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Abstract. This study concerns the resource allocation problem that involves complicat-
ing constraints and cannot be solved using correction operations of a genetic algorithm
(GA). A GA-based iterative two-level algorithm is developed to solve this problem by
decomposing it into master and slave problems, such that the complicating constraint
function is treated as the objective function of the slave problem, which can be solved
by GA, and the master problem, which includes the complicating constraint, is solved
using a bisection method that is based on the optimal objective value determined in the
slave problem. An example of the application of the proposed algorithm is the minimum
time slot assignment problem (MTSAP) associated with a radio frequency identification
(RFID) system. The GA that is utilized to solve the slave problem of the MTSAP has
special features. The proposed algorithm is tested by applying it to the MTSAPs of four
reader networks and many runs are performed for each MTSAP. The obtained solution
to each MTSAP is optimal. The proposed algorithm is compared with a simulated an-
nealing (SA) method. The comparison reveals that the proposed algorithm outperforms
the SA method in terms of the optimality of the obtained solutions and computing speed.
Keywords: Resource allocation, Iterative two-level algorithm, RFID, Reader collision,
Minimum time slot assignment problem, Genetic algorithm

1. Introduction. The genetic algorithm (GA) has been extensively and successfully used
to solve various types of combinatorial optimization problem. For unconstrained combi-
natorial optimization problems, the use of a GA is rather straightforward if a suitable
representation scheme can be designed. However, for constrained combinatorial optimiza-
tion problems, correction operations are typically required to make the infeasible offspring
or mutated chromosomes feasible following the crossover and mutation operations [1].
Since no systematic method is available for designing the correction operation, which is
mostly problem-dependent, the fact that the problem involving complicating constraints
that cannot be applied using correction operations in the GA is unsurprising.

This study considers a resource allocation problem, which is a class of constrained
combinatorial optimization problems and is an NP-hard optimization problem, of the
following form

min N
subject to e(x,N) = 0

u(x,N) ≤ 0
Nmin ≤ N ≤ Nmax

(1)
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where N is an integer variable that is the number of resources; Nmin and Nmax are the
lower and upper bounds of N , respectively; x is the integer vector of resource allocation
variables; e(x,N) = 0 and u(x,N) ≤ 0 represent the equality and inequality constraints
that are easy and hard to handle using correction operations, respectively. Restated, the
complicating constraint u(x,N) ≤ 0 prohibits the direct application of GA to resource
allocation problem shown in (1). Accordingly, the purpose of this work is to develop a
GA-based iterative two-level algorithm to resolve the difficulty caused by the complicating
constraint in the considered resource allocation problem.
The considered resource allocation problem can be interpreted as the problem of allo-

cating minimum number of resources to meet the required system constraints [2]. The
many applications of such problems include allocating minimum number of computing re-
sources at nodes that do not have any resource in a grid computing network to deliver the
required computing service reliability [3,4] or assigning the minimum total number of time
slots to readers in the radio frequency identification (RFID) reader network such that each
reader can complete the reading of all tags in its interrogation zone without causing any
reader collision [5,6]. In the former application, the terms associated with the resource
allocation problem (1) are as follows. Allocating computing resources to nodes that do
not have any resource is the easy-to-handle equality constraint. Satisfying the computing
service reliability requirement is the hard-to-handle complicating constraint. The objec-
tive function is to minimize the number of computing resources to be allocated. The
latter application is also called the minimum time slot assignment problem (MTSAP) of
the RFID reader network. In this application, the resources are time slots; the constraint
that each reader should read all tags in its interrogation zone is the equality constraint;
the constraint that readers must not collide with each other is the complicating constraint,
and the objective function is to minimize the total number of time slots to be assigned.
This paper will present the application of the proposed GA-based iterative two-level

