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ABSTRACT. This study investigates a back-propagation (BP) neural network learning
rule for control and system identification of an active pendulum vibration absorber (APV
A) and develops an approach to find the bounds of learning rates based on the Lyapunov
function. The use of adaptive learning rates guarantees convergence so the optimal learn-
ing rates were found. The objective of the BP algorithm was trained for tuning the system
parameters in an APVA by suppressing vibration of the carrier. The simulation results
for the BP neural network algorithm APVA are compared with the fuzzy BP neural net-
work with non-neuroidentifier algorithm. The simulation results demonstrate the absorb-
ing effectiveness of the proposed adaptive learning rates of BP neural network APVA to
reduce carrier vibrations.

Keywords: Neural network, Active vibration control, Centrifugal pendulum

1. Introduction. A great number of rotating mechanical structures are subject to cycli-
cal forces that cause undesirable torsional oscillatory motions during operation. The
essential moving elements of a reciprocating engine are the piston, the crank, and the
connecting rod. Vibration in reciprocating engines arises due to periodic variations of the
gas pressure in the cylinder and inertial forces associated with the moving parts. Although
a steady rotational speed is desirable in order to extend the life of the components and
to reduce vibration and noise, it is generally impossible to maintain a precise constant
rotational speed. In general, the reduction of torsional vibrations in a rotating shaft, such
as automotive crank shafts, is achieved using different classes of dampers or absorbers
[1,2].

Various methods have been proposed to suppress these vibrations, including the ad-
dition of torsional friction dampers and flywheels. However, neither of these methods is
ideal. Friction dampers waste energy and generate heat, while flywheels not only increase
the total mass of the system, but also reduce its responsiveness. Centrifugal Pendulum
Vibration Absorbers (CPVAs) are also used to suppress torsional vibrations in rotating
machinery. They are widely employed in light aircraft engines and helicopter rotors,
as well as some high-performance automotive racing engines and diesel camshafts. The
CPVA, however, is essentially a tuned absorber whose natural frequency varies in direct
proportion to the rotational speed of the crankshaft. It also introduces no additional
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weight increase to the design of the system and thus can be used in many applications.
This makes the CPVA an attractive alternative for the reduction of torsional vibrations
in engines and a detailed study of its dynamic performance worthwhile.

The CPVA is comprised of a simple pendulum mounted on a vibrating rotor, as shown
in Figure 1. The pendulum suppresses the effects of torsional disturbances in the linear
range. Furthermore, the pendulum adds only a small amount of mass to the system and
hence does not increase the rotating inertia. Additionally, the pendulum dissipates an in-
significant amount of energy in the form of heat. The CPVA absorber was first introduced
in 1929 [3] and has since been widely applied to eliminate torsional vibrations in geared
radial aircraft-engine propeller systems [4]. Den Hartog and Newland [5,6] conducted a
linear analysis of the dynamic response of the CPVA and briefly discussed the charac-
teristics of its large amplitude nonlinear motion. Sharif-Bakhtiar and Shaw [7] studied
the effects of damping on a CPVA with moderate amplitude motion and motion-limiting
stops. Sharif-Bakhtiar and Shaw [8] also reported on the effects of nonlinearities and
damping on the dynamic response of a centrifugal pendulum vibration absorber. Cronin
[9] considered the problem of shake reduction in automobile engines using a CPVA. Sub-
sequently, various kinds of CPVA have been employed. Schtter et al. [10] introduced a
cam-based centrifugal pendulum (CBCP). The CBCP can completely balance the torque
of a purely inertial mechanism for any speed, using an ordinary disc cam. Haddow and
Show [11] demonstrated a rigid rotor fitted with several point mass absorbers that move
along prescribed paths relative to the rotor. The rotor is subjected to an applied torque
that fluctuates at a given order of rotation and the absorber paths are selected such that
their motion counteracts the applied torque. Sung et al. [12] designed a well-weighted
pendulum to harvest energy from a rotating wheel, which consisted of a pendulum and
one or more weights. The conventional CPVA is a passive absorber optimized to suppress
disturbance vibrations with a specific frequency. However, if the frequency of the distur-
bance varies with time, the efficiency of the absorber is reduced and the CPVA will fail
to provide a satisfactory performance. To overcome this limitation of passive vibration
absorbers, an active dynamic absorber can be developed to retain the advantages of the
conventional CPVA. An active dynamic vibration absorber can be tuned according to the
system characteristics to meet desired requirements [13,14]. The active vibration absorp-
tion technique uses the centrifugal delayed resonator (CDR) for active and passive device
synthesis of the centrifugal pendulum absorber and the delayed resonator [15,16]. A pen-
dulum with a spinning base is capable of neutralizing the vertical, harmonic excitation,
the oscillation of the primary structure and the up-down swing of the pendulum. The
proposed scheme is suitable for an active control system where energy consumption is a
concern and there is a constraint on the power or force capacity of a linear actuator [17].

The active pendulum vibration absorber (APVA) is simply a CPVA to which is ap-
pended a torque motor that acts as an actuator to drive the pendulum at an adequate
oscillatory amplitude. It has a very wide range of operating frequencies. Genetic algo-
rithms (GAs) are based on the mechanism of natural selection and evolution and they
have been applied to search for the global optimum in the APVA. Genetic algorithm
applications in controls that are performed in real time are limited because of random
solutions and convergence [18]. The fuzzy BP neural network controller systems with
non-neuroidentifier architectures suppress the vibration of the carrier in the APVA. The
algorithms are viewed as conventional fuzzy algorithms for coarse tuning and the BP
algorithm is applied for fine tuning with a fixed learning rate. However, the fixed learn-
ing tends to be inefficient [19]. The derivations of the CPVA and APVA equations are
presented according to Newton’s second law of motion. The purpose of this study is
to construct an APVA with a BP neural network mechanism. The simulation results
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verifying the effectiveness of the active vibration control are discussed, and finally, some
conclusions are offered.

