0.0014|0.0016 | 19456962 | 15086497
ere M 1 = Model 1, without considering the shear deformations

M 2 = Model 2, considering the shear deformations

w



8446 A. LUEVANOS ROJAS, N. I. KALASHNYKOVA, R. LUEVANOS ROJAS ET AL.

TABLE 3. Spectral accelerations

Mode Period (sec) |SZ (m/sec?) | SZ (m/sec?) | ST (m/sec?)

M1 M2 M1, M2 |[M1] M2 |M1 M 2
1 0.1628 | 0.1646 | 2.46 | 2.46 |3.45| 3.45 |3.45 3.45
2 0.0749 1 0.0777 | 2.46 | 2.46 |1.47 | 1.47 |2.46 2.46
3 0.0341 | 0.0360 | 0.76 | 0.76 | 1.47| 1.47 |1.47 1.47
4 0.0139 ] 0.0161 | 0.76 | 0.76 |1.47| 1.47 |1.47 1.47
5) 0.0117 1 0.0126 | 0.76 | 0.76 | 1.47| 1.47 |1.47 1.47
6 0.0107 | 0.0108 | 0.76 | 0.76 | 1.47| 1.47 |1.47 1.47
7 0.0031 | 0.0033 | 0.76 | 0.76 |1.47| 1.47 |1.47 1.47
8 0.0024 | 0.0024 | 0.76 | 0.76 | 1.47| 1.47 |1.47 1.47
9 0.0014 {1 0.0016 | 0.76 | 0.76 |1.47| 1.47 |1.47 1.47

Being S} = Spectral acceleration for the support A in mode “n”

SE = Spectral acceleration for the support E in mode “n”

ST = Spectral acceleration of envelope in mode “n”

TABLE 4. The participation factors “ng),, for the support A and E, mass

“M,,” corresponding to mode “n”

Mode 4 (kg-s?/cm?) TP (kg-s*/cm?) | M, (kg-s?/cm?)
M1 M 2 M1 M 2 M1 M 2
1 —0.5435 | —0.5283 | —0.3874 | —0.8320 | 1.5909 | 1.5536
2 —0.5574 | +0.5573 | —0.5859 | +0.3876 | 1.9737 | 1.9722
3 +0.3143 | —0.2767 | —0.7413 | +0.5566 | 1.7251 | 1.3196
4 —0.2433 | +0.1072 | —0.1628 | +-0.1676 | 0.2791 | 0.2168
5 —0.2710 | +0.3827 | +0.1615 | —0.0708 | 0.2753 | 0.4257
6 +0.2318 | —0.2838 | +0.0795 | —0.0176 | 0.3270 | 0.3225
7 —0.0011 | +0.0011 | +0.0121 | —0.0186 | 0.1635 | 0.2016
8 +0.0024 | —0.0025 | +0.0261 | —0.0252 | 0.1046 | 0.1135
9 -+0.0007 | +0.0009 | —0.0373 | —0.0257 | 0.1232 | 0.0997

Vectors “VU)” for the excitations in the nozzles (A) and (E) are:

oS o~ O OO

SO OO O

Equation (35) can be evaluated for the mass “M,” corresponding in mode “n”, the

participation factors «PU)” for the support A and E is denoted from Equation (42). They
are observed in Table 4.
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The maximum modal responses “(Y%] ))max” due to each excitation of the supports is
presented from Equation (47), the maximum normal coordinates “(Y,)max~ of the system
for each mode can be obtained from Equation (48). They appear in Table 5.

Equation (49) can be obtained for the vectors corresponding to the components of
the vector of maximum relative displacements “{U}, }max~ for each mode and finally the
maximum value of the vector of relative displacements of the pipe system “{Uf}, .7 is
defined from Equation (50). These values are in Table 6.

Once obtained the deformations, is used Equation (51) and are obtained the values of
the forces in “X” and “Y” and moments, which are applied in the free joints, these effects
are equivalent to that if a movement in the ends of the pipe system are presented, the
results appear in Table 7.

Since the mechanical elements in the joints were obtained, the forces in the members
by means of Equation (52) are determined and presented in Table 8.
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4. Results and Discussions. In the following figures are presented the differences of
both models.

