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Abstract. This paper investigates the backorder rate inventory problem with defective
units. In practice, the uncertainties of customer’s demand and backorder rate are inher-
ent; hence, backorder rate and customer’s demand are not constant. In this study, we
assume that the backorder rate is dependent on the amount of shortages and backorder
price discounts, and the lead time demand follows a mixture of distributions. Here, we
derive the mixture inventory system, and construct the algorithm procedure to optimize
the order quantity, backorder price discount and lead time. Numerical examples are also
included to illustrate the results.
Keywords: Defective units, Order quantity, Backorder discount, Minimax distribution
free procedure, Mixture of distributions

1. Introduction. In the deterministic or probabilistic inventory model, lead time is
viewed as a prescribed constant or a stochastic variable, which therefore is not subject
to control (e.g., [11,19]). In fact, lead time usually consists of the following components:
order preparation, order transit, supplier lead time, delivery time, and setup time (see
[20]). In many practical situations, lead time can be reduced by an added crashing cost;
in other words, it is controllable. By shortening the lead time, we can lower the safety
stock (SS), reduce the loss caused by stock-out, improve the service level to the customer,
and increase the competitive ability in business.

Liao and Shyu [10] presented a probabilistic model in which the order quantity is
predetermined and lead time is a unique decision variable. Ben-Daya and Raouf [1]
extended the Liao and Shyu’s [10] model by considering both the lead time and the
order quantity as decision variables. These studies [1,10] assumed that the probability
of allowable stock-out during the lead time is very small, and hence the shortages are
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neglected. In [13,16,25], Ben-Daya and Raouf’s [1] model is considered with the stock-out
component. Ouyang and Wu [15] considered both lead time and the order quantity as the
decision variables of a mixture of backorders and lost sales inventory model in which the
shortages are allowed and consider the demand of the lead time with normal distribution.
Besides, they assumed that an arrival order may contain some defective units, and the
number of defective units in an arrival order of size Q which is a random variable with
binomial probability distribution. Ouyang and Chuang [13] (also see Lee [9]) took the
stock shortages into consideration and assumed that the backorder rate is dependent on
the length of lead time through the amount of shortages. Similarly, from Pan and Hsiao
[17] the backorder rate was assumed in proportion to the price discount. In this paper,
we develop a new general form of backorder rate with the idea of Ouyang and Chuang
[13] (also see Lee [9]) and Pan and Hsiao [17] considerations. Thus, the backorder rate is
dependent on the amount of shortages and backorder price discounts. Furthermore, this
article proposes an inventory model involving backorder discounts with defective units.
In real environments, there exist many uncertain factors which can affect the value of the

lead time demand. The demand of the different customers is not identical in the lead time,
so we cannot only use a single distribution (such as Ouyang and Wu [15], Ouyang et al.
[12]) to describe the lead time demand. It is more reasonable that mixture distribution
is applied to describe the lead time demand than single distribution is used. In fact,
mixture of normal distributions has been successfully applied in many fields including
economics, marketing, and finance (Clark [2], Zangari [26], Venkataraman [21], Duffie
and Pan [3], Hull and White [7], Wang [22]). Many studies (Wilson [23,24], Zangari [26],
Venkataraman [21], Duffie and Pan [3], Hull and White [7]) show that the distributions
of daily changes, such as returns in equity, foreign exchanges, and commodity markets,
are frequently asymmetric with fat tails. The assumption of normality is far from perfect
and often inappropriate. Mixture of normal distributions is a more general and flexible
distribution for fitting the market data of daily changes. Recently the mixture of normal
distributions has become a popular model for the distribution of daily changes in market
variables with fat tails. In this study, we assume that the lead time demand follows the
mixture of distributions (see Everitt and Hand [4]). Moreover, it is considered that an
inventory model involves controllable backorder discounts and variable lead time with
defective units. We first assume that the lead time demand follows a mixture of normal
distributions and develop an algorithm procedure to find the optimal order quantity, the
optimal lead time and the optimal backorder price discount. And then we consider that
any mixture of distribution functions (d.f.s), say F∗ = pF1 + (1 − p)F2, of the lead time
demand has only known finite first and second moments (and hence, mean and variance
are also known and finite) but we make no assumption on the distribution form of F∗.
That is, F1 and F2 of F∗ belong to the class Ω of all single d.f.s with finite mean and
variance. Our goal is to solve a mixture inventory model with defective units by using
the minimax distribution free approach. The minimax distribution free approach for our
inventory model is to find the most unfavorable d.f.s F1 and F2 of F∗ for each decision
variable and then to minimize over the decision variables. Furthermore, the purpose of this
paper is to develop an algorithm procedure for the mixture inventory model with defective
units to find the optimal order quantity, optimal lead time and the optimal backorder price
discount when the distribution of the lead time demand is mixture of normal distributions
or mixture of free distributions. Finally, first two numerical examples with known (or
given) parameters of the mixture of distributions are also given to illustrate that when
p = 0 or 1, the model considers only one kind of customers’ demand; when 0 < p < 1,
the model considers two kinds of customers’ demand for the fixed fraction of backorder
parameters ε, δ and defective rate θ. It implies that the minimum expected total annual
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cost of two kinds of customers’ demand is larger than the minimum expected total annual
cost of one kind of customers’ demand. Thus, the minimum expected total annual cost
increases as the distance between p and 0 (or 1) increases for the fixed ε, δ and θ. Next, in
third example, if the parameters of the mixture of distributions for the lead time demand
are unknown, the maximum likelihood (ML) method is the most popular technique for
deriving estimators of these parameters. That is, we directly take derivatives with respect
to these parameters of this likelihood functions based on the ML method and use them to
find the maximum. It turns out that these equations can become quite difficult since these
equations are nonlinear and no analytic solutions can be found. Hence, we use an easier
algorithm that is guaranteed to converge to the ML estimators. The algorithm is called
expectation maximization (EM) algorithm which was introduced by Hastie et al. [6] and
used to obtain the estimates of unknown parameters of the mixture of distributions for
the lead time demand. Hence, if the true distribution of the lead time demand is mixture
of normal distributions or mixture of free distributions, we use a single distribution (such
as Ouyang and Wu [15], Ouyang et al. [12]) instead of the true distribution of the lead
time demand; then the minimum expected total annual cost will be overestimated.

2. Notations and Assumptions. To establish the mathematical model, the notations
and assumptions of the model are as follows:

2.1. Notations.

A Fixed ordering cost per order;
D Average demand per year;
h Inventory holding cost per non-defective unit per year;
hc Inventory holding cost per defective unit per year;
L Length of lead time, decision variable;
Q Order quantity, decision variable;
r Reorder point;
X Lead time demand with the mixtures of distribution;
β Fraction of the demand backordered during the stock out period, β ∈ [0, 1];
π0 Gross marginal profit per unit;
πx Backorder price discount offered by the supplier unit, 0 ≤ πx ≤ π0;
δ, ε Backorder parameters, 0 ≤ δ ≤ 1, 0 ≤ ε < ∞;
p The weight of the component normal distributions, 0 ≤ p ≤ 1;
B(r) The expected shortage quantity at the end of cycle;
q The allowable stock out probability;
k The safety factor which satisfies P (X > r) = q;
v Inspecting cost per unit;
Y Number of non-defective items in a lot, a random variable;
θ The probability of defect, 0 < θ < 1;
x+ Maximum value of x and 0, i.e., x+ = max{x, 0};
x− Maximum value of −x and 0, i.e., x− = max{−x, 0};

I(0<X<r) =

{
1, 0 < x < r,
0, o.w.

2.2. Assumptions.

A1: Inventory is continuously reviewed. Replenishments are made whenever the inventory
level (based on the number of non-defective items) falls to the reorder point r.

