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Universidad de Guadalajara
Av. Revolución 1500, Guadalajara, Jal, México
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Abstract. Electromagnetism-like Optimization (EMO) is a global optimization algo-
rithm, particularly well-suited to solve problems featuring non-linear and multimodal cost
functions. EMO employs searcher agents that emulate a population of charged particles
which interact with each other according to electromagnetism’s laws of attraction and
repulsion. However, EMO usually requires a large number of iterations for a local search
procedure; any reduction or cancelling over such number, critically perturb other issues
such as convergence, exploration, population diversity and accuracy. This paper presents
an enhanced EMO algorithm called OBEMO, which employs the Opposition-Based Learn-
ing (OBL) approach to accelerate the global convergence speed. OBL is a machine intel-
ligence strategy which considers the current candidate solution and its opposite value at
the same time, achieving a faster exploration of the search space. The proposed OBEMO
method significantly reduces the required computational effort yet avoiding any detriment
to the good search capabilities of the original EMO algorithm. Experiments are conducted
over a comprehensive set of benchmark functions, showing that OBEMO obtains promis-
ing performance for most of the discussed test problems.
Keywords: Electromagnetism-like optimization, Opposition-based learning, Global op-
timization

1. Introduction. Global Optimization (GO) [1,2] has issued applications for many areas
of science [3], economics [4,5] and others whose definition requires mathematical modelling
[6]. In general, GO aims to find the global optimum for an objective function which
has been defined over a given search space. The difficulties associated with the use
of mathematical methods over GO problems have contributed to the development of
alternative solutions. Linear programming and dynamic programming techniques, for
example, often have failed in solving (or reaching local optimum at) NP-hard problems
which feature a large number of variables and non-linear objective functions. In order to
overcome such problems, researchers have proposed metaheuristic-based algorithms for
searching near-optimum solutions.

Metaheuristic algorithms are stochastic search methods that mimic the metaphor of
biological or physical phenomena. The core of such methods lies on the analysis of collec-
tive behaviour of relatively simple agents working on decentralized systems. Such systems
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typically gather an agent’s population that can communicate to each other while sharing
a common environment. Although a non-centralized control algorithm regulates the agent
behaviour, the agent can solve complex tasks by analyzing a given global model and har-
vesting cooperation to other elements. Therefore, a novel global behaviour evolves from
interaction among agents as it can be seen on typical examples that include ant colonies,
animal herding, bird flocking, fish schooling, honey bees, bacteria, charged particles and
many more. Some other metaheuristic optimization algorithms have been recently pro-
posed to solve optimization problems, such as Genetic Algorithms (GA) [7], Particle
Swarm Optimization (PSO) [8], Ant Colony Optimization (ACO) [9], Differential Evolu-
tion (DE) [10], Artificial Immune Systems (AIS) [11] and Artificial Bee Colony [12] and
Gravitational Search Algorithm (GSA) [13].
Electromagnetism-like algorithm (EMO) is a relatively new population-based meta-

heuristic algorithm which was firstly introduced by Birbil and Fang [14] to solve continu-
ous optimization models using bounded variables. The algorithm imitates the attraction–
repulsion mechanism between charged particles in an electromagnetic field. Each particle
represents a solution and carries a certain amount of charge which is proportional to the
solution quality (objective function). In turn, solutions are defined by position vectors
which give real positions for particles within a multi-dimensional space. Moreover, ob-
jective function values of particles are calculated considering such position vectors. Each
particle exerts repulsion or attraction forces over other population members; the resul-
tant force acting over a particle is used to update its position. Clearly, the idea behind
the EMO methodology is to move particles towards the optimum solution by exerting
attraction or repulsion forces. Unlike other traditional metaheuristics techniques such as
GA, DE, ABC and AIS, whose population members exchange materials or information
between each other, the EMO methodology assumes that each particle is influenced by
all other particles in the population, mimicking other heuristics methods such as PSO
and ACO. Although the EMO algorithm shares some characteristics with PSO and ACO,
recent works have exhibited its better accuracy regarding optimal parameters [15-18], yet
showing convergence [19]. EMO has been successfully applied to solve different sorts of
engineering problems such as flow-shop scheduling [20], vehicle routing [21], array pattern
optimization in circuits [22], neural network training [18] control systems [23] and image
processing [24].
EMO algorithm employs four main phases: initialization, local search, calculation and