algorithm to the MTSAP of the RFID reader network: the problem was tackled by Lin
and Lin in [5] and Hung et al. in [6] using simulated annealing (SA) methods. The SA
method that was developed by Lin and Lin [5] is to search for a feasible solution that
neighbors the current solution and to determine whether to accept the sought solution
based on the criteria applied in the Metropolis loop in a typical SA method. Such an SA
method may be inefficient in improving the current solution in the vicinity of optimal
solution, because the neighboring solution that is defined in the SA method differs from
the current solution in only one assigned time slot of one reader, but finding the optimal
solution typically involves reassigning the time slots of several readers simultaneously. A
similar difficulty may also arise in the SA method that was developed by Hung et al. in
[6].
Generating new solutions by simultaneously reassigning time slots of several readers

from current solutions is a typical result of the crossover and mutation operations in a
GA. However, a GA can be applied only when the total number of time slots is specified.
Therefore, the GA-based iterative two-level algorithm to be developed herein is better
suited to the MTSAP. To demonstrate this fact, Section 4 will compare the proposed
algorithm with the SA method by performing extensive simulations.
This paper is organized as follows. Section 2 presents the GA-based iterative two-level

algorithm. Section 3 presents the MTSAP for an RFID reader network and the application
of the proposed GA-based iterative two-level algorithm to the MTSAP. Section 4 tests
the proposed algorithm on the MTSAPs for four reader networks and compares it with
the simulated annealing (SA) method that was used by Lin and Lin [5]. Section 5 draws
conclusions.
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Figure 1. Structure of the iterative two-level algorithm

2. GA-Based Iterative Two-Level Algorithm. To resolve the computational dif-
ficulty that is raised by the complicating constraint, u(x,N) ≤ 0, we decompose the
resource allocation problem (1) into master and slave problems first, as shown in (2) and
(3), respectively. Then, the proposed iterative two-level algorithm will solve the master
and slave problems iteratively as presented in Figure 1. Remark 3.1 in Subsection 3.2
explains why the constraint u(x,N) ≤ 0 causes complication.

Master problem:
min N

subject to u(x,N) ≤ 0
Nmin ≤ N ≤ Nmax

(2)

Slave problem:
min u(x,N)

subject to e(x,N) = 0
(3)

The master problem formulated in (2) is used to evaluate N . The slave problem for-
mulated in (3) is to minimize the value of u(x,N) for the given N that is obtained from
the master problem.

Since the slave problem does not involve the complicating constraint, the slave problem
can be solved using GA when N is specified. We let u∗(x,N) be the optimal objective
value of (3) for the given N . The basic idea on which the proposed iterative two-level
algorithm that is presented in Figure 1 is based is described as follows. For a given N
that is obtained from the master problem, the optimal solution u∗(x,N) that is obtained
by solving the slave problem indicates whether the value of N is large enough to satisfy
the complicating constraint u(x,N) ≤ 0. Then, based on this u∗(x,N), the method for
solving the master problem involves the adjustment of the value of N according to the
following rule: increase the value of N if u∗(x,N) > 0 and reduce it otherwise; the new
N that is determined in the master problem will be passed to the slave problem and so
forth. This iterative two-level process will proceed until the optimal N is obtained.

To adjust efficiently the value of N , the master problem is solved using a bisection
method. The bisection method firstly defines two integer variables N and N . In the slave
problem, if N = N , then u∗(x,N) ≤ 0; however, if N = N , then u∗(x,N) > 0. Based on
the assumption that u∗(x,Nmax) ≤ 0 and u∗(x,Nmin) > 0, N = Nmax and N = Nmin are

set initially. The bisection method initially sets N =
⌈
N+N

2

⌉
, where d(·)e is the smallest

integer that exceeds or equals to (·) and passes this value to the slave problem. The slave
problem is thus solved as N is given. Once the slave problem has been solved, u∗(x,N) is
passed to the master problem as shown in Figure 1. If u∗(x,N) ≤ 0, which indicates that
the constraint u(x,N) ≤ 0 in the master problem is satisfied, then the update N := N
is applied. However, if u∗(x,N) > 0, indicating that the constraint u(x,N) ≤ 0 in the
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master problem is not satisfied, then the update N := N is applied. The bisection method

will determine the new N =
⌈
N+N

2

⌉
from the updated N and N and pass this value to

the slave problem and so forth. The iterative two-level algorithm will terminate when
N − N = 1, and this N is the optimal N . To validate the iterative two-level algorithm,
the obtained optimal solution must be proven to be the optimal solution of (1).