A2: The reorder point r = expected demand during lead time + safety stock (SS), and

SS = k× (standard deviation of lead time demand), that is r = µ∗L+kσ∗
√
L, where
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µ∗ = pµ1 + (1 − p)µ2, σ∗ =
√

1 + p(1− p)η2σ, µ1 = µ∗ + (1− p)ησ
/√

L, µ2 = µ∗−

pησ
/√

L (i.e., µ1 − µ2 = ησ
/√

L, η ∈ R is given), and k is the safety factor which

satisfies P (X > r) = q.
A3: An arrival order may contain some defective units. We assume that the number of

non-defective units y in an arriving order of size Q be a binomial random variable
with parameters Q and 1 − θ, where θ represents the probability of defect. Upon
arrival of order, the entire items are inspected and defective units in each lot will be
returned to the vendor at the time of delivery of the next lot.

A4: The lead time L consists of n mutually independent components. The ith component
has a minimum duration ai, a normal duration bi and a crashing cost ci per unit time.
Furthermore, these ci are assumed to be arranged such that c1 ≤ c2 ≤ · · · ≤ cn.

A5: The components of the lead time are crashed one at a time, starting with the com-
ponent of least ci and so on.

A6: Let L0 ≡
∑n

j=1 bj and Li be the length of lead time with components 1, 2, · · ·, i
crashed to their minimum duration, then Li can be expressed as Li =

∑n
j=1 bj −∑i

j=1 (bj − aj). Thus, the lead time crashing cost R(L) per cycle for a given L ∈
[Li, Li−1] is given by R(L) = ci (Li−1 − L) +

∑i−1
j=1 cj (bj − aj).

3. Model Formulation.

3.1. The mixture of normal distributions model. The lead time demand X is as-
sumed to be a mixture of normal distributions F∗ = pF1 + (1 − p)F2, where Fi has

a normal distribution with finite mean µiL and standard deviation σ
√
L, i = 1, 2 and

µ1 − µ2 = ησ
/√

L, η ∈ R is given. Therefore, the lead time demand X has mixtures of

probability density function (p.d.f.) which is given by

f(x) = p
1√

2πσ
√
L
e−

1
2 [(x−µ1L)/σ

√
L]

2

+ (1− p)
1√

2πσ
√
L
e−

1
2 [(x−µ2L)/σ

√
L]

2

,

where µ1 − µ2 = ησ
/√

L, η ∈ R, x ∈ R, 0 ≤ p ≤ 1, σ > 0. Moreover, the mixture of

normal distributions is unimodal for all p if (µ1 − µ2)
2 < 27σ2/(8L)

(
or η <

√
27
8

)
(see

Everitt and Hand [4]).
As mentioned earlier, we assume that shortages are allowed and the reorder point is r =

µ∗L+kσ∗
√
L. Then the safety factor, k, satisfies P (X > r) = 1−pΦ(r1)−(1−p)Φ(r2) = q,

where Φ represents the cumulative distribution function (c.d.f.) of the standard normal
random variable, q represents the allowable stock-out probability during the lead time,
r1 = (r − µ1L)/(σ

√
L) = k

√
1 + p(1− p)η2 − (1 − p)η and r2 = (r − µ2L)/(σ

√
L) =

k
√
1 + p(1− p)η2 + pη.

The stock-out occurs as x > r and the shortage is x − r; then the expected demand
shortage at the end of the cycle is given by

B(r) = E[X − r]+ =

∫ ∞

r

(x− r)dF∗(x) = σ
√
LΨ(r1, r2, p), (1)

where Ψ(r1, r2, p) = p[φ(r1) − r1(1 − Φ(r1))] + (1 − p)[φ(r2) − r2(1 − Φ(r2))], r1 = (r −
µ1L) /(σ

√
L), r2 = (r − µ2L)

/
(σ
√
L) and φ, Φ be the standard normal p.d.f. and c.d.f.,

respectively (also see Ravindran et al. [18], Wu and Tsai [25]). For backorder rate β,
the expected number of backorders per cycle is βB(r), the expected lost sales per cycle
is (1− β)B(r), and the stock-out cost per cycle is [πxβ + π0(1− β)]B(r).
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The expected net inventory level just before the order arrives is E[(X − r)−I(0<X<r)]−
βB(r) and the expected net inventory level at the beginning of the cycle, given that there
are y non-defective items in an arriving order of size Q, is y+E[(X−r)−I(0<X<r)]−βB(r).

Therefore, the expected holding cost per cycle is h y
D

{
y
2
+ E[(X − r)−I(0<X<r)] −βB(r)}.

Hence, the cost per cycle given that there are y non-defective items in an arriving order
size Q is

C(y) = ordering cost + non-defective holding cost + stock-out cost
+ defective holding cost + inspecting cost + lead time crashing cost

= A+ h
y

D

{y

2
+ E[(X − r)−I(0<X<r)]− βB(r)

}
+[πxβ + π0(1− β)]B(r) + hc y

D
(Q− y) + vQ+R(L),

(2)

where

E[(X − r)−I(0<X<r)]− βB(r)
=

∫ r

0
(r − x)dF∗(x)

= σ
√
L
{
p
[
r1Φ

(
µ∗

√
L

σ
+ (1− p)η

)
− φ

(
µ∗

√
L

σ
+ (1− p)η

)]
+(1− p)

[
r2Φ

(
µ∗

√
L

σ
− pη

)
− φ

(
µ∗

√
L

σ
− pη

)]}
+ (1− β)B(r).

(3)

Because the expected length of the cycle time is E(T |Q) = E(Y |Q)
D

and the cycle cost
under the lot of size Q is

E(C|Q) = A+
h

2D
E(Y 2|Q) +

h

D
E(Y |Q)

{
E[(X − r)−I(0<X<r)]− βB(r)

}
+[πxβ + π0(1− β)]B(r) +

hcQ

D
E(Y |Q)− hc

D
E(Y 2|Q) + vQ+R(L),

(4)

the expected total annual cost is

EACN(Q,L) =
E(C|Q)

E(T |Q)

=
AD

E(Y |Q)
+

h

2

E(Y 2|Q)

E(Y |Q)
+ h

{
E[(X − r)−I(0<X<r)]− βB(r)

}
+[πxβ + π0(1− β)]

DB(r)

E(Y |Q)
+ hcQ− hcE(Y 2|Q)

E(Y |Q)

+
DvQ

E(Y |Q)
+

D

E(Y |Q)
R(L).

(5)

For a given lot of size Q, we assume that the number of non-defective units is a random
variable (Y ), which has a binomial distribution with parameter Q and 1− θ. That is, Y
has the binomial p.d.f. as

P (Y = y) = CQ
y (1− θ)yθQ−y, y = 0, 1, 2, · · ·, Q and 0 < θ < 1. (6)

In this case, we know that

E(Y |Q) = Q(1− θ) (7)

and

E(Y 2|Q) = Q(1− θ)[θ +Q(1− θ)]. (8)
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Therefore, substituting the results of (1), (3), (7) and (8) into (5), we get

EACN(Q,L) = AD
Q(1−θ)

+ h
2
[θ +Q(1− θ)] + hσ

√
L
{
p
[
r1Φ

(
µ∗

√
L

σ
+ (1− p)η

)
−φ

(
µ∗

√
L

σ
+ (1− p)η

)]
+ (1− p)

[
r2Φ

(
µ∗

√
L

σ
− pη

)
−φ

(
µ∗

√
L

σ
− pη

)]}
+ h(1− β)B(r) + [πxβ + π0(1− β)] DB(r)

Q(1−θ)

+hcθ(Q− 1) + Dv
1−θ

+ D
Q(1−θ)

R(L).