2. APVA System Modeling. Figure 1 depicts a schematic view of the centrifugal
pendulum vibration absorber. The CPVA is comprised of a simple pendulum mounted
on a vibrating carrier. The carrier wheel is driven by a rotary machine, with the torque
T, applied to the carrier as shown. The primary structure is equipped with a rotational
pendulum which is driven by a motor. For simplicity, the rotational pendulum is assumed
to have a length [, [ = 0.0375 m and a lumped mass m, m = 0.24288 kg, at the tip.

The CPVA motion equation is analyzed in this section, as shown in Figure 1. The
carrier in the CPVA rotates around a fixed axis normal to the X-Y plane through O. A
rotating frame ¢-j is attached to the pendulum with its origin at point P and represents
the transformation of the vector between the rotating and nonrotating axes. The 7 and
j-axes of the coordinate system are aligned parallel and normal to [, respectively. O is the
absolute angular displacement of the carrier. r, r = 0.067 m is the radius of the carrier
and ¢ is the relative angular displacement of the pendulum with respect to the carrier.

The absolute acceleration of m can be written as

m = [—1(p 4+ ©)? — rO%cos ¢ + rOsin @i + [1( + O) + rO?sinp + rOcosg]j. (1)
The moment equation about point P can be expressed as
ml[l($ + ©) +rO?sin ¢ + 10 cos ] = —d,.9, (2)

where d, is the damping coefficient of the pendulum, d, = 0.0001.

The equation of the moments about O becomes
1.6 4+ m(l + 7 cos )[I( + ©) + rO*sin ¢ + 10 cos @] )
+ mrsin ¢[—1(¢ + ©)? — rO%cos ¢ + rOsin @] = T, — d.O

where I, is the moment of inertia of the carrier, I, = 0.01280 kg.m?, d. is the damping
coefficient of the carrier, d. = 0.01.

FIGURE 1. Schematic representation of a centrifugal pendulum vibration
absorber (CPVA)
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Hence, from Equations (2) and (3), the equations of motion for the centrifugal pendulum
vibration absorber system can be written as:

mi%p + (ml? + m.lr cos ¢)O + d,.¢ + m.IlrO?sin ¢ = 0,
[LAm.I(Il + 1 cos @) + m(l + 1 cos p)rcos ¢ + mr” sin® p]O + [ml(l + rcos §)|d  (4)
—m.rl&sin o — 2mrlgz'5(;)sin o+ dc@ =T
In the current example, the torque that acts on the carrier T, is a constant torque Ty,

plus a harmonic disturbance, T,, T, = 2.5sin(wt), i.e., T, = Ty, + T,. Since the system
generally undergoes a gross rotational motion, © can be expressed as follows:

Ot) =V +0(t): O1)=Q+0(t); Ot)=0(t). (5)

That is, the carrier angular displacement is composed of a nominal steady rotation and
an oscillating part. The first and second time derivatives of 0(¢) are the angular velocity
and acceleration of the carrier, respectively.

Substituting Equation (5) into Equation (4), the two equations of the system can be
expressed as

ml*p + (ml? + m.rl cos ¢)0 + d,.¢ + m.rl(Q + 0)%sin ¢ = 0,
(I, + m.r? + mi? + 2mrl cos ¢)0+(ml*+m.rl cos ¢)p—m.rl¢? sin ¢ (6)
—2mrlp(Q + B)sin ¢ + d (L + ) = Ty + T,.

Therefore, eliminating the effect of the constant torque term of the mean component of
the resistance torque, which arises from carrier damping, is completely counteracted by
the constant torque term, Ty, = d..C2, where € is the angular velocity of the carrier, 2 =
188.5 rad/s (1800 rpm).

The dynamics of the CPVA system are given by the following differential equations:

mi?¢ + (ml? + m.rlcos §)0 + dy.¢p + m.rl( + 0)%sin ¢ = 0,
(I + m.r® + mi® 4 2mrlcos ¢)0 + (ml? + m.rl cos ¢)d — m.rl¢?sin ¢ (7)
—2mrlp(Q + 0) sin ¢ + d.0) = T,.

In this study, 7, is the torque developed by the DC motor shaft to actuate the pendulum
and is expressed as T, = K,.¢ (like torsional spring).

The dynamics of the nonlinear APVA system can be given by the following differential
equations:

mi?¢ + (mi? + m.rlcos §) + dy.dp + m.rl(Q + 0)?sin ¢ = T,
(I + m.r? 4+ mi® 4 2mrl cos $)0 + (mi* + m.rl cos p)d — m.rl¢?® sin ¢ (8)
—2mrlp(Q + 0) sin g + d 0) = T,.

The APVA is simply a CPVA to which a torque motor is appended. The motor acts
as an actuator to drive the pendulum at an adequate oscillatory amplitude. The APVA
has a very wide range of operating frequencies.

For numerical solutions to the nonlinearly coupled equations, the fourth and fifth order
Runge-Kutta formulas will be applied to solve Equation (8). By defining x, = 6, x, = 0,
2. = ¢, and 74 = ¢, Equation (8) can be written as four first-order differential equations.
According to the fourth and fifth order Runge-Kutta method in MATLAB, the recurrence
sequence can be used to find the values of [0, 0, ¢, ¢] in each time step.