movement. The local search procedure is a stochastic search in several directions over
all coordinates of each particle. EMO’s main drawback is its computational complexity
resulting from the large number of iterations which are commonly required during the
searching process. The issue becomes worst as the dimension of the optimization problem
increases. Several approaches, which simplify the local search, have been proposed in the
literature to reduce EMO’s computational effort. In [25], Guan et al. proposed a discrete
encoding for the particle set in order to reduce search directions at each dimension. In
[26,27], authors include a new local search method which is based on a fixed search
pattern and a shrinking strategy that aims to reduce the population size as the iterative
process progresses. Additionally, in [15], a modified local search phase that employs the
gradient descent method is adopted to enhance its computational complexity. Although all
these approaches have improved the computational time which is required by the original
EMO algorithm, recent works [23,28] have demonstrated that reducing or simplifying
EMO’s local search processes also affects other important properties, such as convergence,
exploration, population diversity and accuracy.
On the other hand, the opposition-based learning (OBL), that has been initially pro-

posed in [29], is a machine intelligence strategy which considers the current estimate
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and its correspondent opposite value (i.e., guess and opposite guess) at the same time to
achieve a fast approximation for a current candidate solution. It has been mathematically
proved [30-32] that an opposite candidate solution holds a higher probability for approach-
ing the global optimum solution than a given random candidate, yet quicker. Recently,
the concept of opposition has been used to accelerate metaheuristic-based algorithms such
as DE [33], PSO [34] and GSA [35].

In this paper, an Opposition-Based EMO called OBEMO is constructed by combining
the opposition-based strategy and the standard EMO technique. The enhanced algo-
rithm allows a significant reduction on the computational effort which is required by the
local search procedure yet avoiding any detriment to the good search capabilities and
convergence speed of the original EMO algorithm. The proposed algorithm has been ex-
perimentally tested by means of a comprehensive set of complex benchmark functions.
Comparisons with the original EMO and other state-of-the-art EMO-based algorithms [6]
demonstrate that the OBEMO technique is faster for all test functions, yet delivering a
higher accuracy. Conclusions on the conducted experiments are supported by statistical
validation that properly supports the results.

The rest of the paper is organized as follows. Section 2 introduces the standard EMO
algorithm. Section 3 gives a simple description of OBL and Section 4 explains the imple-
mentation of the proposed OBEMO algorithm. Section 5 presents a comparative study
among OBEMO and other EMO variants over several benchmark problems. Finally, some
conclusions are drawn in Section 6.

2. Electromagnetism-like Optimization Algorithm (EMO). EMO algorithm is a
simple and direct search algorithm which has been inspired by the electro-magnetism
phenomenon. It is based on a given population and the optimization of global multi-
modal functions. In comparison with GA, it does not use crossover or mutation operators
to explore feasible regions; instead it does implement a collective attraction-repulsion
mechanism yielding a reduced computational cost with respect to memory allocation and
execution time. Moreover, no gradient information is required as it employs a decimal
system which clearly contrasts to GA. Few particles are required to reach converge as has
been already demonstrated in [9].

EMO algorithm can effectively solve a special class of optimization problems with
bounded variables in the form of:

min f(x) x ∈ [l, u] , (1)

where [l, u] = {x ∈ <n|ld ≤ xd ≤ ud, d = 1, 2, . . . , n} and n being the dimension of the
variable x, [l, u] ⊂ <n, a nonempty subset and a real-value function f : [l, u]→ <. Hence,
the following problem features are known:

• n: Dimensional size of the problem.
• ud: The highest bound of the kth dimension.
• ld: The lowest bound of the kth dimension.
• f(x): The function to be minimized.

EMO algorithm has four phases [5]: initialization, local search, computation of the
total force vector and movement. A deeper discussion about each stage follows.
Initialization, a number of m particles are gathered as their highest (u) and lowest limit
(l) are identified.
Local search, gathers local information for a given point gp, where p ∈ (1, . . . ,m).
Calculation of the total force vector, charges and forces are calculated for every
particle.
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Movement, each particle is displaced accordingly, matching the corresponding force
vector.

2.1. Initialization. First, the population of m solutions is randomly produced at an
initial state. Each n-dimensional solution is regarded as a charged particle holding a uni-
form distribution between the highest (u) and the lowest (l) limits. The optimum particle
(solution) is thus defined by the objective function to be optimized. The procedure ends
when all the m samples are evaluated, choosing the sample (particle) that has gathered
the best function value.

2.2. Local search. The local search procedure is used to gather local information within
the neighbourhood of a candidate solution. It allows obtaining a better exploration and
population diversity for the algorithm.
Considering a pre-fixed number of iterations known as ITER and a feasible neighbour-

hood search δ, the procedure iterates as follows: Point gp is assigned to a temporary
point t to store the initial information. Next, for a given coordinate d, a random number
is selected (λ1) and combined with δ as a step length, which in turn, moves the point t
along the direction d, with a randomly determined sign (λ2). If point t observes a better
performance over the iteration number ITER, point gp is replaced by t and the neigh-
bourhood search for point gp finishes; otherwise gp is held. The pseudo-code is listed in
Figure 1.
In general, the local search for all particles can also reduce the risk of falling into

a local solution but is time consuming. Nevertheless, recent works [15,28] have shown
that eliminating, reducing or simplifying the local search process affects significantly the
convergence, exploration, population diversity and accuracy of the EMO algorithm.