(9)

In the real market, as unsatisfied demands occur, the longer the length of lead time is,
the larger the amount of shortages is, the smaller the proportion of customers can wait,
and hence the smaller the backorder rate would be. In addition, the larger backorder price
discount is, and hence the larger the backorder rate would be. Therefore, we consider the
backorder rate that is proposed by combining Ouyang and Chuang [13] with Pan and
Hsiao [17] at the same time. Thus, we define the backorder rate to be β = πx

π0
· δ
1+εB(r)

,

where the backorder parameters δ and ε with 0 ≤ δ ≤ 1 and 0 ≤ ε < ∞. Hence, the total
expected annual cost (9) is express as

EACN(Q, πx, L)

= AD
Q(1−θ)

+ h
2
[Q(1− θ) + θ] + hσ

√
L
{
p
[
r1Φ

(
µ∗

√
L

σ
+ (1− p)η

)
− φ

(
µ∗

√
L

σ
+ (1− p)η

)]
+(1− p)

[
r2Φ

(
µ∗

√
L

σ
− pη

)
−φ

(
µ∗

√
L

σ
− pη

)] }
+ h

(
1− πx

π0

δ
1+εB(r)

)
B(r)

+ D
Q(1−θ)

π0

[
1− πx

π0

(
1− πx

π0

)
δ

1+εB(r)

]
B(r) + hcθ(Q− 1) + Dv

1−θ
+ D

Q(1−θ)
R(L)

= AD
Q(1−θ)

+ h
2
[Q(1− θ) + θ] + hσ

√
L
{
p
[
r1Φ

(
µ∗

√
L

σ
+ (1− p)η

)
− φ

(
µ∗

√
L

σ
+ (1− p)η

)]
+(1− p)

[
r2Φ

(
µ∗

√
L

σ
− pη

)
−φ

(
µ∗

√
L

σ
− pη

)] }
+ h

(
1− α1

1+εB(r)

)
B(r)

+ D
Q(1−θ)

π0

[
1− α2

1+εB(r)

]
B(r) + hcθ(Q− 1) + Dv

1−θ
+ D

Q(1−θ)
R(L),

(10)

where α1 =
πx

π0
δ, α2 =

πx

π0

(
1− πx

π0

)
δ, and B(r) = σ

√
L Ψ(r1, r2, p).

In order to find the minimum total expected annual cost, we can take the first partial
derivatives of EACN(Q, πx, L) with respect to Q, πx and L respectively, and we can obtain

∂EACN (Q,πx,L)
∂Q

= − AD
Q2(1−θ)

+ h
2
(1− θ)− D

Q2(1−θ)
π0

[
1− α2

1+εB(r)

]
B(r)

+hcθ − D
Q2(1−θ)

R(L),
(11)

∂EACN (Q,πx,L)
∂πx

= − h
π0

δ
1+εB(r)

B(r)− D
Q(1−θ)

(
1− 2πx

π0

)
δ

1+εB(r)
B(r), (12)

∂EACN (Q,πx,L)
∂L

= hσ
2
√
L

{
p
[
r1Φ

(
µ∗

√
L

σ
+ (1− p)η

)
− φ

(
µ∗

√
L

σ
+ (1− p)η

)]
+(1− p)

[
r2Φ

(
µ∗

√
L

σ
− pη

)
− φ

(
µ∗

√
L

σ
− pη

)]}
+hµ∗

2

{
p
(
r1 +

µ∗
√
L

σ
+ (1− p)η

)
φ
(

µ∗
√
L

σ
+ (1− p)η

)
+(1− p)

(
r2 +

µ∗
√
L

σ
− pη

)
φ
(

µ∗
√
L

σ
− pη

)}
+hB(r)

2L

(
1− α1

[1+εB(r)]2

)
+ Dπ0

Q(1−θ)
B(r)
2L

(
1− α2

[1+εB(r)]2

)
− D

Q(1−θ)
ci,

(13)

where α1 =
πx

π0
δ, α2 =

πx

π0

(
1− πx

π0

)
δ, and B(r) = σ

√
L Ψ(r1, r2, p).
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It is clear that for any given r1, r2 and p, we have Ψ(r1, r2, p) > 0. Hence, for fixed
L ∈ [Li, Li−1], EACN(Q, πx, L) is convex in Q and πx, since

∂2EACN (Q,πx,L)
∂Q2 = 2AD

Q3(1−θ)
+ 2D

Q3(1−θ)
π0

(
1− α2

1+εB(r)

)
B(r)

+ 2D
Q3(1−θ)

R(L) > 0,

∂2EACN (Q,πx,L)
∂π2

x
= 2D

Q(1−θ)π0

δ
1+εB(r)

B(r) > 0,

and

∂2EACN (Q,πx,L)
∂Q2 · ∂2EACN (Q,πx,L)

∂π2
x

−
[
∂2EACN (Q,πx,L)

∂Q∂πx

]2
= 4D2

Q4(1−θ)2π0

δ
1+εB(r)

B(r)[A+R(L)] + D2

Q4(1−θ)2π0

δ
1+εB(r)

[B(r)]2
(
4− δ

1+εB(r)

)2

> 0.

However, for fixed Q and πx, EACN(Q,L) is concave function of L ∈ [Li, Li−1], since

∂2EACN (Q,πx,L)
∂L2 = − hσ

4L3/2

{
p
[
r1Φ

(
µ∗

√
L

σ
+ (1− p)η

)
− φ

(
µ∗

√
L

σ
+ (1− p)η

)]
+(1− p)

[
r2Φ

(
µ∗

√
L

σ
− pη

)
− φ

(
µ∗

√
L

σ
− pη

)]}
−hµ∗p

4L
φ
(

µ∗
√
L

σ
+ (1− p)η

){
µ∗

√
L

σ

(
µ∗

√
L

σ
+ (1− p)η

)
×
(
r1 +

µ∗
√
L

σ
+ (1− p)η

)
−
(
r1 +

2µ∗
√
L

σ
+ (1− p)η

)}
−hµ∗(1−p)

4L
φ
(

µ∗
√
L

σ
− pη

){
µ∗

√
L

σ

(
µ∗

√
L

σ
− pη

)
×
(
r2 +

µ∗
√
L

σ
− pη

)
−

(
r2 +

2µ∗
√
L

σ
− pη

)}
− h

4L2

B(r){(1−α1)[1+3εB(r)]+3[εB(r)]2+[εB(r)]3}
[1+εB(r)]3

− Dπ0

Q(1−θ)

B(r){(1−α2)[1+3εB(r)]+3[εB(r)]2+[εB(r)]3}‘
4L2[1+εB(r)]3

< 0, if min
{

µ∗
√
L

σ
+ (1− p)η , µ∗

√
L

σ
− pη

}
>

√
2.

Therefore, for fixed Q and πx, the minimum expected total annual cost will occur at the
end points of the interval [Li, Li−1]. Solving for Q and πx by setting Equations (11) and
(12) to zero, we have

Q=
{

2D
(1−θ)[h (1−θ)+2hcθ]

{
A+R(L) + π0

[
1− πx

π0

(
1− πx

π0

)
δ

1+εB(r)

]
B(r)

}} 1
2 (14)

and
πx = 1

2

[
hQ(1−θ)

D
+ π0

]
. (15)

Substituting the result of (15) into (14), we can rewrite (14) as

Q =

 2D
{
A+R(L) + π0

[
1− 1

4

(
δ

1+εB(r)

)]
B(r)

}
h(1− θ)2

[
1− h

2Dπ0

δ
1+εB(r)

B(r)
]
+ 2hcθ(1− θ)


1
2

. (16)

Thus, we can establish the following iterative algorithm to find the optimal order quantity,
backorder price discount and lead time.

Algorithm 3.1.

Step 1. For given A, D, h, hc, v, σ, π0, η, p, q, ε, δ, θ, ai, bi, ci, and i = 1, 2, · · ·, n.
Step 2. Given η, p and q, using the computer software Intel Visual Fortran V9.0 [8] and

the subroutine ZREAL from IMSL to solve k via the equation 1 − pΦ(r1) −
(1 − p)Φ(r2) = q where r1 = k ·

√
1 + p(1− p)η2 − η(1 − p) and r2 = k ·√

1 + p(1− p)η2 + ηp. Further, we obtain r1 and r2.
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Step 3. Given ai, bi and ci, i = 1, 2, · · ·, n, use assumption A6 and Equation (1) to compute
Li and B(r), respectively.