In the current APVA, T, is the torque needed to actuate the pendulum. Figures 2
and 3 show the frequency response curves for the carrier and the pendulum, respectively,
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FIGURE 2. Frequency response of the carrier with varying 7, = K,.¢

with different K, values for the torque, 7, = K,.¢. From the curves with excitation
frequencies from 30 rad/sec to 350 rad/sec, we can observe that at this frequency, the
carrier amplitude of the oscillation is reduced to approach zero, and the absorber has
a finite amplitude of oscillation. This frequency is called the nonlinear anti-resonance
frequency for the damped, nonlinear system. The solid lines indicate the nonlinear CPVA
when K, = 0; the different types of dashed lines indicate different K, values for the torque
T,. Superimposed on these plots are the results from the simulations of the nonlinear
equations of motion. It is found that altering the K, values of the torque 7, will shift the
anti-resonance frequency in the nonlinear APVA.

The purpose of this study is to construct a nonlinear APVA with control algorithms to
shift the anti-resonance frequency, for the improvement of the vibration performance.

3. APVA Using a Back-Propagation Neural Network. The neural network model
has often been applied in industry purposes. Neural network algorithms have also been
used successfully for a widely variety of applications [20-23]. In this study, a back-
propagation neural network learning rule is used to tune an active pendulum vibration
absorber. The back-propagation algorithm is the most commonly used type of the neu-
ral network architecture for supervised learning because it is based on the weight error
correction rules. The back-propagation algorithm has the advantages of simplicity and
relatively simple implementation. An approach for control and system identification is
presented in this section. An unknown plant is identified by a system identifier that pro-
vides information about the plant to a controller. The neurocontroller is used to drive
the unknown dynamic system such that the error between plant and desired output is
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FIGURE 3. Frequency response of the pendulum with varying 7}, = K,.¢
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FiGure 4. Multilayered feedforward neural network architecture

minimized. A generalized algorithm, called the dynamic backpropagation (DBP), is de-

veloped to train both the neurocontroller and neuroidentifier [24]. Both neurocontroller

and neuroidentifier use the same neural network architecture, as shown in Figure 4.
From Figure 4, it can be seen that the input layer distributes inputs to the first hidden

layer. The inputs then propagate forward through the network and each neuron computes
its output according to

X,k = g (Z R-(k)Wé(k)) , o)
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where for each iteration k, P;(k) is the ith input and W (k) is the input weight of the
connection between the ith neuron of the input layer and the jth neuron of the hyperbolic
tangent sigmoid layer. For neurons in the hidden layers, the activation function is often
chosen to be

g;(N;(k)) = (eNj(k) — efNj(k)) / (eNj(k) + efNj(k)) : (10)
where g;(N;(k)) is a hyperbolic tangent sigmoid function and N;(k) is the sum of inputs
to the jth recurrent neuron,

j(k) =Y Pi(k)Wii(k) (11)
i=1
The output nodes of the linear layer are said to be linear neurons. The output node
performs a weighted sum of its inputs as follows:

O(k) = Z W7 (k) X;(k), (12)

where O(k) is the output of the network, X;(k) is the output of the jth recurrent neuron,
and W7 (k) is the output weight of the jth recurrent neuron.

The block diagram of the neural network based control system for the APVA is shown
in Figure 5.

The inputs to the neurocontroller are the reference input wu,., the previous output of the
neurocontroller u(k — 1), and the previous responses of the APVA plant y,(k — 1). The
output of the neurocontroller u(k) is the control signal to the plant. The DBP algorithm
developed in this study is used to adjust the weights of the neurocontroller such that
the error between the output of the plant and the desired output from a reference model
approaches a small value after some training cycles.

The term y, (k) = 0y, (k)/Ou(k) represents the sensitivity of the plant with respect
to its input. Since the plant is normally unknown, the sensitivity term y,(k) is also
unknown. This unknown value can be estimated by using the neuroidentifier. When
the neuroidentifier is trained, the dynamic behavior of the neuroidentifier is close to the
unknown plant, then y, (k) = dy,,(k)/0u(k), where the value of y, (k) is a parameter for
the neurocontroller.

(k)
+
/
u"‘ o * yp(k)
U —]) el Neuryomrol]er APVA
¥, (k =1) = / ‘
+
Fon® | oer |0 e, (k)
| -
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FicUure 5. Block diagram of the neural network based control system for
the APVA
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3.1. Dynamic backpropagation for the neuroidentifier. This paper presents a back-
propagation neural network approach for the APVA dynamic model identification. Iden-
tification is basically the process of developing or improving a mathematical represen-
tation of system dynamics. An approach for the identification of a nonlinear dynamic
system using neural networks involves the dynamic differential equation into each of the
neural network processing elements to create a new type of neuron called a dynamic
neuron. From this paper the inputs of the neuroidentifier network are chosen to be
Py = {u(k),yp,(k — 1)}; then the output y;4(k) of the neural network should converge to
the responses of the APVA plant y,(k) through the training process, as shown in Figure
5. The subscript id represents the neural network architecture for the neuroidentifier.
The weight of the neural network is first initialized with small random numbers. The
outputs of the neural network are computed by feeding forward the inputs through the
network. The error e;4(k) is calculated from the difference between the responses of the
APVA plant y,(k) and the outputs of the neural network y;4(k). By backpropagation of
the error function to adjust the weights, the neural network can be trained to reach a
desired accuracy for modeling the dynamic behavior of the APVA. An error function for
a training cycle for the neuroidentifier can be defined as

Eig(k) = 1/2(y, (k) — yia(k))*. (13)

The weights can be adjusted following a gradient method, i.e., the updating rule for
the weights becomes

Wia(k 4+ 1) = Wia(k) — 1,4(0E;a(k)/OW ;4 (F)), (14)

where 74 is the learning rate of the neuroidentifier.
The gradient of error in Equation (13) with respect to output weight is represented by

aEid(k)/awgd)j(k) :aEid(k)/ayid(k)'8yid(k)/awgd)j(k)

o (15)
= 0Eiq(k)/0y,4(k).00,4(k)/OW g, (k).