Theorem 2.1. Suppose {x|e(x,N) = 0 in (3)} is a countably finite nonempty set for
every N delivered from the master problem, the optimal solution that is obtained by solving
(2) and (3) using the iterative two-level algorithm is an optimal solution of (1).

Proof: For every N delivered from the master problem, {x|e(x,N) = 0 in (3)} is a
countably finite nonempty set, then (3) has an optimal solution. Let (N∗, x∗) be the
optimal solution that is obtained using the iterative two-level algorithm and let x∗(N) be
the optimal solution of (3) for the given N . From (3), x∗ = x∗(N∗) and e(x∗, N∗) = 0.
Since N∗ is the most recent N that is determined in the master problem, and by the
definition of N , u∗(x∗, N∗) ≤ 0. From (2), N∗ must satisfy Nmin ≤ N∗ ≤ Nmax. Based
on the termination criterion N∗ − N = 1, and the definition of N , (x∗, N∗) must be
the optimal solution of (1), because no integer N that can be feasible to (1) and satisfy
N −N∗ < 0. The proof is thus completed.

3. Application of GA-Based Iterative Two-Level Algorithm to Minimum Time
Slot Assignment Problem (MTSAP) of RFID Reader Network.

3.1. Preliminaries. In recent years, RFID, which automatically identifies tagged ob-
jects, has been extensively utilized in various applications including warehouses, shopping
centers, location tracking and healthcare and others [7,8]. RFID devices are of two types.
One is the tag, which contains a unique identifier and the information about the object,
and the other is the reader. The area that RFID devices can be identified is called an
interrogation zone. Within the interrogation zone, multiple tags’ sending signals to the
same reader simultaneously may cause tag-to-tag collision. Various tag anti-collision pro-
tocols have been proposed in [9-13]. In many applications, several readers are deployed to
ensure complete interrogation coverage and yield a high read rate [14-16]. In these cases,
reader-to-tag collision may occur when a tag receives signals from more than one reader
at the same time. Such a collision can make the tag respond arbitrarily to the readers and
cause incorrect interrogation. A reader-to-reader collision occurs when a reader, which
is in the process of listening to a tag’s reply, simultaneously receives strong signals from
one or more neighboring readers that are operating at the same frequency. These two
forms of collisions are regarded as reader collisions, and any pair of readers that may
encounter such collisions are called neighboring readers. Therefore, to prevent a reader
collision, neighboring readers must not be allowed to read tags in the same time slots.
Additionally, various readers in the RFID reader network require different number of time
slots, because different number of tags are present in the interrogation zones of different
readers. Hence, the MTSAP is solved by assigning minimum total number of time slots
to readers in the RFID reader network such that each reader can read all tags in its inter-
rogation zone (equality constraint in (1)) without causing any reader collision (inequality
constraint in (1)).

3.2. Mathematical formulation of minimum time slot assignment problem (MT
SAP). Assume the reader network, whose network topology is specified, comprises m
readers. For example, Figure 2 displays a reader network of four readers. Any pair of
readers that interfere with each other if they use the same time slots is connected by a
branch.
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Figure 2. Example reader network

Let N be the total number of time slots that are required to read all tags. Let cj
be the number of time slots that are required by reader j to read all of the tags in its
interrogation zone. Let the time slot assignment variable xij be defined such that xij = 1
if time slot i is assigned to reader j, and 0 otherwise. The connection matrix A of the
reader network is defined as A = [aij], where the (i, j)th entry aij = 1 if readers i and
j are connected, and 0 otherwise. For example, the connection matrix A for the reader
network that is shown in Figure 2 is