Step 4. For each Li, i = 0, 1, 2, · · ·, n, use Equation (16) to compute Qi. Then, πxi
can be

computed by using Equation (15).
Step 5. Compare πxi

and π0. If πxi
< π0, then πxi

in Step 4 is optimal; if πxi
≥ π0, then

take πxi
= π0 into Step 6.

Step 6. For each pair (Qi, πxi
, Li), compute the corresponding expected total annual cost

EACN(Qi, πxi
, Li), i = 1, 2, · · ·, n.

Step 7. Find min
i=0,1,···,n

EACN(Qi, πxi
, Li).

If EACN(Qs, πxs , Ls) = min
i=0,1,···,n

EACN(Qi, πxi
, Li), then (Qs, πxs , Ls) is the opti-

mal solution.

3.2. The mixture of distributions free model. In this subsection, we relax the re-
striction about the form of the mixture of d.f.s of lead time demand, i.e., we assume here
that the lead time demand X has a mixture of d.f.s F∗ = pF1 + (1− p)F2, where Fi has

finite mean µiL and standard deviation σ
√
L, i = 1, 2, µ1 − µ2 = ησ

/√
L, η ∈ R, but we

make no assumption on the mixtures of d.f.’s form of F∗. Now, we try to use a minimax
distribution free procedure to solve this problem. Let Ω denote the class of all single
c.d.f. (include F1 and F2) with finite mean and standard deviation, then the minimax
distribution free approach for our problem is to find the most unfavorable c.d.f.s F1 and
F2 in Ω for each decision variable and then to minimize over the decision variables. Thus,
our problem is to solve

min
Q>0, πx>0, L>0

max
F1, F2∈Ω

EACF (Q, πx, L), (17)

where

EACF (Q, πx, L) = AD
Q(1−θ)

+ h
2
[Q(1− θ) + θ] + h

[
kσ∗

√
L+ (1− β)B(r)

]
+ DB(r)

Q(1−θ)
[πxβ + π0(1− β)] + hcθ(Q− 1) + Dv

1−θ
+ DR(L)

Q(1−θ)
,

β = πx

π0
· δ
1+εB(r)

and B(r) = E(X − r)+.

In addition, we need the following Proposition 3.1 to solve the above problem of the
model (17).

Proposition 3.1. (Gallego and Moon [5]): For F1 and F2 ∈ Ω,

E(Xi − r)+ ≤ 1

2

{√
σ2L+ (r − µiL)2 − (r − µiL)

}
, i = 1, 2, (18)

where random variables Xi has a single distribution function Fi, i = 1, 2. Moreover, the
upper bound of (18) is tight.

So, by using F∗ = pF1 + (1− p)F2 and inequality (18), we obtain

B(r) =
∫∞
r

(x− r)dF∗ = p
∫∞
r

(x− r)dF1 + (1− p)
∫∞
r

(x− r)dF2

≤ p · 1
2

{√
σ2L+ (r − µ1L)2 − (r − µ1L)

}
+(1− p) · 1

2

{√
σ2L+ (r − µ2L)2 − (r − µ2L)

}
= 1

2
(µ∗L− r) + p

2

[√
σ2L+ (r − µ1L)2

]
+ (1−p)

2

[√
σ2L+ (r − µ2L)2

]
,

where

r − µ1L = r − µ∗L− (1− p)ησ
√
L = kσ∗L− (1− p)ησ

√
L



COMPUTATIONAL PROCEDURE OF OPTIMAL INVENTORY MODEL 8463

and

r − µ2L = r − µ∗L+ pησ
√
L = kσ∗L+ pησ

√
L

(
∵ µ1 − µ2 =

ησ√
L

)
.

Then

B(r) ≤ 1
2

[
−k

√
1 + p(1− p)η2σ

√
L
]
+ p

2
σ
√
L

[√
1 + [k

√
1 + p(1− p)η2 − (1− p)η]2

]
+ (1−p)

2
σ
√
L

[√
1 + [k

√
1 + p(1− p)η2 + pη]2

]
.

(19)
From the definition of the backorder rate β and inequality (19), we have

β =
{

πx

π0

δ
1+εB(r)

}
≥ πx

π0
δ ·

{
1 + ε

{
1
2

(
−k

√
1 + p(1− p)η2σ

√
L
)

+p
2
σ
√
L

[√
1 +

[
k
√

1 + p(1− p)η2 − (1− p)η
]2]

+1−p
2
σ
√
L

[√
1 +

[
k
√

1 + p(1− p)η2 + pη
]2] } }−1

,

(20)

where 0 ≤ δ ≤ 1, 0 ≤ ε ≤ ∞, 0 ≤ p ≤ 1, and σ > 0.
By using the inequality (19), the model (17) can be reduced to

min
Q>0, πx>0, L>0

EACU(Q, πx, L) , (21)

where

EACU(Q, πx, L) = AD
Q(1−θ)

+ h
[
Q(1−θ)+θ

2
+ k

√
1 + p(1− p)η2σ

√
L

+
(
1− πx

π0

δ
1+∆U (L)

)(
∆U (L)

ε

)]
+ D

Q(1−θ)
π0

[
1− πx

π0

(
1− πx

π0

)
δ

1+∆U (L)

] (
∆U (L)

ε

)
+hcθ(Q− 1) + Dv

1−θ
+ D

Q(1−θ)
R(L),

∆U(L) = ε ·
{

1
2

[
−k

√
1 + p(1− p)η2σ

√
L
]

+p
2
σ
√
L

[√
1 + [k

√
1 + p(1− p)η2 − (1− p)η]2

]
+ (1−p)

2
σ
√
L

[√
1 + [k

√
1 + p(1− p)η2 + pη]2

]} (22)

and EACU(Q,L) and ∆U(L)/ε are the upper bound for EACF (Q,L)and B(r). Moreover,
the upper bounds are tight, since the upper bound of (18) is tight.

Taking the partial derivatives of EACU(Q, πx, L) with respect to Q, πx and L, we
obtain

∂EACU (Q,πx,L)
∂Q

= − AD
Q2(1−θ)

+ h
2
(1− θ)− D

Q2(1−θ)
π0

(
1− α2

1+∆U (L)

)(
∆U (L)

ε

)
+hcθ − D

Q2(1−θ)
R(L),

(23)

∂EACU (Q,πx,L)
∂πx

= − h
π0

δ
1+∆U (L)

(
∆U (L)

ε

)
− D

Q(1−θ)

(
1− 2πx

π0

)(
δ

1+∆U (L)
∆U (L)

ε

)
,

(24)
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and
∂EACU (Q,πx,L)

∂L
= hk

2
√
L

[√
1 + p(1− p)η2σ

]
+ h

(
∆U (L)
2εL

)(
1− α1

[1+∆U (L)]2

)
+ Dπ0

Q(1−θ)

(
∆U (L)
2εL

)(
1− α2

[1+∆U (L)]2

)
− D

Q(1−θ)
ci.

Since B(r) is the expected shortage quantity at the end of cycle, we know that B(r) > 0
if shortages occur; B(r) = 0, otherwise. It is clear that B(r) is positive. By examining the
second-order sufficient conditions (SOSCs), it can be easily verified that EACU(Q, πx, L)
is a convex in Q and πx, since

∂2EACU (Q,πx,L)
∂Q2 = 2AD

Q3(1−θ)
+ 2D

Q3(1−θ)
π0

(
1− α2

1+∆U (L)

)(
∆U (L)

ε

)
+ 2D

Q3(1−θ)
R(L) > 0,

∂2EACU (Q,πx,L)
∂π2

x
= 2D

Q(1−θ)π0

δ
1+∆U (L)

(
∆U (L)

ε

)
> 0,

and
∂2EACU (Q,πx,L)

∂Q2 · ∂2EACU (Q,πx,L)
∂π2

x
−

[
∂2EACU (Q,πx,L)

∂Q∂πx

]2
= 4D2

Q4(1−θ)2π0

δ
1+∆U (L)

(
∆U (L)

ε

)
[A+R(L)]

+ D2

Q4(1−θ)2
δ

1+∆U (L)

(
∆U (L)

ε

)2 [
4− δ

1+∆(L)

]
> 0.