The output of the neuroidentifier y;4(k) is equal to O;4(k), where O;4(k) is the output
of the neural network architecture.

From Equation (12), the output gradients for the neuroidentifier with respect to the
output weights become

00ia(K) [OW 5, (k) = Xia (). (16)

The partial derivatives are given by

OF(k)/0y;4(k) = =(vp(k) = yia(k)) = —eia(k), (17)

where the neuron identification error is defined as e;q(k) = y,(k) — yia(k)-
Then,

OFia(k)]OW (5 (k) = —eia(k) X (iay; (k). (18)
The gradient of error in Equation (13) with respect to input weight is represented by
O a(k)/OW (k) = 0B a(k) /0y 4(k).0y,q(k) | OW (k) (19)

= 0E;4(k)/0y,4(k).00 (k) | OW | (k).

From Equation (12), the output gradients for the neuroidentifier with respect to the
input weights become 8Oid(k)/8W(Iid)ij(k).
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Then,
004 (k) /OW (;y:5 (k) = 00ia(k) JOX (1), (k).0X (10 (k) [OW 5 (F)
= Wiy (k)-0X sy () [ OW (005 (), (20)
- Wzd ](k) 0X (id ](k)/aN(zd)](k)aN(zd)]( )/aW(Izd)zg(k)
_Wzd](k)g ( ](k))-Pzd(k)
Thus,
g;‘(N(id)j(k)) :d((eN(id)j(k) _ e—N(id)j(k))/(eN(z'd)j(k) + 67N(id)j(k)))/dN(id)j(k) (1)

=1 = (g;( Ny (F)))” = 1 = (X (k))”.
Since inputs to the neuroidentifier are Py = {u( ), yp(k — 1)}, Equation (11) becomes

Niiayj = u(k)W(Iid)lj(k) + yp(k — 1)W(€d)2j(k)' (22)

Thus,
ONGay; (k) OW (4755 (k) = Pia(k). (23)

Then,

OE;a(k)/OW (005 (k) = — €ia(k) g (Niiay; (k) Wi (k) Pia(k)

% (21)
= — eia(k)(1 = (X(iay; (K)*) Wy (k) Pia(k).

3.2. Dynamic backpropagation for the neurocontroller. An approach for control
using a backpropagation neural network is presented in this section. The inputs to the
neurocontroller are chosen as follows: P, = {u,,u(k —1),y,(k — 1)}, where inputs to
the neurocontroller are the reference input, the previous output of the neurocontroller,
and the previous responses of the APVA. Figure 5 shows a block diagram of the proposed
neurocontroller for the APVA plant. The output of the neurocontroller u(k) is the same as
the control signal K, to the plant. The output of the neurocontroller through the training
process is used to tune the parameters of K,. When the response of the nonlinear APVA
is altered by K, values in specific frequencies, the carrier amplitude of the oscillation will
vary in the applicable range of K, values. The design objective of the neural network
control system is to regulate K, values in an APVA, to suppress the vibration of the
carrier.

The weights of the neurocontroller are first initialized with small random numbers. The
outputs of the neurocontroller are computed by feeding forward the inputs through the
network. The error e.(k) is calculated from the difference between the desired output
of the reference model y, (k) and the responses of the APVA plant y,(k). The subscript
c represents the neural network architecture for the neurocontroller. By using the DBP
algorithm developed in this study, the weights of the neurocontroller are adjusted such
that the error e.(k) approaches a small value after some training cycles. An error function
for a training cycle for the neurocontroller can be defined as follows:

Let y.(k) and y,(k) be the desired and actual responses of the plant; then an error
function for a training cycle for the neurocontroller can be defined as

Eo(k) = 1/2(yr (k) — yp (k). (25)
The weights can be adjusted following a gradient method, i.e., the updating rule of the
weights becomes

We(k +1) = We(k) — n,(0E.(k)/OW (k)), (26)
where 7). is the learning rate of the neurocontroller.
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In the case of the neurocontroller, the gradient of error in Equation (25) with respect
to output weight can be represented by

OE. (k) /OW Q) (k) = OB, (k) /0y, (k).0y, (k) /0u(k) du(k) /00, (k).
00 (k) /oW (). (k),

where O, (k) is output of the neurocontroller.
The partial derivatives are given by

OE.(k)/0y, (k) = —(yr(k) — yp(k)) = —ec(k), 00:(k)/00);(k) = X(o);(F),
where e.(k) = y, (k) — y,(k) is the error between the desired and output responses of the
plant. Usually, a linear function is used for the output layer, so du(k)/00.(k) = 1.

The term y,(k) = 0y, (k)/Ou(k) represents the sensitivity of the plant with respect
to its input. Since the plant is normally unknown, the sensitivity term y,(k) is also
unknown. This unknown value can be estimated by using the neuroidentifier. When the
neuroidentifier is trained, its dynamic behavior is close to that of the unknown plant, i.e.,
yp(k) = y,,(k), where y;4(k) is the output of the neuroidentifier.

Once the training process is done, we assume the sensitivity can be approximated by

yu(k) = 9y, (k)[Ou(k) = Dy;4(k)/Ou(k), (28)

where u(k) is an input to the neuroidentifier and the plant.
Apply the chain rule to Equation (28), and note that y;q(k) = O(ia) (k)

n

(27)

[O(Wi; (k) X iy (k) /X i) (k).0X jq); (k) /Ou(k)] )

[W(zo'd)j (k) 'aX(id)j (k)/Ou(k)].