1: Counter ← 1 12: td ← td − λ2 (Length)
2: Length← δ (max {ud − ld}) 13: end if
3: for p = 1 to m do 14: if f(t) < f(gp) then
4: for d = 1 to n do 15: gp ← t
5: λ1 ← U(0, 1) 16: counter ← ITER – 1
6: while Counter < ITER do 17: end if
7: t← gp 18: Counter ← Counter + 1
8: λ2 ← U(0, 1) 19: end while
9: if λ1 > 0.5 then 20: end for
10: td ← td + λ2 (Length) 21: end for
11: Else 22: gbest ← argmin {f(gp),∀p}

Figure 1. Pseudo-code list for the local search algorithm

Figure 2. The superposition principle



OPPOSITION-BASED ELECTROMAGNETISM-LIKE 8185

2.3. Total force vector computation. The total force vector computation is based on
the superposition principle (Figure 2) from the electro-magnetism theory which states:
“the force exerted on a point via other points is inversely proportional to the distance
between the points and directly proportional to the product of their charges” [36]. The
particle moves following the resultant Coulomb’s force which has been produced among
particles as a charge-like value. In the EMO implementation, the charge for each particle
is determined by its fitness value as follows:

qp = exp

−n f (gp)− f
(
gbest

)
m∑

h=1

(f (gh)− f (gbest))

 , ∀p (2)

where n denotes the dimension of gp and m represents the population size. A higher
dimensional problem usually requires a larger population. In Equation (2), the particle
showing the best fitness function value gbest is called the “best particle”, getting the highest
charge and attracting other particles holding high fitness values. The repulsion effect is
applied to all other particles exhibiting lower fitness values. Both effects, attraction-
repulsion are applied depending on the actual proximity between a given particle and the
best-graded element.

The overall resultant force between all particles determines the actual effect of the
optimization process. The final force vector for each particle is evaluated under the
Coulomb’s law and the superposition principle as follows:

Fp =
m∑

h6=p


(
gh − gp

)
qpqh

‖gh−gp‖2 if f(gh) < f(gp)(
gp − gh

)
qpqh

‖gh−gp‖2 if f(gh) ≥ f(gp)

 , ∀p (3)

where f(gh) < f(gp) represents the attraction effect and f(gh) ≥ f(gp) represents the
repulsion force (see Figure 3). The resultant force of each particle is proportional to the
product between charges and is inversely proportional to the distance between particles.
In order to keep feasibility, the vector in expression (3) should be normalized as follows:

F̂p =
Fp

‖Fp‖
, ∀p. (4)

Figure 3. Coulomb law: α represents the distance between charged parti-
cles, q1, q2 are the charges, and F is the exerted force as has been generated
by the charge interaction
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2.4. Movement. The change of the d-coordinate for each particle p is computed with
respect to the resultant force as follows:

gpd =

{
gpd + λ · F̂ p

d · (ud − gpd) if F̂ p
d > 0

gpd + λ · F̂ p
d · (g

p
d − ld) if F̂ p

d ≤ 0

}
, ∀p 6= best, ∀d (5)

In Equation (5), λ is a random step length that is uniformly distributed between zero and
one. ud and ld represent the upper and lower boundary for the d-coordinate, respectively.
F̂ p
d represents the d element of F̂p. If the resultant force is positive, then the particle moves

towards the highest boundary by a random step length. Otherwise it moves toward the
lowest boundary. The best particle does not move at all, because it holds the absolute
attraction, pulling or repelling all others in the population.
The process is halted when a maximum iteration number is reached or when the value

f(gbest) is near to zero or to the required optimal value.

3. Opposition-based Learning (OBL). Opposition-based Learning [29] is a new con-
cept in computational intelligence that has been employed to effectively enhance several
soft computing algorithms [37,38]. The approach simultaneously evaluates a solution x
and its opposite solution x̄ for a given problem, providing a renewed chance to find a
candidate solution lying closer to the global optimum [30].

3.1. Opposite number. Let x ∈ [l, u] be a real number, where l and u are the lowest
and highest bound respectively. The opposite of x is defined by:

x̄ = u+ l − x (6)

3.2. Opposite point. Similarly, the opposite number definition is generalized to higher
dimensions as follows: Let x = (x1, x2, . . . , xn) be a point within a n-dimensional space,
where x1, x2, . . . , xn ∈ R and xi ∈ [li, ui], i ∈ 1, 2, . . . , n. The opposite point x̄ =
(x̄1, x̄2, . . . , x̄n) is defined by:

x̄i = ui + li − xi (7)