However, for fixed Q and πx, EACU(Q, πx, L) is concave in L ∈ [Li, Li−1] because

∂2EACU (Q,πx,L)
∂L2 = − hk

4L3/2 [
√
1 + p(1− p)η2σ]

−h∆U (L)
4εL2

{
(1−α1)[1+3∆U (L)]+3 [∆U (L)]

2
+[∆U (L)]

3

[1+∆U (L)]3

}
− Dπ0

Q(1−θ)
∆U (L)
4εL2

{
(1−α2)[1+3∆U (L)]+3[∆U (L)]

2
+[∆U (L)]

3

[1+∆U (L)]3

}
< 0.

Therefore, for fixed Q and πx, the minimum expected total annual cost will occur at the
end points of the interval L ∈ [Li, Li−1]. Solving for Q and πx by setting Equations (23)
and (24) to zero, we have

Q =
{

2D
(1−θ)[h(1−θ)+2hcθ]

(
A+R(L)

+π0

[
1− πx

π0

(
1− πx

π0

)
δ

1+∆U (L)

] (
∆U (L)

ε

))} 1
2
,

(25)

and
πx = 1

2

(
hQ(1−θ)

D
+ π0

)
, (26)

where ∆U(L) is expressed as Equation (22).
Substituting (26) into (25), Q can be rewritten as

Q =

2D
[
A+R(L) + π0

(
1− 1

4

(
δ

1+∆U (L)

))(
∆U (L)

ε

)]
h(1− θ)2

(
1− h

2π0D
δ

1+∆U (L)
∆U (L)

ε

)
+ 2hcθ(1− θ)


1
2

. (27)

In practice, since the d.f. F∗ of the lead time demand X is unknown, even if the value
of q is given, we cannot get the exact value of safety factor k. Thus, in order to find the
value of k, we need the following proposition.

Proposition 3.2. (Ouyang and Wu [14]): Let Y be a random variable which has a

p.d.f. fY (y) with finite mean µL and standard deviation σ
√
L (> 0), the for any real

number d > µL,
P (Y > d) ≤ σ2L

σ2L+(d−µL)2
. (28)
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So, by using F∗ = pF1 + (1 − p)F2, the recorder point r = µ∗L + kσ∗
√
L and the

Proposition 3.2, we get

P (X > r) ≤ p σ2L
σ2L+(r−µ1L)2

+ (1− p) σ2L
σ2L+(r−µ2L)2

= p

1+
[
k
√

1+p(1−p)η2−(1−p)η
]2 + 1−p

1+
[
k
√

1+p(1−p)η2+pη
]2 (29)

Further, it is assumed that the allowable stock-out probability q during lead time is given,

that is, q = P (X > r), then from Equation (29), we get 0 ≤ k ≤
√

1
q
− 1 + |η|. It is easy

to verify that EACU(Q, πx, L) has a smooth curve for 0 ≤ k ≤
√

1
q
− 1 + |η|. Hence, we

can establish the following algorithm to obtain the suitable k and hence the optimal Q,
πx and L can be obtained.

Algorithm 3.2.

Step 1. For given A, D, h, hc, v, σ, π0, η, p, q, δ, ε, θ, ai, bi, ci, and i = 1, 2, · · ·, n.
Step 2. Given η and q, we divide the interval

[
0,
√

1
q
− 1 + |η|

]
into m equal subintervals,

where m is large enough. Let k0 = 0, km =
√

1
q
− 1+ |η|, then kj = kj−1 +

km−k0
m

,

j = 1, 2, · · ·,m− 1 can be obtained.
Step 3. Given ai, bi and ci, use assumption A6 to compute Li, i = 1, 2, · · ·, n.
Step 4. For each Li, i = 1, 2, · · ·, n, compute Qi,kj by using Equation (27) for given kj,

j = 0, 1, 2, · · ·,m. Then, πxi,kj
can be computed by using Equation (26).

Step 5. Compare πxi,kj
and π0. If πxi,kj

< π0, then πxi,kj
in Step 4 is optimal; if πxi,kj

≥ π0,

then take πxi,kj
= π0 into Step 6.

Step 6. For each (Qi,kj , πxi,kj
, Li) and kj, the corresponding expected total annual cost

EACU(Qi,kj , πxi,kj
, Li), i = 1, 2, · · ·, n and j = 0, 1, · · ·,m can be computed.

Step 7. Find min
kj∈{k0,k1,··· ,km}

EACU(Qi,kj , πxi,kj
, Li) and let

EACU(Qi,ks(i) , πxi,ks(i)
, Li) = min

kj∈{k0,k1,···,km}
EACU(Qi,kj , πxi,kj

, Li),

then find min
i=0,1,···,n

EACU(Qi,ks(i) , πxi,ks(i)
, Li). If

EACU(Qf , πxf
, Lf ) = min

i=0,1,···,n
EACU(Qi,ks(i) , πxi,ks(i)

, Li),

then (Qf , πxf
, Lf ) is the optimal solution.

4. Numerical Examples. In order to illustrate the above solution procedure, we con-
sider an inventory system with the following data: D = 600 units/year, A = $200 per
order, h = $20, hc = $12, v = $1.6, π = $50, π0 = $150, µ∗ = 11 units/week, σ = 7
units/week, θ = 0.00, 0.15, 0.30, 0.45, ε = 0, 2, 100,∞ (backorder case), q = 0.2 and the
lead time has three components with shown in Table 1.

Table 1. Lead time data

Lead time component Normal duration Minimum duration Unit crashing cost
i bi (days) ai (days) ci ($/days)
1 20 6 0.4
2 20 6 1.2
3 16 9 5.0
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Example 4.1. We assume here that the lead time demand follows a mixture of normal
distributions and want to solve the case when η = 0.7, p = 0, 0.4, 0.8, 1, ε = 0, 2, 100,∞,
θ = 0.00, 0.15, 0.30, 0.45 and δ = 1.0, 0.6. A summary of these optimal results is presented
in (Qs, πxs , Ls) and EACN(Qs, πxs , Ls) of Tables 2 and 3. From Tables 2 and 3, for fixed
p, defective rate θ and δ = 0.6, 1.0, we can get the order quantity Qs, the backorder price
discount πxs and the minimum expected total annual cost EACN(Qs, πxs , Ls) decrease as
ε decreases (i.e., the backorder rate β increases ); the order quantity Qs, the backorder
price discount πxs and the minimum expected total annual cost EACN(Qs, πxs , Ls) de-
crease as δ increases for fixed p, defective rate θ and ε. Moreover, for fixed p, ε and
δ = 0.6, 1.0, the backorder price discount πxs decreases, the order quantity Qs and the
minimum expected total annual cost EACN(Qs, πxs , Ls) increase as θ increases. For fixed
ε, defective rate θ and δ = 0.6, 1.0, when p = 0 or 1, the model considers only one kind
of customers’ demand; when 0 < p < 1, the model considers two kinds of customers’
demand. It implies that EACN(Qs, πxs , Ls) of two kinds of customers’ demand are larger
than EACN(Qs, πxs , Ls) of one kind of customers’ demand. Thus, the minimum expected
total annual cost EACN(Qs, πxs , Ls) increases as the distance between p and 0 (or 1) in-
creases for fixed ε and defective rate θ. Hence, if the true distribution of the lead time
demand is mixture of normal distribution, the minimum expected total annual cost will
be underestimated for treating a single normal distribution as the true distribution of the
lead time demand. In addition, no matter what values of p and θ, the optimal lead time
Ls is approached to 3 weeks for δ= 0.6, 1.0 and ε = 2, 100,∞; the optimal lead time Ls

is approached to 4 weeks for δ = 1.0 and ε = 0.