J

I

7j=1

Also,

0X jay; (k) /Ou(k) = aX(id)j (k)/aN(z‘d)j (k)-ONiay; (k) /Ou(k) (30)
From Equation (22), dN(ia; (k)/du(k) becomes ONay; (k)/du(k) = W (g, (k).
Thus,

n

Yu(k) = Oyia(k)/Ou(k) = Z[W(zo'd)j(k)g;'(N(id)j(k))Wédﬂj(k)]

=1

n (31)
= Z[W((z?d)j(k)(l - (X(id)j(k))Q)Wéd)u(k)]-
Then,
= ) W (1~ (KK W () Ky ).

In the case of the neurocontroller, the gradient of error in Equation (25) with respect
to input weight is represented by

OE (k) |OW Ly, (k) = E.(k)/dy, (k).0y, (k) oW, (k) (33)
= OE.(k) /Dy, (k)-Dy, (k) [0u(k).Ou(k) /0O, (k).00, (k) [OW, . (k).
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The output gradients for the neurocontroller with respect to input weights are

DOV Ly ) = WE, (6).0X () /0 Ly ()
= W0, ()0, (0)/0N 3, (B)ON 1, (R)/OW Ly (6) (39
:W((c))j(k)' j(N(c)j(k))P(c)i(k)
where
3} (N ) =1 = 0,V (K))? = 1 = (X)) )
Then,
OB () OV L (K) = —eclk) (K, (8).0} (N () Pr (4
= ). I 0810 Ny (Y i (W2, ()5 Ve () P

3.3. Convergence and stability. The updating rule for Equations (14) and (26) calls
for a proper choice of learning rate 7. For a small value of ), the convergence is guaranteed
but the speed is very slow; on the other hand, if n is too big, the algorithm becomes
unstable. This section develops a guideline for selecting the proper learning rate, which
leads to an adaptive learning rate.

A discrete-type Lyapunov function can be given by

V(K) = 1/2[e*(k)], (37)

where e(k) represents the error in the learning process.
Thus, the change of the Lyapunov function due to the training process is obtained by

AV(E)=V(k+1)=V(k) =1/2[e*(k + 1) — *(k)] (38)
The error difference due to the learning can be represented by [25]
e(k+1) = e(k) + Ae(k) = e(k) + [Oe(k)/OW]F AW, (39)

where AW represents a change in an arbitrary weight vector. As shown in the Ap-
pendix, the learning rates n$ for the neuroidentiﬁer weights WS and 5}, for the neu-
roidentifier weights W1 are chosen to be 0 < 771d < 2/hiq, the optimal convergence rate
(n9)* = 1/hig and 0 < nl, < 2/(nia-hia)[1/W max Pidmax]*, the optimal convergence
rate (1/g)* = 1/(nia-hia)[1/W 3 max Pidmax)”, respectively. The n¢ and 75! be the learning
rates for the neurocontroller weights W and W/, respectively. The learning rates are
chosen to be 0 < n? < 2/(h.S2 ) the optimal convergence rate (n2)* = 1/(S?

max max )

and 0 < n! < 2/(nC he.S2a) [1/Whax Pemax)®, the optimal convergence rate (n])*
1/(n0 h Smax)[]'/ cmax Pc,ma,x] .

3.4. Response of the nonlinear APVA altering K, values at specific frequen-
cies. Figure 6 shows the response curves for the APVA with varying K. From the curves
for three specific excitation frequencies, 225 rad/sec, 260 rad/sec and 300 rad/sec, respec-
tively, we can observe that at varying K, the carrier amplitude of the oscillation will alter
within the range of K, = [-12, 15]. It is found that at point A’ the vibration amplitude of
the carrier approaches zero, and at point B’ the vibration amplitude of the carrier reaches
a maximum.

Looking at the curves to the right of point B’, we can observe that the curves never reach
the minimum. In this study, we use a means that allows them to escape such a situation.
From the curves to the right of point B’, it can be seen that if the conditions |Ay,| < ¢
(i.e.,, € = 2.28 x 107°) and y,(k) > v (i.e.,, v = 0.0024) exist, then the reference input
u, and the input and output weights of the neurocontroller will be randomly rechosen to
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repeat the training session in order to escape the region of the curves to the right of point
B

4. Simulation Results. The objective in this paper is to apply the back-propagation
neural network controller, which has developed both the neurocontroller and neuroiden-
tifier, and to set up adequate output variables that will control the vibration of the
APVA at a minimum. In a neural network based control system, the plant is unknown
in general; thus the sensitivity, which is required during training process, is normally not
available. Some papers simply ignore this sensitivity and use the direct control approach.
In [19], the chain rule is used to calculate a recurrence relationship in which the sensi-
tivity of the preceding layer is computed from the sensitivity at the present layer with
non-neuroidentifier. In this paper, a neuroidentifier is utilized to obtain the sensitivity,
and, along with the neurocontroller, obtain the weight adjustment as well. The training
parameters of the adaptive learning rates are also depicted in this section. In the simu-
lation, P, = {u,,u(k —1),y,(k — 1)} are the inputs to the neurocontroller, where u, is
the reference input to randomly generated between the range of [—3,9], u(k — 1) is the
previous output of the neurocontroller (initial 4(0) = 0) and y,(k — 1) is the previous
vibration amplitude of the carrier of the APVA (initial y,(0) = 0). P,y = {u(k), y,(k—1)}
are the inputs to the neuroidentifier where u(k) is the output of the neurocontroller.