TABLE 5. Maximum modal response “(Yg ))max” due to each excitation of
the supports and maximum normal coordinates “(Y,,)max~ of the system for

each mode
A E .
Mode Yn (Cm) Yn (Cm) (Yn)max (Cm)
M1 M 2 M1 M 2 M1 M 2
1 —0.056523 | —0.056523 | —0.056490 | —0.126967 | 0.079911 | 0.139380
2 —0.009893 | +0.009893 | —0.006218 | +0.004422 | 0.011684 | 0.011519
3 | +0.000409 | —0.000526 | —0.001862 | +0.002042 | 0.001905 | 0.002108
4 | —0.000323 | 4+0.000246 | —0.000419 | +0.000884 | 0.000528 | 0.000917
5 —0.000513 | 40.000277 | +0.000297 | —0.000099 | 0.000592 | 0.000295
6 | +0.000157 | —0.000198 | 4-0.000104 | —0.000023 | 0.000188 | 0.000201
7 | —0.000000 | 4-0.000000 | +0.000003 | —0.000003 | 0.000003 | 0.000003
8 | +0.000000 | —0.000000 | 4+-0.000005 | —0.000005 | 0.000005 | 0.000005
9 | +0.000000 | +0.000000 | —0.000003 | —0.000003 | 0.000003 | 0.000003
TABLE 6. Vector of deformations
. Spectral method of
Relative . . ltiol
deformations Joint Concept Unit multiple response
M1 M2 |[MI1/M?2
Uil Displacement “X” | cm | 0.00086 | 0.00114 | 0.7544
Ui2 B | Displacement “Y” | ecm | 0.05677 | 0.09855 | 0.5761
Ui3 Rotation rad | 0.00014 | 0.00024 | 0.5833
U4 Displacement “X” | cm | 0.01158 | 0.01829 | 0.6331
Uih C | Displacement “Y” | ecm | 0.05507 | 0.09576 | 0.5751
Ui6 Rotation rad | 0.00022 | 0.00036 | 0.6111
ui7 Displacement “X” | ecm | 0.01166 | 0.01847 | 0.6313
U8 D | Displacement “Y” | cm | 0.00036 | 0.00051 | 0.7059
U719 Rotation rad | 0.00012 | 0.00019 | 0.6316
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TABLE 7. Mechanical elements that act in the equivalent joints

Joint | Unit | Concept Spe&crlal method of 1\1/([111211451p1e r(f\ipi);l;? .

N | Force “X” | +1217.0637 | +1275.5453 0.9771

B N | Force “Y” | +1922.0262 +3180.2323 0.6044
N-m | Moment | +13662.2546 | +22666.2679 0.6028

N | Force “X” | 4+371.2104 +158.3138 2.3448

C N | Force “Y” | +85060.2616 | +97679.9329 0.8708
N-m | Moment | +148180.9349 | +180645.4857 | 0.8203

N | Force “X” | +66585.4123 | +53510.2480 1.2443

D N | Force “Y” | —82644.7609 | —94701.9170 0.8727
N-m | Moment | +201793.1735 | +211066.6253 | 0.9561

TABLE 8. Mechanical elements that act on the members

Member | Joint | Unit | Concept Spels/[t rla L method ofl\;ln 1211t1ple r(;:[p;);ls/? 5
N | Force “X” | —2250.0559 | —2978.0158 0.7556
A N | Force “Y” | 4294.9406 +459.5642 0.6418
N-m | Moment | —1125.9879 | —2160.5073 0.5212
1 N | Force “X” | 42250.0559 | +2978.0158 0.7556
B N | Force “Y” | —294.9406 —459.5642 0.6418
N-m | Moment | +4075.3948 | +6756.1499 0.6032
N | Force “X” | —=1032.9910 | —1702.4696 0.6068
B N | Force “Y” | 42216.9668 | +3639.7965 0.6091
N-m | Moment | +9586.8588 | +15910.1180 0.6026
2 N | Force “X” | +1032.9910 | +1702.4696 0.6068
C N | Force “Y” | —2216.9668 | —3639.7965 0.6091
N-m | Moment | 4+11072.9688 | +18139.2825 0.6104
N | Force “X” | —661.7816 —1544.1558 0.4286
C N | Force “Y” | +87277.2293 | +101319.7293 | 0.8614
N-m | Moment | +137107.9670 | +162506.2032 | 0.8437
3 N | Force “X” | 4-661.7816 +1544.1558 0.4286
D N | Force “Y” | =87277.2293 | —101319.7293 | 0.8614
N-m | Moment | 4124723.7210 | +141452.9847 | 0.8817
N | Force “X” | +65923.6316 | +51966.0912 1.2686
D N | Force “Y” | +4632.4684 | +6617.8123 0.7000
N-m | Moment | +77069.4525 | +69613.6416 1.1071
4 N | Force “X” | —=65923.6316 | —51966.0912 1.2686
E N | Force “Y” | —4632.4684 | —6617.8123 0.7000
N-m | Moment | +54777.8108 | +34318.5408 1.5962