Example 4.2. We consider the inventory problem with the same parameters as those
in Example 4.1. We assume here that the probability distribution of the lead time de-
mand is mixture of free distributions. By using the proposed Algorithm 3.2 and setting
m = 500, the optimal results are summarized in (Qf , πxf

, Lf ) and EACU(Qf , πxf
, Lf ) of

Tables 2 and 3. From Tables 2 and 3, when η = 0.7, for fixed p, defective rate θ and
δ = 0.6, 1.0, we can get the order quantity Qf , the backorder price discount πxf

and the

minimum expected total annual cost EACU(Qf , πxf
, Lf ) decrease as ε decreases (i.e., the

backorder rate β increases ); the order quantity Qf , the backorder price discount πxf
and

the minimum expected total annual cost EACU(Qf , πxf
, Lf ) decrease as δ increases for

fixed p, defective rate θ and ε. Moreover, for fixed p, ε and δ = 0.6, 1.0, the backorder
price discount πxf

decreases, the order quantity Qf and the minimum expected total an-

nual cost EACU(Qf , πxf
, Lf ) increase as θ increases; the minimum expected total annual

cost EACU(Qf , πxf
, Lf ) increases and then decreases as p increases for fixed ε, θ and

δ = 0.6, 1.0. In addition, no matter what values of p, ε and θ, the optimal lead time
Lf is approached to 3 weeks for δ = 0.6, 1.0. Finally, the expected total annual cost
EACN(Qf , πxf

, Lf ) is obtained by substituting Qf , πxf
and Lf into Equation (10) which

is the mixture of normal distributions model. The expected value of additional information
(EVAI) is the largest amount that one is willing to pay for the knowledge of F1 and F2 and
is equal to EACN(Qf , πxf

, Lf ) − EACN(Qs, πxs , Ls). From Tables 2 and 3, we observe
that for fixed p and ε, EVAI increases as θ increases. Moreover, we also observe that for
fixed θ and ε = 2, 100,∞ and, EVAI increases and then decreases as p increases when
δ = 1.0 and 0.6; for fixed θ and ε = 0, EVAI increases and then decreases as p increases
when δ = 0.6; for fixed θ and ε = 0, EVAI decreases and then increases as p increases
when δ = 1.0.

Example 4.3. From Figure 1, we have the density plot of the fictitious demand data set
from Hastie et al. [6, p.237], which contains 20 past data = {−0.39, 0.12, 0.94, 1.67, 1.76,
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Table 2. Summary of the optimal solution procedure (Li in weeks and
η = 0.7, δ = 1.0)

ε θ (Qf , πxf
, Lf ) EACU(f) EACN(f) (Qs, πxs , Ls) EACN(s) EVAI CP

p = 0.0 (or 1)
∞

0.00 (160.,77.674,3) 4811.220 4515.343 (166.,77.770,3) 4513.274 2.069 1.0005
0.15 (170.,77.405,3) 5302.093 5021.259 (178.,77.517,3) 5017.471 3.788 1.0008
0.30 (184.,77.151,3) 5955.979 5694.775 (193.,77.251,3) 5690.541 4.234 1.0007
0.45 (205.,76.880,3) 6892.579 6658.185 (215.,76.968,3) 6653.341 4.844 1.0007

100
0.00 (160.,77.673,3) 4809.729 4513.900 (166.,77.769,3) 4511.829 2.071 1.0005
0.15 (170.,77.404,3) 5300.447 5019.684 (178.,77.515,3) 5015.891 3.792 1.0008
0.30 (184.,77.150,3) 5954.150 5693.026 (193.,77.250,3) 5688.787 4.240 1.0007
0.45 (205.,76.879,3) 6890.501 6656.198 (215.,76.967,3) 6651.349 4.850 1.0007

2
0.00 (158.,77.636,3) 4758.488 4461.697 (164.,77.729,3) 4459.756 1.941 1.0004
0.15 (167.,77.370,3) 5244.783 4962.560 (175.,77.479,3) 4958.940 3.620 1.0007
0.30 (182.,77.118,3) 5892.346 5629.802 (190.,77.217,3) 5625.554 4.248 1.0008
0.45 (202.,76.851,3) 6820.289 6584.395 (211.,76.938,3) 6579.536 4.859 1.0007

0
0.00 (156.,77.601,3) 4624.543 4310.958 (155.,77.576,4) 4301.933 9.025 1.0021
0.15 (165.,77.340,3) 5106.696 4796.495 (165.,77.341,4) 4782.701 13.794 1.0029
0.30 (177.,77.071,3) 5747.255 5445.984 (179.,77.094,4) 5425.603 20.381 1.0038
0.45 (195.,76.787,3) 6659.351 6377.313 (200.,76.830,4) 6347.197 30.116 1.0047

p = 0.4
∞

0.00 (160.,77.670,3) 4821.562 4574.607 (168.,77.807,3) 4570.345 4.262 1.0009
0.15 (169.,77.401,3) 5311.963 5085.774 (180.,77.550,3) 5079.031 6.744 1.0013
0.30 (183.,77.135,3) 5963.355 5766.992 (196.,77.281,3) 5757.877 9.115 1.0016
0.45 (204.,76.866,3) 6895.749 6738.994 (218.,76.994,3) 6728.566 10.427 1.0015

100
0.00 (160.,77.668,3) 4820.069 4573.184 (168.,77.806,3) 4568.917 4.267 1.0009
0.15 (169.,77.400,3) 5310.314 5084.221 (180.,77.549,3) 5077.469 6.752 1.0013
0.30 (183.,77.134,3) 5961.515 5765.271 (195.,77.280,3) 5756.144 9.126 1.0016
0.45 (203.,76.865,3) 6893.658 6737.039 (217.,76.993,3) 6726.598 10.440 1.0016

2
0.00 (158.,77.632,3) 4768.878 4520.731 (166.,77.766,3) 4516.654 4.077 1.0009
0.15 (167.,77.367,3) 5254.708 5026.833 (177.,77.512,3) 5020.315 6.518 1.0013
0.30 (180.,77.102,3) 5900.065 5701.841 (193.,77.248,3) 5692.691 9.149 1.0016
0.45 (200.,76.837,3) 6823.844 6665.009 (214.,76.965,3) 6654.542 10.467 1.0016

0
0.00 (156.,77.596,3) 4636.205 4358.567 (157.,77.611,4) 4357.754 0.813 1.0002
0.15 (165.,77.336,3) 5117.845 4848.156 (167.,77.372,4) 4842.702 5.454 1.0011
0.30 (177.,77.067,3) 5757.828 5502.889 (182.,77.122,4) 5490.986 11.902 1.0022
0.45 (195.,76.786,3) 6669.254 6441.323 (202.,76.855,4) 6419.929 21.394 1.0033

p = 0.8
∞

0.00 (160.,77.673,3) 4817.024 4542.023 (167.,77.785,3) 4539.179 2.844 1.0006
0.15 (170.,77.402,3) 5307.667 5050.163 (179.,77.530,3) 5045.212 4.951 1.0010
0.30 (183.,77.140,3) 5959.683 5727.169 (194.,77.263,3) 5720.646 6.523 1.0011
0.45 (204.,76.870,3) 6893.276 6694.135 (216.,76.979,3) 6686.672 7.463 1.0011