3.3. Opposition-based optimization. Metaheuristic methods start by considering so-
me initial solutions (initial population) and trying to improve them toward some optimal
solution(s). The process of searching ends when some predefined criteria are satisfied.
In the absence of a priori information about the solution, random guesses are usually
considered. The computation time, among others algorithm characteristics, is related
to the distance of these initial guesses taken from the optimal solution. The chance of
starting with a closer (fitter) solution can be enhanced by simultaneously checking the
opposite solution. By doing so, the fitter one (guess or opposite guess) can be chosen
as an initial solution following the fact that, according to probability theory, 50% of the
time a guess is further from the solution than its opposite guess [31]. Therefore, starting
with the closer of the two guesses (as judged by their fitness values) has the potential to
accelerate convergence. The same approach can be applied not only to initial solutions
but also to each solution in the current population.
By applying the definition of an opposite point, the opposition-based optimization can

be defined as follows: Let x be a point in a n-dimensional space (i.e., a candidate solution).
Assume f(x) is a fitness function which evaluates the quality of such candidate solution.
According to the definition of opposite point, x̄ is the opposite of x. If f(x̄) is better than
f(x), then x is updated with x̄, otherwise current point x is kept. Hence, the best point
(x or x̄) is modified using known operators from the population-based algorithm.
Figure 4 shows the opposition-based optimization procedure. In the example, Figures

4(a) and 4(b) represent the function to be optimized and its corresponding contour plot,
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respectively. By applying the OBL principles to the current population P (see Figure
4(b)), the three particles x1, x2 and x3 produce a new population OP, gathering particles
x̄1, x̄2 and x̄3. The three fittest particles from P andOP are selected as the new population
P ′. It can be seen from Figure 4(b) that x1, x̄2 and x̄3 are three new members in
P ′. In this case, the transformation conducted on x1 did not provide a best chance of
finding a candidate solution closer to the global optimum. Considering the OBL selection
mechanism, x̄1 is eliminated from the next generation.

(a) (b)

Figure 4. The opposition-based optimization procedure: (a) function to
be optimized and (b) its contour plot. The current population P includes
particles x1, x2 and x3. The corresponding opposite population OP is
represented by x1, x̄2 and x̄3. The final population P ′ is obtained by the
OBL selection mechanism yielding particles x1, x̄2 and x̄3.

4. Opposition-based Electromagnetism-like Optimization (OBEMO). Similarly
to all metaheuristic-based optimization algorithms, two steps are fundamental for the
EMO algorithm: the population initialization and the production of new generations by
evolutionary operators. In the approach, the OBL scheme is incorporated to enhance
both steps. However, the original EMO is considered as the main algorithm while the
opposition procedures are embedded into EMO aiming to accelerate its convergence speed.
Figure 5 shows a data flow comparison between the EMO and the OBEMO algorithm.
The novel extended opposition procedures are explained in the following subsections.

4.1. Opposition-based population initialization. In population-based metaheuristic
techniques, the random number generation is the common choice to create an initial
population in absence of a priori knowledge. Therefore, as mentioned in Section 3, it is
possible to obtain fitter starting candidate solutions by utilizing OBL though no a-priori
knowledge about the solution(s) is available. The following steps explain the overall
procedure.

1) Initialize the population X with NP representing the number of particles.
2) Calculate the opposite population by

x̄j
i = ui + li − xj

i i = 1, 2, . . . , n; j = 1, 2, . . . , NP (8)
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(a) (b)

Figure 5. Dataflow for (a) the EMO method and (b) the OBEMO algorithm

where xj
i and x̄j

i denote the ith parameter of the jth particle of the population and
its corresponding opposite particle.

3) Select the NP fittest elements from
{
X ∪ X̄

}
as initial population.

4.2. Opposition-based production for new generation. Starting from the current
population, the OBL strategy can be used again to produce new populations. In this
procedure, the opposite population is calculated and the fittest individuals are selected
from the union of the current population and the opposite population. The following
steps summarize the OBEMO implementation as follows:

Step 1. Generate NP initial random particles xh to create the particle vector X, with
h ∈ 1, 2, . . . , NP .
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Step 2. Apply the OBL strategy by considering NP particles from vector X and gen-
erating the opposite vector X̄ through Equation (7).

Step 3. Select the NP fittest particles from X ∪ X̄ according to f(·). These particles
build the initial population X0.

Step 4. Calculate the local search procedure for each particle of X0 as follows: For
a given dimension d, the particle xh is assigned to a temporary point y to
store the initial information. Next, a random number is selected and combined
with δ to yield the step length. Therefore, the point y is moved along that
direction. The sign is determined randomly. If f(xh) is minimized, the particle
xh is replaced by y, ending the neighborhood-wide search for a particle h. The
result is stored into the population vector XLocal.

Step 5. Determine the best particle xbest of the population vector XLocal (with xbest ←
argmin

{
f(xh),∀h

}
).

Step 6. Calculate the charge among particles using expression (2) and the vector force
through Equation (3). The particle showing the better objective function value
holds a bigger charge and therefore a bigger attraction force.