In the case of the neurocontroller, the input weight W(IC) is a 3 by 20 matrix in which
every element in the matrix is randomly generated in the range of [0, 1]. The output weight
W(% is a 1 by 20 matrix for which every element in the matrix is randomly generated in

the range of [0,0.5]. In the case of the neuroidentifier, the input weight W(Iz.d) is a 2

0.035 ' : I
; j ! — o =225 rad/sec
=== w =260 rad/sec

== @ =300 rad/sec

0.03
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0.015

The amplitude of the carrier, (rad)
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0
-15
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FIGURE 6. Response of the APVA with varying K,



ACTIVE VIBRATION CONTROL OF A CPVA 1585

Excitation frequency = 225 rad/sec

£
™

o, =
i [ N

The kpwvalue
5]
[mn]

%
o]

o
T
o=y ==

Fuzzy BP neural network with Mon-neuraidentifier

= BPF neural network

32 I I I I I I I I
0 10 20 30 40 a0 &0 70 g0 90 100

teration steps
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by 20 matrix in which every element in the matrix is randomly generated in the range
of [0,0.01]. The output weight W(?d) is a 1 by 20 matrix in which every element in
the matrix is randomly generated in the range of [0,0.01]. The numbers of inputs to
the neurocontroller and neuroidentifier are denoted by n. and n;q, respectively, while h,
and h;; denote the numbers of neurons in the hidden layer for the neurocontroller and
neuroidentifier, respectively; they are chosen to be n. = 3, n,qg = 2, h, = 20, h;q = 20.
The desired output of the reference model y, (k) is 0. The weights of the neurocontroller
are adjusted such that the error e.(k) approaches a small value after some training cycles.
In this section, the simulation results for the BP neural network algorithm APVA are
compared with the fuzzy BP neural network algorithm with non-neuroidentifier. The
fuzzy BP neural network controller systems with non-neuroidentifier architectures can be
viewed as conventional fuzzy algorithms for coarse tuning and the BP algorithm is applied
for fine tuning. The input and output range for the fuzzy algorithm are chosen from the
specific intervals, and the membership functions in the fuzzification interface are chosen
to be Gaussian membership functions. The BP neural network with non-neuroidentifier
is used to fine-tune the system performance [19].

The K, values for the BP neural network algorithm and the fuzzy BP neural network
with non-neuroidentifier algorithm, with an excitation frequency of w = 225 rad/sec, are
shown in Figure 7.

The vibration amplitude of the carrier for the BP neural network algorithm and the
fuzzy BP neural network with non-neuroidentifier algorithm with an excitation frequency
of w = 225 rad/sec are shown in Figure 8. As can be seen in the figure, the BP neu-
ral network converges faster than the fuzzy BP neural network with non-neuroidentifier
algorithm. The disturbance excitation frequency is changed to 260 rad/sec, and the sim-
ulation results for the BP neural network are compared with the fuzzy BP neural network
with non-neuroidentifier algorithm. The K, values for the BP neural network algorithm
and the fuzzy BP neural network with non-neuroidentifier algorithm, with an excitation
frequency of w = 260 rad/sec, are shown in Figure 9.
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Figure 10 shows the carrier vibration of the APVA for the BP neural network algorithm
and the fuzzy BP neural network with non-neuroidentifier algorithm with an excitation fre-
quency of w = 260 rad/sec. As can be seen in the figure, the BP neural network algorithm
converges faster than the fuzzy BP neural network algorithm with non-neuroidentifier.

From the fuzzy BP neural network with non-neuroidentifier algorithm, the output vari-
able K, for the fuzzy system in the specific interval needs more fuzzy rules to obtain
precise output. The BP training algorithm of the fuzzy BP neural network with fixed
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learning rate tends to be inefficient. A large learning rate may make the system unstable
while a small learning rate makes the training process too slow. However, in this paper, a
neuroidentifier is utilized to obtain the sensitivity, in addition to the neurocontroller. The
weight adjustment becomes smoother than the case without the sensitivity information.
In this study, an approach to find the bounds on learning rates based on the Lyapunov
function is developed. The use of adaptive learning rates guarantees convergence so the
optimal learning rates are found. From the simulation results, we can observe that the
absorbing efficiency is better with the adaptive learning rates of the BP neural network
APVA than for the fuzzy BP neural network algorithm with non-neuroidentifier.

5. Conclusions. This study proposes the BP neural network algorithm, which includes
the neurocontroller and neuroidentifier, for the control of an APVA. A theoretical dynamic
model of the APVA was developed, and simulations were performed to verify the capability
of the proposed control algorithms. The simulation results show that when the frequency
of the disturbance fluctuates within a certain range, the control strategy can effectively
suppress the vibrational amplitude of the carrier. In the BP neural network algorithm,
the use of adaptive learning rates guarantees convergence so the optimal learning rates
are found. From the simulation results, we can observe that the absorbing efficiency is
better with the adaptive learning rates of the BP neural network APVA than for the fuzzy
BP neural network algorithm with non-neuroidentifier. Further research should also be
carried out on other aspects of the APVA. The nonlinear characteristics of the system
must be considered in the design of the APVA. If ignored, the absorber’s effectiveness
could be reduced, perhaps even resulting in large oscillatory amplitudes in the carrier
system. However, certain disturbances may lead to a chaotic response. If the behavior of
a system can be correctly predicted, its operation will be rendered both safer and more
reliable.
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Appendix.