100
0.00 (160.,77.671,3) 4815.532 4540.646 (167.,77.784,3) 4537.741 2.905 1.0006
0.15 (170.,77.401,3) 5306.020 5048.597 (179.,77.529,3) 5043.640 4.957 1.0010
0.30 (183.,77.139,3) 5957.846 5725.431 (194.,77.263,3) 5718.899 6.532 1.0011
0.45 (204.,76.869,3) 6891.189 6692.162 (216.,76.978,3) 6684.689 7.473 1.0011

2
0.00 (158.,77.634,3) 4764.315 4488.330 (165.,77.744,3) 4485.583 2.747 1.0006
0.15 (167.,77.368,3) 5250.383 4991.352 (176.,77.493,3) 4986.597 4.755 1.0010
0.30 (181.,77.107,3) 5896.291 5662.111 (191.,77.230,3) 5655.567 6.544 1.0012
0.45 (201.,76.841,3) 6821.257 6620.253 (213.,76.949,3) 6612.767 7.486 1.0011

0
0.00 (156.,77.599,3) 4630.977 4332.924 (155.,77.591,4) 4328.219 4.705 1.0011
0.15 (165.,77.338,3) 5112.887 4820.124 (166.,77.353,4) 4810.696 9.428 1.0020
0.30 (177.,77.069,3) 5753.170 5471.729 (180.,77.105,4) 5455.800 15.929 1.0029
0.45 (195.,76.787,3) 6664.941 6405.974 (201.,76.840,4) 6380.400 25.573 1.0040

Note: EACU (Qf , πxf
, Lf ), EACN (Qf , πxf

, Lf ) and EACN (Qs, πxs , Ls) will be denoted by the symbol EACU (f),

EACN(f) and EACN(s), respectively.
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Table 3. Summary of the optimal solution procedure (Li in weeks and
η = 0.7, δ = 0.6)

ε θ (Qf , πxf
, Lf ) EACU(f) EACN(f) (Qs, πxs , Ls) EACN(s) EV AI CP

p = 0.0 (or 1)
∞

0.00 (160.,77.674,3) 4811.220 4515.343 (166.,77.770,3) 4513.274 2.069 1.0005
0.15 (170.,77.405,3) 5302.093 5021.259 (178.,77.517,3) 5017.472 3.788 1.0008
0.30 (184.,77.151,3) 5955.979 5694.775 (193.,77.251,3) 5690.542 4.234 1.0007
0.45 (205.,76.880,3) 6892.579 6658.185 (215.,76.968,3) 6653.341 4.844 1.0007

100
0.00 (160.,77.673,3) 4810.326 4514.478 (166.,77.770,3) 4512.407 2.070 1.0005
0.15 (170.,77.404,3) 5301.105 5020.314 (178.,77.516,3) 5016.523 3.791 1.0008
0.30 (184.,77.150,3) 5954.881 5693.726 (193.,77.251,3) 5689.489 4.237 1.0007
0.45 (205.,76.880,3) 6891.333 6656.993 (215.,76.967,3) 6652.146 4.848 1.0007

2
0.00 (159.,77.652,3) 4779.676 4483.236 (165.,77.745,3) 4481.253 1.983 1.0004
0.15 (168.,77.383,3) 5267.812 4986.186 (176.,77.494,3) 4982.452 3.734 1.0007
0.30 (183.,77.131,3) 5917.911 5655.902 (191.,77.231,3) 5651.660 4.242 1.0008
0.45 (203.,76.863,3) 6849.333 6614.038 (213.,76.950,3) 6609.185 4.853 1.0007

0
0.00 (158.,77.631,3) 4703.019 4393.667 (161.,77.677,3) 4393.190 0.477 1.0001
0.15 (167.,77.366,3) 5188.804 4887.446 (172.,77.432,3) 4886.129 1.316 1.0003
0.30 (179.,77.094,3) 5833.854 5547.595 (185.,77.154,4) 5542.318 5.277 1.0010
0.45 (199.,76.825,3) 6754.009 6491.549 (205.,76.883,4) 6479.796 11.752 1.0018

p = 0.4
∞

0.00 (160.,77.670,3) 4821.562 4574.607 (168.,77.807,3) 4570.345 4.262 1.0009
0.15 (169.,77.401,3) 5311.963 5085.774 (180.,77.550,3) 5079.031 6.744 1.0013
0.30 (183.,77.135,3) 5963.355 5766.992 (196.,77.281,3) 5757.877 9.115 1.0016
0.45 (204.,76.866,3) 6895.749 6738.994 (218.,76.994,3) 6728.566 10.428 1.0015

100
0.00 (160.,77.669,3) 4820.667 4573.753 (168.,77.807,3) 4569.489 4.265 1.0009
0.15 (169.,77.400,3) 5310.974 5084.843 (180.,77.550,3) 5078.094 6.749 1.0013
0.30 (183.,77.134,3) 5962.251 5765.959 (195.,77.281,3) 5756.837 9.122 1.0016
0.45 (204.,76.866,3) 6894.494 6737.821 (217.,76.994,3) 6727.386 10.435 1.0016

2
0.00 (159.,77.647,3) 4790.047 4542.356 (167.,77.782,3) 4538.220 4.136 1.0009
0.15 (168.,77.381,3) 5277.715 5050.490 (178.,77.528,3) 5043.899 6.591 1.0013
0.30 (181.,77.115,3) 5925.493 5728.011 (194.,77.261,3) 5718.876 9.135 1.0016
0.45 (202.,76.849,3) 6852.734 6694.729 (216.,76.976,3) 6684.278 10.451 1.0016

0
0.00 (158.,77.627,3) 4714.091 4445.963 (163.,77.710,3) 4444.416 1.547 1.0003
0.15 (167.,77.363,3) 5199.381 4944.326 (174.,77.462,3) 4941.306 3.020 1.0006
0.30 (179.,77.091,3) 5843.875 5610.358 (189.,77.202,3) 5604.966 5.392 1.0010
0.45 (198.,76.812,3) 6761.593 6563.188 (210.,76.925,3) 6554.910 8.278 1.0013

p = 0.8
∞

0.00 (160.,77.673,3) 4817.024 4542.023 (167.,77.785,3) 4539.179 2.844 1.0006
0.15 (170.,77.402,3) 5307.667 5050.163 (179.,77.530,3) 5045.212 4.951 1.0010
0.30 (183.,77.140,3) 5959.683 5727.169 (194.,77.263,3) 5720.646 6.523 1.0011
0.45 (204.,76.870,3) 6893.276 6694.135 (216.,76.979,3) 6686.672 7.463 1.0011

100
0.00 (160.,77.672,3) 4816.129 4541.163 (167.,77.785,3) 4538.316 2.847 1.0006
0.15 (170.,77.402,3) 5306.679 5049.224 (179.,77.530,3) 5044.269 4.955 1.0010
0.30 (183.,77.139,3) 5958.581 5726.126 (194.,77.263,3) 5719.598 6.528 1.0011
0.45 (204.,76.870,3) 6892.024 6692.952 (216.,76.978,3) 6685.483 7.469 1.0011

2
0.00 (159.,77.649,3) 4785.494 4509.908 (166.,77.761,3) 4507.111 2.796 1.0006
0.15 (168.,77.382,3) 5273.403 5014.960 (177.,77.508,3) 5010.142 4.818 1.0010
0.30 (182.,77.120,3) 5921.759 5688.245 (192.,77.243,3) 5681.709 6.536 1.0012
0.45 (202.,76.853,3) 6850.192 6649.932 (214.,76.961,3) 6642.456 7.477 1.0011

0
0.00 (158.,77.630,3) 4709.173 4417.542 (161.,77.690,3) 4416.699 0.843 1.0002
0.15 (167.,77.365,3) 5194.721 4913.179 (173.,77.444,3) 4911.254 1.925 1.0004
0.30 (179.,77.092,3) 5839.502 5575.743 (187.,77.186,3) 5571.908 3.835 1.0007
0.45 (198.,76.816,3) 6757.859 6523.670 (207.,76.894,4) 6515.573 8.097 1.0012