Step 7. Change particle positions according to their force magnitude. The new parti-
cle’s position is calculated by expression (5). xbest is not moved because it has
the biggest force and attracts other particles to itself. The result is stored into
the population vector XMov.

Step 8. Apply the OBL strategy over the m particles of the population vector XMov,
the opposite vector X̄Mov can be calculated through Equation (7).

Step 9. Select them fittest particles fromXMov∪X̄Mov according to f(·). Such particles
represent the population X0.

Step 10. Increase the Iteration index. If iteration = MAXITER or the value of f(X)
is smaller than the pre-defined threshold value, then the algorithm is stopped
and the flow jumps to Step 11. Otherwise, it jumps to Step 4.

Step 11. The best particle xbest is selected from the last iteration as it is considered as
the solution.

5. Experimental Results. In order to test the algorithm’s performance, the proposed
OBEMO is compared with the standard EMO and other state-of-the-art EMO-based algo-
rithms. In this section, the experimental results are discussed in the following subsections:
(5.1) Test problems, (5.2) Parameter settings for the involved EMO algorithms and (5.3)
Results and discussions.

5.1. Test problems. A comprehensive set of benchmark problems, that includes 14
different global optimization tests, has been chosen for the experimental study. According
to their use in the performance analysis, the functions are divided in two different sets:
original test functions (f1−f9) and multidimensional functions (f10−f14). Every function
at this paper is considered as a minimization problem itself.

The original test functions, which are shown in Table 1, agree to the set of numerical
benchmark functions presented by the original EMO paper at [14]. Considering that such
function set is also employed by a vast majority of EMO-based new approaches, its use
in our experimental study facilitates its comparison to similar works. More details can be
found in [39].

The major challenge of an EMO-based approach is to avoid the computational com-
plexity that arises from the large number of iterations which are required during the local
search process. Since the computational complexity depends on the dimension of the
optimization problem, one set of multidimensional functions (see Table 2) is used in order
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to assess the convergence and accuracy for each algorithm. Multidimensional functions
include a set of five different functions whose dimension has been fixed to 30.

Table 1. Optimization test functions corresponding to the original test set

Function Search domain Global minima

Branin

f1(x1, x2) =
(
x2 − 5

4π2 x
2
1 + 5

π
x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10

−5 ≤ xi ≤ 10
0 ≤ x2 ≤ 15

0.397887

Camel

f2(x1, x2) = −−x2
1+4.5x2+2

e
2x2

2
−2 ≤ x1, x2 ≤ 2 −1.031

Goldenstain-Price
f3(x1, x2) = 1 + (x1 + x2 + 1)2 × (19− 14x1 + 13x2

1 − 14x2 + 6x1x2 + 3x2
2)

×(30 + 2x1 − 3x2)2 × (18− 32x1 + 12x2
1 − 48x2 − 36x1x2 + 27x2

2)
−2 ≤ x1, x2 ≤ 2 3.0

Hartmann (3-dimensional)

f4(x) = −
4∑

i=1
αi exp

[
−

3∑
j=1

Aij(xj − Pij)
2

]
0 ≤ xi ≤ 1
i = 1, 2, 3

−3.8627

α = [1, 1.2, 3, 3.2], A =

 3.0 10 30
0.1 10 35
3.0 10 35

, P = 10−4


6890 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828


Hartmann (6-dimensional)

f5(x) = −
4∑

i=1
αi exp

[
−

6∑
j=1

Bij(xj −Qij)
2

]

α = [1, 1.2, 3, 3.2], B =


10 3 17 3.05 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

, 0 ≤ xi ≤ 1

i = 1, 2, 3, . . . , 6
−3.8623

Q = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


Shekel Sm (4-dimensional)

Sm(x) = −
m∑

j=1

[
4∑

i=1
(xi − Cij)

2 + βj

]−1

β = [1, 2, 2, 4, 4, 6, 3, 7, 5, 5]T ,

C =


4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6

4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

 0 ≤ xi ≤ 1

i = 1, 2, 3, 4

f6(x) = S5(x) −10.1532

f7(x) = S7(x) −10.4029
f8(x) = S10(x) −10.5364
Shubert

f9(x1, x2) =

(
5∑

i=1
i cos((i+ 1)x1 + i)

)(
5∑

i=1
i cos((i+ 1)x2 + i)

)
−10 ≤ x1, x2 ≤ 10 −186.73

Table 2. Multidimensional test function set

Function Search domain Global minima

f10(x) =
∑n

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]30 0

f11(x) = −20 exp
(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− exp

(
1
n

∑n
i=1 cos(2πxi)