A =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0


Define same-time-slot utilization matrix Y (N) for a given N as follows. Y (N) = [yjk],

where the (j, k)th entry yjk = L if L time slots are simultaneously used by readers j and k,
and L is a non-negative integer. The “∧” operation is defined for matrices A and Y (N) as
A∧Y (N) = [ajk ∧ yjk], where ajk ∧ yjk = yjk if ajk = 1, and 0 otherwise. Using the above
notation, the MTSAP can be formulated as the minimization of the total number of time
slots that will enable each reader to complete the reading of all tags in its interrogation
zone without causing any reader collision:

min N

subject to cj =
N∑
i=1

xij, j = 1, · · · ,m
1
2

∑
(j,k)

A ∧ Y (N) ≤ 0

Nmin ≤ N ≤ Nmax

(4)

where cj =
N∑
i=1

xij is the number of time slots that are required by reader j; 1
2

∑
(j,k)

A ∧ Y (N)

represents the total number of collisions, which is a function ofN , and 1
2

∑
(j,k)

A ∧ Y (N) ≤ 0

represents the constraint for no reader collision; 1
2

∑
(j,k)

A ∧ Y ≤ 0 is the complicating

constraint of the MTSAP, and is equivalent to 1
2

∑
(j,k)

A ∧ Y = 0, because 1
2

∑
(j,k)

A ∧ Y

cannot be less than 0; Nmax =
m∑
j=1

cj, because if N =
m∑
j=1

cj, then each time slot can be

assigned only to one reader, causing no reader collision; Nmin = max
j∈{1,··· ,m}

cj, which is the

smallest number, N , that cj =
N∑
i=1

xij, j = 1, · · · ,m can possibly hold. The variables in

(4) are N and xij for all i and j.
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Remark 3.1. 1
2

∑
(j,k)

A ∧ Y (N) ≤ 0, which is the complicating constraint of the MT-

SAP (4), is explained as follows. For a given N and time slot assignment pattern xij,
i = 1, · · · , N , j = 1, · · · ,m, suppose that 1

2

∑
(j,k)

A ∧ Y (N) > 0; reshuffling the time slot

assignment xij, i = 1, · · · , N , j = 1, · · · ,m, to make 1
2

∑
(j,k)

A ∧ Y (N) ≤ 0 is an opti-

mization problem, which can not be solved by applying the correction operations in the
GA.

3.3. Application of GA-based iterative two-level algorithm. The MTSAP has
exactly the same form as the considered resource allocation problem (1) that was presented
in Section 1. Therefore, the MTSAP can be decomposed into master and slave problems
described by (5) and (6), respectively, to which the proposed GA based iterative two-level
algorithm can be applied.
Master Problem:

min N
subject to 1

2

∑
(j,k)

A ∧ Y (N) ≤ 0

Nmin ≤ N ≤ Nmax

(5)

Slave Problem:
min 1

2

∑
(j,k)

A ∧ Y (N)

subject to cj =
N∑
i=1

xij, j = 1, · · · ,m
(6)

Since the form of the master problem (5) is exactly the same as that of (2), the bisection
method that is used to solve (2) can be used to solve (5) based on the optimal objective
value 1

2
(
∑
(j,k)

A ∧ Y (N))∗ of the slave problem (6). Therefore, the validation of solving (5)

and (6) using iterative two-level algorithm can be justified in the following.

Lemma 3.1. Optimal solution obtained by solving (5) and (6) using iterative two-level
algorithm is an optimal solution of (4).

Proof: The N that is obtained by solving the master problem must satisfy N ≥
Nmin; then by the definition of Nmin = max

j∈{1,··· ,m}
cj, the set {x = [x1, · · · , xm]

T |cj =

N∑
i=1

xij, j = 1, · · · ,m} must be a countably finite nonempty set for the given N . Hence,

this lemma directly follows from Theorem 2.1.