Note: EACU (Qf , πxf
, Lf ), EACN (Qf , πxf

, Lf ) and EACN (Qs, πxs , Ls) will be denoted by the symbol EACU (f),

EACN (f) and EACN (s), respectively.
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2.44, 3.72, 4.28, 4.92, 5.53, 0.06, 0.48, 1.01, 1.68, 1.80, 3.25, 4.12, 4.60, 5.28, 6.22}.We assume
that the past data set (except the first data) is demand data with unit lead time (i.e.,
L = 1 week). Due to the apparent bi-modality, a single normal distribution would not
be appropriate. So, we use a model of mixture of two normal distributions to fit the 19
demand data and assume that the parameters of the mixture of two normal distributions
for the lead time demand are unknown. The maximum likelihood (ML) method is the most
popular technique for deriving estimators of these parameters. That is, we directly take
derivatives with respect to these parameters of this likelihood functions based on the ML
method and use them to find the maximum. It turns out that these equations can become
quite difficult since these equations are nonlinear and no analytic solutions can be found.
Hence, we use an easier algorithm that is guaranteed to converge to the ML estimators.
The algorithm is called expectation maximization (EM) algorithm which was introduced
by Hastie et al. [6] and used to obtain the estimates of unknown parameters µ1, µ2, σ
and p of the mixture of normal distributions for the lead time demand. Then, we obtain
µ̂1 = 1.21, µ̂2 = 4.64, σ̂ = 1.18 and p̂ = 0.53. Second, we also obtain that µ∗ = 2.8221,

η ≈ −3.0 and σ∗ ≈ 2.12 via the equations µ∗ = pµ1 + (1 − p)µ2, µ1 − µ2 = ησ
/√

L

and σ∗ =
√
1 + p(1− p)η2σ, respectively. Next, we consider the case when µ∗ = 2.8221,

σ = 1.18, η = −3.0, p = 0.53 and the other data is the same as Example 4.1. Besides,
we also consider the situation that the data is modelled as a single normal distribution.
In this situation, we take µ∗ = 2.8221, σ∗ = 2.12, p = 0 and the other data is the same
as Example 4.1. From Tables 4 and 5, we find that (i) the optimal solution is similar
between the two cases; (ii) the minimum expected total annual cost will be overestimated
by modelling the lead time demand data as a single normal distribution, when the lead
time demand data follows a mixture of two normal distributions.

5. Concluding Remarks. This article proposed two cases for the inventory problem
involving controllable backorder rate with defective units. In the real market as shortages
occur as unsatisfied demands occur, the longer the length of lead time is, the smaller
the proportion of backorder would be; the higher the backorder price discount is, the

Figure 1. Density plot for demand data set. Solid curve denotes maximum
likelihood fit of mixture of normal densities and dash curve presents fit of
a single normal density.
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Table 4. Summary of the optimal solution procedure (Li in weeks and δ = 0.6)

Mixture of two normal distributions Single normal distribution
ε θ (Q∗, πx∗ , L∗) EAC(Q∗, πx∗ , L∗) (Q′, π′

x, L
′) EAC(Q′, π′

x, L
′)

p = 0.53 p = 0
∞ 0.00 (127, 77.118, 6) 3612.492 (133, 77.211, 4) 3694.444

0.15 (136, 76.924, 6) 4037.756 (142, 77.009, 4) 4131.045
0.30 (148, 76.721, 6) 4609.215 (154, 76.797, 4) 4717.098
0.45 (164, 76.504, 6) 5433.250 (171, 76.571, 4) 5561.063

100 0.00 (127, 77.117, 6) 3611.395 (133, 77.211, 4) 3693.388
0.15 (136, 76.923, 6) 4036.554 (142, 77.008, 4) 4129.889
0.30 (147, 76.720, 6) 4607.878 (154, 76.796, 4) 4715.812
0.45 (164, 76.504, 6) 5431.730 (171, 76.570, 4) 5559.601

2 0.00 (126, 77.097, 6) 3586.631 (131, 77.191, 4) 3668.107
0.15 (134, 76.905, 6) 4009.431 (140, 76.990, 4) 4102.204
0.30 (146, 76.704, 6) 4577.717 (153, 76.780, 4) 4685.034
0.45 (163, 76.490, 6) 5397.419 (170, 76.556, 4) 5524.596

0 0.00 (125, 77.080, 6) 3564.563 (130, 77.171, 4) 3642.956
0.15 (133, 76.889, 6) 3985.258 (139, 76.972, 4) 4074.661
0.30 (145, 76.690, 6) 4550.835 (150, 76.754, 6) 4653.534
0.45 (161, 76.477, 6) 5366.837 (167, 76.533, 6) 5486.241

Table 5. Summary of the optimal solution procedure (Li in weeks and δ = 1.0)

Mixture of two normal distributions Single normal distribution
ε θ (Q∗, πx∗ , L∗) EAC(Q∗, πx∗ , L∗) (Q′, π′

x, L
′) EAC(Q′, π′

x, L
′)

p = 0.53 p = 0
∞ 0.00 (127, 77.118, 6) 3612.492 (133, 77.211, 4) 3694.444

0.15 (136, 76.924, 6) 4037.756 (142, 77.009, 4) 4131.045
0.30 (148, 76.721, 6) 4609.215 (154, 76.797, 4) 4717.097
0.45 (164, 76.504, 6) 5433.250 (171, 76.571, 4) 5561.063

100 0.00 (127, 77.116, 6) 3610.663 (133, 77.210, 4) 3692.684
0.15 (136, 76.922, 6) 4035.752 (142, 77.008, 4) 4129.117
0.30 (147, 76.720, 6) 4606.987 (154, 76.796, 4) 4714.954
0.45 (164, 76.503, 6) 5430.716 (171, 76.570, 4) 5558.625

2 0.00 (125, 77.084, 6) 3569.258 (131, 77.177, 4) 3650.418
0.15 (134, 76.893, 6) 3990.401 (140, 76.977, 4) 4082.833
0.30 (145, 76.693, 6) 4556.555 (152, 76.769, 4) 4663.496
0.45 (161, 76.480, 6) 5373.344 (169, 76.546, 4) 5500.100

0 0.00 (123, 77.054, 6) 3532.148 (127, 77.125, 6) 3602.567
0.15 (132, 76.866, 6) 3949.750 (136, 76.930, 6) 4028.675
0.30 (143, 76.669, 6) 4511.346 (148, 76.727, 6) 4601.219
0.45 (159, 76.459, 6) 5321.910 (165, 76.509, 6) 5426.733

larger the backorder rate would be. So, we consider that the backorder rate is dependent
on the amount of the shortages and the backorder price discount based on the idea of
Ouyang and Chuang [13] (also see Lee [9]) and Pan and Hsiao [17]. In the first case,
we assume that the lead time demand possesses a mixture of normal distributions and
the number of non-defective units is a random variable. In the second case, we relax the
assumption about probability distributional form of the lead time demand and apply the
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minimax distribution-free procedure to solving the problem. In addition, we also develop
an algorithmic procedure to find the optimal solution. Numerical examples are performed
to investigate the results of our proposed models.

In practice, the uncertainties of customer’s demand and backorder rate are inherent. It
is not appropriate to describe the lead time demand by using a single distribution. Besides,
backorder rate can be controlled by the amount of the shortages and the backorder price
discount. In real environments, it is often that an arrival order lot may contain some
defective units. From these perspectives, it is reasonable using the mixture inventory
model we proposed. Most importantly, we make every endeavour to develop an inventory
model which can fit in with the real situation.

In future research on this problem, it would be interesting to deal with a service level
constraint or treat the reorder point as a decision variable. In addition, we assume that
the crashing cost function in the lead time is a piecewise linear function in the thesis. It
would be of interest to examine a non-linear relationship that exists between the crashing
cost and the lead time in the future.
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