)
+ 20 [−32, 32]30 0

f12(x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(
xi√
i

)
+ 1 [−600, 600]30 0

f13(x) =
π
n

{
10 sin(πy1) +

∑n−1
i=1 (yi − 1)2

[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

∑n
i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4

[−50, 50]30 0

u(xi, a, k,m) =


k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

f14(x) = sin2(3πx1) +
∑n

i=1 (xi − 1)2
[
1 + sin2(3πxi + 1)

]
+(xn − 1)2

[
1 + sin2(2πxn)

]
+

∑n
i=1 u(xi, 5, 100, 4)

[−50, 50]30 0
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5.2. Parameter settings for the involved EMO algorithms. The experimental set
aims to compare four EMO-based algorithms including the proposed OBEMO. All algo-
rithms face 14 benchmark problems. The algorithms are listed below:

• Standard EMO algorithm [14];
• Hybridizing EMO with descent search (HEMO) [15];
• EMO with fixed search pattern (FEMO) [26];
• The proposed approach OBEMO.

For the original EMO algorithm described in [14] and the proposed OBEMO, the pa-
rameter set is configured considering: δ = 0.001 and LISTER = 4. For the HEMO,
the following experimental parameters are considered: LsItmax = 10, εr = 0.001 and
γ = 0.00001. Such values can be assumed as the best configuration set according to
[15]. Diverging from the standard EMO and the OBEMO algorithm, the HEMO method
reduces the local search phase by only processing the best found particle xbest. The param-
eter set for the FEMO approach is defined by considering the following values Nmax

fe = 100,

Nmax
ls = 10, δ = 0.001, δmin = 1 × 10−8 and εδ = 0.1. All aforementioned EMO-based

algorithms use the same population size of m = 50.

5.3. Results and discussions.
Original test functions set

On this test set, the performance of the OBEMO algorithm is compared with standard
EMO, HEMO and FEMO, considering the original test functions set. Such functions,
presented in Table 1, hold different dimensions and one known global minimum. The
performance is analyzed by considering 35 different executions for each algorithm. The
case of no significant changes in the solution being registered (i.e., smaller than 10−4) is
considered as stopping criterion.

The results, shown by Table 3, are evaluated assuming the averaged best value f(x) and
the averaged number of executed iterations (MAXITER). Figure 6 shows the optimization
process for the function f3 and f6. Such function values correspond to the best case for
each approach that is obtained after 35 executions.

Table 3. Comparative results for the EMO, the OBEMO, the HEMO and
the FEMO algorithms considering the original test functions set (Table 1)

Function f1 f2 f3 f4 f5 f6 f7 f8 f9
Dimension 2 2 2 3 6 4 4 4 2

E
M

O

Averaged best
values f(x)

0.3980 −1.015 3.0123 −3.7156 −3.6322 −10.07 −10.23 −10.47 −186.71

Averaged
MAXITER

103 128 197 1.59E+03 1.08E+03 30 31 29 44

O
B
E
M

Averaged best
values f(x)

0.3980 −1.027 3.0130 −3.7821 −3.8121 −10.11 −10.22 −10.50 −186.65

Averaged
MAXITER

61 83 101 1.12E+03 826 18 19 17 21

H
E
M

O

Averaged best
values f(x)

0.5151 −0.872 3.413 −3.1187 −3.0632 −9.041 −9.22 −9.1068 −184.31

Averaged
MAXITER

58 79 105 1.10E+03 805 17 18 15 22

F
E
M

O

Averaged best
values f(x)

0.4189 −0.913 3.337 −3.3995 −3.2276 −9.229 −9.88 −10.18 −183.88

Averaged
MAXITER

63 88 98 1.11E+03 841 21 22 19 25
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(a)

(b)

Figure 6. Comparison of the optimization process for two original test
functions: (a) f3 and (b) f6

In order to statistically analyse the results in Table 3, a non-parametric significance
proof known as the Wilcoxon’s rank test [40-42] has been conducted. Such proof allows
assessing result differences among two related methods. The analysis is performed con-
sidering a 5% significance level over the “averaged best value of f(x)” and the “averaged
number of executed iterations of MAXITER” data. Table 4 and Table 5 report the p-
values produced by Wilcoxon’s test for the pair-wise comparison of the “averaged best
value” and the “averaged number of executed iterations” respectively, considering three
groups. Such groups are formed by OBEMO vs. EMO, OBEMO vs. HEMO and OBEMO
vs. FEMO. As a null hypothesis, it is assumed that there is no difference between the
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Table 4. Results from Wilcoxon’s ranking test considering the “averaged
best value of f(x)”

Function p-Values
OBEMO vs. EMO OBEMO vs. HEMO OBEMO vs. FEMO

f1 0.3521 1.21E-04 1.02E-04
f2 0.4237 1.05E-04 0.88E-04
f3 0.2189 4.84E-05 3.12E-05
f4 0.4321 1.35E-05 1.09E-05
f5 0.5281 2.73E-04 2.21E-04
f6 0.4219 1.07E-04 0.77E-04
f7 0.3281 3.12E-05 2.45E-05
f8 0.4209 4.01E-05 3.62E-05
f9 0.2135 1.86E-05 1.29E-05