Convergence of the neuroidentifier. From the updating rule in Equations (14) and
(15),

AW 4= —UidaEid(k)/aWid = nideid(k)aOid(k)/aWida (A1)
where W;; and n;4 respectively represent an arbitrary weight and the corresponding learn-
ing rate in the neuroidentifier, and O;4(k) is the output of the neuroidentifier. Now we
have the following general convergence theorem:

Theorem 1. Let n;q be the learning rate for the weights of the neuroidentifier and let
Glidmax be defined as Gigmax : maxy ||Gia(k)||, where Gia(k) = 00,4(k)/OW, and ||.|| is

the usual Fuclidean norm. The convergence is gquaranteed if n;q is chosen to be

0< Nia < 2/G2 (AQ)

id,max"*
Proof: From Equations (38) and (A1), AV (k) can be represented as
AV (k) =1/2[eia(k) + Aejy(k) — €iy(k)]= Aeia(k)[eia(k) + 1/28¢;,(k)]
= [0cia(k)/OW i) miaeia(k).00,4(k) /OW ;{eia(k) (A3)
+1/2(0eia(k) /OW ;)" miaeia(k) D0 4(k) [OW 1y}
Since for neuroidentifier de;q(k)/OWiq = —0y;a(k)/OW,; = —00;4(k)/OW ,,;, we obtain
AV (k) = _nidezzd(k”|aOid(k)/8Wid||2+1/277z2d622d(k)||aoid(k)/awid||4
= — Nigejq(k),
where \ig = nid||aOid(k)/aWid||2_1/277?d||80id(k)/awid||4'
Let Gld(k) = 8Old(k)/8WZd, Gid,max . manHGid(k)H, and m= nidGzzd,max' Then,
Nia = 1/2]|Gia(F) [ 0ia(2 — mial |Gia(R)[|?)
=120 Gth) a2 — G B P/ g (45)
> 1/2[|Gia(k)|*nia(2 — m) > 0.
From Equation (A5), 1;4(2 —n;) > 0, we obtain 0 < n; < 2 => 0 < 7;,4G
0< Nid < 2/G2

id,max"*
Then the convergence is guaranteed if n;; is chosen to be 0 < ;4 < 2/Gfd7max.

The convergence is guaranteed as long as Equation (A5) is satisfied, i.e., 7,4(2 — n;) > 0
or m (2 - nl)/GZZd,max > 0.

This implies that any n;, 0 < 1 < 2, guarantees the convergence. However, from
(2 —n,), let the maximum learning rate i}, be that which guarantees the most rapid or
optimal convergence corresponding to 7, = 1, i.e.,

n;d = 1/Gzzd,max? (A6)

which is half of the upper limit in Equation (A2).

This shows an interesting result, namely that any other learning rate larger than 7,
does not guarantee faster convergence.

The general convergence theorem can be applied to find the specific convergence crite-
rion for each type of weight.

(A4)

<2=>

2
id,max
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Theorem 2. Let 1S and n}, be the learning rates for the neuroidentifier weights W and
W, respectively. The learning rates are chosen to be

0 < njg < 2/hia, (A7)

0 < g < 2/ (nia-hia) 1/ Wig mmax- Pid,max)? (A8)

where h;q is the number of neurons in the hidden layer, n;q is the number of inputs to
the neuroidentifier, W;jmm = max||[W3(k)||, Pamer = maxy||Pa(k)|], and ||.|| is the

sup-norm, i.e., [[Wig(k)|| = max; W, (k)], | Pia(k)]| = max;| Py (k)|
(1) Proof of Equation (AT7): let

Gia = 00,4(k)JOWS] = X(iay; (K), (A9)

where X;q = [X¢ay1, X2, - - -Xaay)"» X(iay; is the output value of the jth neuron in the
hidden layer, and h;; is the number of neurons in the neuroidentifier hidden layer.

Since —1 < X(Zd) (k) < 1,7 =1,2,... hijg, by definition of the usual Euclidean norm,
1Gia(B)|| = (X7 + Xy +...X%id)h)1/2 < (hia)'* and G%; . (k) = hig. Then from
Theorem 1 Equat1on (A2) follows.

0<nd< Q/sz max = 2/ id. (A10)

Therefore, the proof of Equation (A7) is completed and (n$)* = 1/h;q.
(2) Proof of Equation (A8): from Equation (20),

OX (ia); (K) [OW (14155 (k) = OX (i () /ON (30 (K)-ON (30 (k) JOW (195 (k)
= 9;(Neiay; (k) Pia (k).

Since 0 < g}(Nuay;(k)) < 1, from Equation (21), gj(Nua;(k)) = 1 — (X (k))?,
—1 < Xia)j (k) < 1for j =1,2,..., hig, we can obtain

10X (ia); () /OW (10155 ()< Pialk)- (A12)
Let ||Pia(k)|| = max; |P,;(k)|, Pigmax = maxy ||Piq(k)||, thus we obtain
10X ia(k) /OW | (n;4-hia) " Prymas, (A13)

where h;4 is the number of neurons in the hidden layer, and n;; is the number of inputs
to the neuroidentifier. From Equation (20),

D0;ia(k) [OW (jay,5(k) = Wiy (k)-0X (305 (k) JOW (i3 (),
thus we obtain
1100;4(k) JOW [, ||< (n4-hia) " Piaymax. maxg |W3 ()| = (nig-hia) " Piagmax Wi max:

where

Wi (k)] = max; Wy, (k)], Wigmax = max|[Wig (k).

Let Gd - aOzd(k)/aWzIda ||Gld|| < (nid‘hid)l/ Pid,max Wig,max and Gz2d max
W )% then from Equation (A2),

id, max( id,max
0< nzd < 2/sz max 2/(nld Zd)[l/ zd max"* Pld,m&x]2' (A14)

Therefore, the proof of Equation (A8) is completed and (n/;)* = 1/(nia-hia) [1/ W max-
Pid,max]2-

= Njig.hiq
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Convergence of the neurocontroller. From the updating rule for Equations (26) and
(27),
AW = —n,0E(k)/OW . = nee.(k).0y,(k)/0u(k).00 (k) /OW ,, (A15)

where Oy, (k)/0u(k) =y, (k), and W, and 7, respectively represent an arbitrary weight
and the corresponding learning rate in the neurocontroller, and O.(k) is the output of the
neurocontroller. Then we have the following general convergence theorem:

Theorem 3. Let n. be the learning rate for the weights of the neurocontroller, and
Gemax be defined as Gemax : maxy||Go(k)||, where G.(k) = 00 (k)/OW ., and Smax = hiq
VVﬁmaXI/VZ{“maX, and ||.|| is the usual Euclidean norm. The convergence is guaranteed if

Ne 48 chosen as follows:

0 < ne < 2/(S20xGr max)- (A16)

Proof: From Equations (38), (39) and (A15), AV(k) can be represented as
AV (k) =1/2[ec(k) + Ay (k) — €2 (k)]

= Aec(k)ec(k) + 1/20e (k)]
=[ec(k)/OW [ neec(k).0y, (k) /ou(k).00 (k) /OW fec(k) + 1/2[e (k) /OW '
()-9y

neee(k)-0y, (k) /Ou(k).00 (k) /OW }.
(A17)
Since for the neurocontroller
de.(k)/OW , = =0y, (k)/0u(k).00,(k)/OW , = —y,.00.(k)/OW ,
we obtain
AV (k) = =n.ez (k)] 100 (k) /oW |[*+1/2n.e? (k)y, 100, (k) /oW || (A18)
= — A (k),
where
Ae = 0y 100, (k) [OW |[*=1/2n7y, |00 (k) [OW || " (A19)

Comparing Equation (A18) with Equation (A4), it can be seen that both conditions
are similar, except that y,(k) needs to be incorporated in the neurocontroller. Therefore,
the limit on y, (k) or y2(k) remains to be found.

Since from Equation (31),

n

Yu(k) = Z[W((i)d)j(k)g;(N(id)j(k))W(Iid)lj(k)]a (A20)
7=1
where 0 < g(Neay; (k) < 1. Tf Wiy, 1oy is defined as Wiy, . = max||[W,, (k)] and

||W(Iid) (%)l —man|Wzd (k)|, then
|yU( )| S thHW(Zd)J( )||||g( j( ))Wld 1]( )|| < thWzd maxW(Iid)lmax(k) = Smax? (A21)

where Sp.x is the limit on sensitivity.

Let G.(k) = 00,(k)/OW ,, Gemax : maxg||Ge(k)|[, and m1 = n.G? Then, Equation

(A19) o
Ae = neSmaxlGe(R)[[* = 1/212 S5 || Ge(B) ][
=1/2]|G(k)|"neSmax(2 — m S ax||G( /G max) (A22)
> 1/2[|Gel(k)[11eSmax(2 — M Smax) >
From Equation (A22), n.(2 — Sﬁlax) >0 and we obtain 0 < 7152, < 2 => 0 <

n.S2 G% <2 >0<nc<2/ e ax G max

max c,max
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Then, the convergence is guaranteed if 7. is chosen to be 0 < n, < 2/ maXGg max-
As in the case of the neurocontroller, the optlmal convergence rate is

770 = 1/ max cmax7
which is half of the upper limit in Equation (A16). Again, any other learning rate larger
than 1} does not guarantee faster convergence.
Thus, in a way similar to the neuroidentifier, the specific convergence criteria can be
found as follows:
Theorem 4. Let n? and n! be the learning rates for the neurocontroller weights W2 and
W, respectively. The learning rates are chosen to be

0< 770 < 2/h.S max, (A23)

0 < 770] < 2/(Tlc ) max[l/ c,max" cmax]2 (A24)

where h. is the number of neurons in the hidden layer, n. is the number of inputs to
the neurocontroller, W2 .. = maxy, [|[IWO(k)||, Pemax= maxy||P,(k)||, and ||.]| is the

sup-norm, i.e., ||WCO( I = maxj|W((g)j( ) 1P(k)|| = maxs|Pei(k)| and P, = {u,,
ullk — 1), (k — 1))

(1) Proof of Equation (A23): let G, = aOc(k)/(')W? = X(;j(k), where X, =
(X1, X(0)20 - - - Xon)"s X(o); is the output value of the jth neuron in the hidden layer,

and h. is the number of neurons in the neurocontroller’s hidden layer.

Since —1 < X(;(k) <1, j =1,2,..., h., by definition of the usual Euclidean norm,
IGe(k)|| = (XTy, + XTot- X() )1/2 (h )1/2 and szax(k) = h,. Then, from Theorem

4 Equation (A23) follows. 0 < 09 < 2/S2, G2 nax = 2/S2xh
Therefore, the proof of Equation (A23) is completed and (77C ) =1/S%..h

(2) Proof of Equation (A24): from Equation (34)
Oy (k) JOW (. = W, (k)X (mﬁmﬂ.izwgﬂmgmuwmw»amwy (A25)

Since 0 < gzc)j(N(c) (k)) < 1 from g ( (c)j (k)) (X( )j(k))2 -1 < X(c)j(k) <
1 for j = L,2,... he, |[Pe(R)]] —OmaX] IP( ), Pcmax = maxy||P(k)], [[W2(k)|| =
max; [W 2. (k )I = maxy ||[W.(k)]].

Thus, we obtain

180:(k)/OW (|| (n,.he) P maxy| | P, () || max,, W (k)| (n,-he) ' Pemax Ve,

C, max

c,max’

(A26)

where h, is the number of neurons in the hidden layer, and n. is the number of inputs to
the neurocontroller.
Let

Ge = aOC(k)/aWL Gl < (nc-hC)l/ZPC,machOmax
then from Equation (A16),

0 < 770 < 2/ max cmax = 2/(n0 h Sr2nax)[ / c,max" cmax]2 (A27)
Therefore, the proof of Equation (A24) is completed and

(72)" = 1/ (Me-heSa) [/ W s Pemax] ™ (A28)

= ne.h P2 . (WO

2
cmax( c,max)?

and G2

c,max