3.3.1. Genetic algorithm (GA) for solving save problem. Although the slave problem (6)
does not include the complicating constraint, it does include an equality constraint. Two
critical components of GA for solving any specific constrained optimization problem are
representation scheme and correction operations; the design of these two components for
solving the slave problem (6) is the special features of the employed GA.
3.3.1.1. Representation scheme. The representation scheme in GA for (6) is rather straight-
forward, because the time slot assignment variable, xij, is an integer-either 0 or 1- and
N is given. A chromosome is defined as a string of mN symbols, 0 and 1, as shown in
Figure 3, in which the N symbols from symbol (j − 1)N + 1 to symbol jN represent the
assignment of time slots to reader j.
3.3.1.2. Fitness. Since (6) is a minimization problem, the mechanism of GA is maximizing

a positive fitness, and so the fitness of a chromosome is defined as
m∑
j=1

cj− 1
2

∑
(j,k)

A ∧ Y (N),
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Figure 3. Representation of a chromosome

which is positive. Notably, the maximization of the defined fitness is equivalent to the
minimization of the total number of collisions.
3.3.1.3. Correction operations. We define a legal chromosome as the chromosome that
satisfies the constraint in (6). Accordingly, for a legal chromosome, the number of 1s in
the set of N symbols that are associated with reader j should be cj for j = 1, · · · ,m. If
the chromosome is not legal, then it cannot be a feasible solution of (6).

Since the crossover operation in the GA cannot guarantee that the generated offspring
are legal, correction operations must be applied to each resulting offspring to make it
legal. A similar situation is associated with the mutation operation. The details of the
correction operations are as follows.

Suppose an offspring is not legal; the following condition must hold for at least one
reader j such that the number of 1s in the N symbols that correspond to reader j does
not equal cj. Restated, if the N symbols ranging from (j − 1)N + 1 to jN include k
1s, then either k < cj or k > cj. To legalize the illegal chromosome, the following is
performed. In the case k > cj, (k − cj) 1s are randomly selected from the k 1s in the
symbols from (j − 1)N + 1 to jN and all are set to 0. Similar procedures apply in the
case k < cj.
3.3.1.4. Genetic algorithm for solving slave problem. The aforementioned representation
scheme, fitness and correction operations can be used in a typical GA [1] that includes
(i) a roulette tournament selection scheme for selecting and keeping the chromosomes
with better fitness, (ii) a single-point crossover scheme that is applied to the parents
that are selected from the population pool with probability pc, followed by correction
operations that are applied to the resulting offspring, and (iii) a mutation scheme that
mutates each symbol in a chromosome with probability pm, and then applies correction
operations to each mutated chromosome. The flow chart in Figure 4 summarizes the
GA. The convergence criterion that is applied herein is that the fitness of the best-so-far

chromosome equals
m∑
j=1

cj, which implies no reader collision, or the number of iterations

exceeds a preselected number Imax.

4. Test Results and Comparisons. To test the proposed algorithm, four reader net-
works of various sizes (reader networks 1, 2, 3 and 4), presented in Figures 5-8, respectively,
are used. Reader networks 1, 2, 3 and 4 comprise 10, 20, 37 and 51 readers, respectively.

In each reader network, neighboring readers are connected by a branch; the number in
the circle is the reader index, and the number in the parenthesis represents the number
of time slots that are required by that reader. Hence, the values of (Nmax, Nmin) of the
four reader networks are (49, 8), (102, 8), (192, 9) and (264, 8) corresponding to reader
networks 1, 2, 3 and 4, respectively. The parameters that are used in the GA shown in
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Figure 4. Flow chart of GA for solving slave problem

Figure 4 are set to be pc = 0.7, pm = 0.02, Imax = 5000 and |P (k)| = 300 for any k, where
|(·)| denotes the cardinality of the set (·).
The GA-based iterative two-level algorithm is used to solve the MTSAPs of the above

four reader networks. Because of the random nature of the operations in GA, the proposed
algorithm is applied five times to each MTSAP of the four reader networks. The average
numbers of two-level iterations for the MTSAPs of reader networks 1, 2, 3 and 4 are 2, 3,
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8 and 7, respectively. The average total numbers of time slots for reader networks 1, 2, 3
and 4 are 19, 20, 25 and 22, respectively. These results reveal the stable numerical property
of the proposed algorithm, because the five obtained total numbers of time slots are the
same in all five runs of each MTSAP. These obtained total numbers of time slots are
optimal N for the corresponding MTSAP, which fact is easily determined from the reader
networks that are presented in Figures 5-8. For example, for reader network 1 shown in
Figure 5, max