In Figure 6 is observed that all the deformations are smaller when the shear deforma-
tions are not considered, with respect to when are considering the shear deformations and

they are very bigger the differences.

In Figure 7 is presented the mechanical elements in the free joints, in all the case are
smaller in absolute value when the shear deformations are not considered, with exception

in the forces in “X” of the joints, C and D that happens the opposite.
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The axial forces that act in the members, are smaller in absolute value of Model 1
(without considering the shear deformations), according to Figure 8.

Finally, it is analyzed in Figure 9, which provides the results of the shear forces and
Figure 10 presents the moments that act in the members; in all the members are smaller
in absolute value of Model 1 (without considering the shear deformations), except in the
member DE, that are F,, (shear force) and M (Moment), that are minor in Model 2
(considering the shear deformations).

5. Conclusions. According to the analysis previously done, the differences between the
spectral method of multiple response in the Model 1 (without considering the shear de-
formations) and Model 2 (considering the shear deformations), they are presented bigger
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differences as far as the deformations in all the joints, being the Model 1, in minor magni-
tude, see Figure 6. This situation is logical, because considering the shear deformations,
the cross-sectional section is minor and therefore the stiffness is also minor.
Nevertheless, in regard to the mechanical elements which act in the joints, that is the
equivalent force due to an excitation in the supports of pipes system, it is observed that
the Model 1 that is the classic, when it is compared with Model 2, in this last all the
values are major, with exception joints, C and D in regard to the forces in “X”, as it is
noticed in Figure 7 of results of the considered problem. Finally, in Figures 8-10, where
are presented axial forces, shear forces and moments that normally govern the design of
the system of pipes, in most of the points are not the side of the security in Model 1.
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Therefore, the general practice of considering the spectral method of multiple response
of Model 1 (without considering the shear deformations), will not be a recommendable
solution. Now, considering the numeric approximation, the spectral method of multiple
response in Model 2 (including the shear deformations), it turns out to be the most
suitable method for the seismic-dynamic analysis of systems of pipes subjected to different
excitations between its supports.

With respect to the formulation considering consistent mass or discreet mass, in the
second case, it is not consider the effect of the mass in the excitation forces, which defini-
tively is reflected in the response of the system and not of the preservative side. On
the other hand, when realizing the frequency analysis, demonstrates that considering dis-
creet mass beforehand implies are not consider certain modal forms symmetrical and/or
anti-symmetrical modes, of the system, which in the case of different excitations in the
supports are present and must be considered, since in some cases correspond to relatively
low frequencies.

With regard to the state-of-art in the analysis of response seismic-dynamic of structural
systems with multiple supports subjected to nonuniform excitations in its supports; is
treated like the classic method that is the Model 1, already mentioned. When it is
studied the seismic-dynamic behavior in facilities of nuclear plants, where due to risk that
presents its operation, is demanded a greater refinement in the analysis techniques to be
more realistic and to consider all effects that are acting in the structural systems for the
design.

Finally, since it is typical to find, in the oil industry and nuclear plant, piping systems
subjected to multiple excitations different between its supports by the seismic effects, the
analysis technique through spectral method of multiple response Model 2 (considering the
shear deformations), turns out to be a simple practice that must be considered as one of
the stages within the analysis and design of the systems of pipes.
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