Table 5. Results from Wilcoxon’s ranking test considering the “averaged
number of executed iterations”

Function p-Values
OBEMO vs. EMO OBEMO vs. HEMO OBEMO vs. FEMO

f1 2.97E-04 0.2122 0.2877
f2 3.39E-04 0.1802 0.2298
f3 8.64E-09 0.1222 0.1567
f4 7.54E-05 0.2183 0.1988
f5 1.70E-04 0.3712 0.3319
f6 5.40E-13 0.4129 0.3831
f7 7.56E-04 0.3211 0.3565
f8 1.97E-04 0.2997 0.2586
f9 1.34E-05 0.3521 0.4011

values of the two algorithms. The alternative hypothesis considers an actual difference
between values from both approaches. The results obtained by the Wilcoxon test indicate
that data cannot be assumed as occurring by coincidence (i.e., due to the normal noise
contained in the process).

Table 4 considers the Wilcoxon analysis with respect to the “averaged best value” of
f(x). The p-values for the case of OBEMO vs. EMO are larger than 0.05 (5% significance
level) which is a strong evidence supporting the null hypothesis which indicates that there
is no significant difference between both methods. On the other hand, in cases for the
p-values corresponding to the OBEMO vs. HEMO and OBEMO vs. FEMO, they are
less than 0.05 (5% significance level), which accounts for a significant difference between
the “averaged best value” data among methods. Table 5 considers the Wilcoxon analysis
with respect to the “averaged number of executed iterations” values. Applying the same
criteria, it is evident that there is a significant difference between the OBEMO vs. EMO
case, despite the OBEMO vs. HEMO and OBEMO vs. FEMO cases offering similar
results.
Multidimensional functions

In contrast to the original functions, multidimensional functions exhibit many local
minima/maxima which are, in general, more difficult to optimize. In this section the
performance of the OBEMO algorithm is compared with the EMO, the HEMO and the
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FEMO algorithms, considering functions in Table 2. This comparison reflects the algo-
rithm’s ability to escape from poor local optima and to locate a near-global optimum,
consuming the least number of iterations. The dimension of such functions is set to 30.
The results (Table 6) are averaged over 35 runs reporting the “averaged best value” and
the “averaged number of executed iterations” as performance indexes.
The Wilcoxon rank test results, presented in Table 7, show that the p-values (regarding

to the “averaged best value” values of Table 6) for the case of OBEMO vs. EMO, indicat-
ing that there is no significant difference between both methods. p-values corresponding
to the OBEMO vs. HEMO and OBEMO vs. FEMO show that there is a significant
difference between the “averaged best” values among the methods. Figure 7 shows the
optimization process for the function. Such function values correspond to the best case,
for each approach, obtained after 35 executions.
Table 8 considers the Wilcoxon analysis with respect to the “averaged number of exe-

cuted iterations” values of Table 6. As it is observed, the outcome is similar to the results
from last test on the original functions.

Table 6. Comparative results for the EMO, OBEMO, HEMO and the
FEMO algorithms being applied to the multidimensional test functions (Ta-
ble 2)

Function f10 f11 f12 f13 f14
Dimension 30 30 30 30 30

E
M

O

Averaged best
values f(x)

2.12E-05 1.21E-06 1.87E-05 1.97E-05 2.11E-06

Averaged
MAXITER

622 789 754 802 833

O
B
E
M

Averaged best
values f(x)

3.76E-05 5.88E-06 3.31E-05 4.63E-05 3.331E-06

Averaged
MAXITER

222 321 279 321 342

H
E
M

O Averaged best
values f(x)

2.47E-02 1.05E-02 2.77E-02 3.08E-02 1.88E-2

Averaged
MAXITER

210 309 263 307 328

F
E
M

O Averaged best
values f(x)

1.36E-02 2.62E-02 1.93E-02 2.75E-02 2.33E-02

Averaged
MAXITER

241 361 294 318 353

Table 7. Results from Wilcoxon’s ranking test considering the “best av-
eraged values”

Function p-Values
OBEMO vs. EMO OBEMO vs. HEMO OBEMO vs. FEMO

f10 0.2132 3.21E-05 3.14E-05
f11 0.3161 2.39E-05 2.77E-05
f12 0.4192 5.11E-05 1.23E-05
f13 0.3328 3.33E-05 3.21E-05
f14 0.4210 4.61E-05 1.88E-05
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(a)

(b)

Figure 7. Optimization process comparison for two multidimensional test
functions: (a) f12 and (b) f14

Table 8. Results from Wilcoxon’s ranking test considering the “averaged
number of executed iterations”