i

∑
j∈Ci

cj = 19, where Ci represents the ith clique of the reader network, which

is defined as a subset of readers in the reader network such that every pair of readers in
this subset is connected. Since different readers in a clique cannot use the same time slot,
the number of time slots that are required by the MTSAP for reader network 1 cannot be
less than 19. Therefore, N = 19 obtained by the proposed algorithm must be the optimal
total number of time slots required for the MTSAP of reader network 1. Similarly, total
numbers of time slots obtained for the remaining three MTSAPs of reader networks 2, 3
and 4 can also be proven to be optimal. Therefore, for the MTSAPs of the four reader
networks that are presented in Figures 5-8, the optimal solution is obtained in every run.

For the purpose of comparisons, the MTSAPs of the four reader networks are solved
using the simulated annealing (SA) method that was proposed by Lin and Lin [5]. Owing
to the random nature of the search operations in the SA method, five runs are conducted
for each MTSAP as for the proposed algorithm. The average total numbers of time slots
obtained by the SA method for the MTSAPs of reader networks 1, 2, 3 and 4 are 20.2,
22.8, 28.8 and 26.2, respectively. The average total numbers of time slots obtained using
the proposed algorithm and the SA method are denoted by N̂our and N̂SA, respectively,

and the percentage N̂SA−N̂our

N̂our
× 100% is calculated for the MTSAPs of the four reader

Figure 5. Reader network 1

Figure 6. Reader network 2
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Figure 7. Reader network 3

Figure 8. Reader network 4

Table 1. Comparisons of proposed algorithm with SA method

Reader Number of N∗ N̂our N̂SA
N̂SA−N̂our

N̂our
× 100%

CPU time
(seconds)

Speed up

Network Readers (m) t̄our t̄SA
factor: t̄SA

t̄our

1 10 19 19 20.2 6.3% 0.9 4 4.44
2 20 20 20 22.8 14% 24.5 117.8 4.81
3 37 25 25 28.8 15.2% 114.5 2184 19.07
4 51 22 22 26.2 19% 522.8 10117 19.35

networks as the degree of superiority of the proposed algorithm over the SA method.

Table 1 presents the size of each reader network, N∗, N̂our, N̂SA and N̂SA−N̂our

N̂our
× 100%,

where N∗ is the optimal total number of time slots for the MTSAP of the corresponding

reader network. As stated above, N̂our = N∗. According to the column N̂SA−N̂our

N̂our
× 100%
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in Table 1, the proposed algorithm outperforms the SA method, and as the size of the
reader network increases, the performance of the proposed algorithm is even better. The
average CPU times consumed by the proposed algorithm and the SA method for the four
MTSAPs are denoted by t̄our and t̄SA, respectively. The data demonstrate that t̄our is
much shorter than t̄SA for all MTASPs. Moreover, the final column indicates that the
speed-up factor, t̄SA

t̄our
, of the proposed algorithm with respect to the SA method is around

20 when the network is large.

Remark 4.1. The proposed algorithm can yield the optimal solution of the MTSAP very
rapidly for the small reader network as shown in Table 1. Although the computation time
increases with the size of the reader network, and NP-hard optimization problems are
being solved herein, the consumed CPU time for large reader network can still be regarded
as very fast. However, for real-time applications, heuristic algorithms for large reader
networks may have to be studied. Although this issue is beyond the scope of this paper, the
proposed algorithm can yield the optimal solution in a reasonable computation time and
thus can be used to evaluate the performance of any newly developed heuristic algorithm.

5. Conclusions. This work presented a GA-based iterative two-level algorithm for solv-
ing the resource allocation problem with complicating constraints. The considered prob-
lem is an NP-hard optimization problem. The proposed algorithm is used to solve the
MTSAPs of RFID reader networks and many simulations using various reader networks
are conducted to demonstrate the numerical stability of the proposed algorithm and its
effectiveness in finding optimal solutions. Comparisons are also made with the SA method
for all of the tested MTASPs. The results reveal that the performance and computing
speed of the proposed algorithm are better than those of the SA method to an extent that
increases with the size of the reader network.
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