Function p-Values
OBEMO vs. EMO OBEMO vs. HEMO OBEMO vs. FEMO

f10 3.78E-05 0.1322 0.2356
f11 2.55E-05 0.2461 0.1492
f12 6.72E-05 0.3351 0.3147
f13 4.27E-05 0.2792 0.2735
f14 3.45E-05 0.3248 0.3811
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6. Conclusions. In this paper, an Opposition-Based EMO, named as OBEMO, has been
proposed by combining the opposition-based learning (OBL) strategy and the standard
EMO technique. The OBL is a machine intelligence strategy which considers, at the
same time, a current estimate and its opposite value to achieve a fast approximation for
a given candidate solution. The standard EMO is enhanced by using two OBL steps: the
population initialization and the production of new generations. The enhanced algorithm
significantly reduces the required computational effort yet avoiding any detriment to the
good search capabilities of the original EMO algorithm.
A set of 14 benchmark test functions has been employed for experimental study. Results

are supported by a statistically significant framework (Wilcoxon test [40-42]) to demon-
strate that the OBEMO is as accurate as the standard EMO yet requiring a shorter
number of iterations. Likewise, it is as fast as other state-of-the-art EMO-based algo-
rithms such as HEMO [6] and FEMO [26], still keeping the original accuracy.
Although the results offer evidence to demonstrate that the Opposition-Based EMO

method can yield good results on complicated optimization problems, the paper’s aim
is not to devise an optimization algorithm that could beat all others currently available,
but to show that the Opposition-based Electromagnetism-like method can effectively be
considered as an attractive alternative for solving global optimization problems.
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[24] E. Cuevas, D. Oliva, D. Zaldivar, M. Pérez-Cisneros and H. Sossa, Circle detection using electro-
magnetism optimization, Information Sciences, vol.182, no.1, pp.40-55, 2012.

[25] X. Guan, X. Dai and J. Li, Revised electromagnetism-like mechanism for flow path design of uni-
directional AGV systems, International Journal of Production Research, vol.49, no.2, pp.401-429,
2011.

[26] A. M. A. C. Rocha and E. Fernandes, Numerical experiments with a population shrinking strategy
within a electromagnetism-like algorithm, Journal of Mathematics and Computers in Simulation,
vol.1, no.3, pp.238-243, 2007.

[27] A. M. A. C. Rocha and E. Fernandes, Numerical study of augmented Lagrangian algorithms for
constrained global optimization, Optimization, vol.60, no.10-11, pp.1359-1378, 2011.

[28] C.-H. Lee, F.-K. Chang, C.-T. Kuo and H.-H. Chang, A hybrid of electromagnetism-like mechanism
and back-propagation algorithms for recurrent neural fuzzy systems design, International Journal of
Systems Science, vol.43, no.2, pp.231-247, 2012.

[29] H. R. Tizhoosh, Opposition-based learning: A new scheme for machine intelligence, Proc. of Interna-
tional Conference on Computational Intelligence for Modeling Control and Automation, pp.695-701,
2005.

[30] S. Rahnamayn, H. R. Tizhoosh and M. Salama, A novel population initialization method for ac-
celerating evolutionary algorithms, Computers and Mathematics with Applications, vol.53, no.10,
pp.1605-1614, 2007.

[31] S. Rahnamayan, H. R. Tizhoosh and M. Salama, Opposition versus randomness in soft computing
techniques, J. Appl. Soft Comput., vol.8, pp.906-918, 2008.

[32] H. Wang, Z. Wu and S. Rahnamayan, Enhanced opposition-based differential evolution for solving
high-dimensional continuous optimization problems, Soft Computing, 2010.

[33] S. Rahnamayan, H. R. Tizhoosh and M. Salama, Opposition-based differential evolution, IEEE
Transactions on Evolutionary Computing, vol.12, no.1, pp.64-79, 2008.

[34] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu and M. Ventresca, Enhancing particle swarm optimization
using generalized opposition-based learning, Information Sciences, vol.181, pp.4699-4714, 2011.

[35] B. Shaw, V. Mukherjee and S. P. Ghoshal, A novel opposition-based gravitational search algorithm
for combined economic and emission dispatch problems of power systems, Electrical Power and
Energy Systems, vol.35, pp.21-33, 2012.

[36] E. W. Cowan, Basic Electromagnetism, Academic Press, New York, 1968.
[37] H. R. Tizhoosh, Opposition-based reinforcement learning, Journal of Advanced Computing Intelli-

gence and Intelligent Informatics, vol.10, no.3, pp.578-585, 2006.



8198 E. CUEVAS, D. OLIVA, D. ZALDIVAR, M. PEREZ-CISNEROS AND G. PAJARES

[38] M. Shokri, H. R. Tizhoosh and M. Kamel, Opposition-based Q(k) algorithm, Proc. of IEEE World
Congress on Computing Intelligence, pp.646-653, 2006.
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