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Abstract. Micro-turbines are promising high power-density engines for distributed po-
wer generation. In this paper, an innovative optimization procedure is proposed to design
a Swiss-roll type recuperator that recovers the exhaust heat of a micro gas turbine. There
are several design parameters to be optimized for the recuperator, including the number
of turns, channel width, plate thickness, and mass flow rate. The complex interconnec-
tions of the parameters make it difficult to analyze the process and select an adequate
design with the highest effectiveness and lowest pressure drop. In order to reduce the
number of numerical analysis required in the two-objective optimization process, a neural
network was trained to serve as a surrogate model for the analysis and a multi-objective
DIRECT (DIviding RECTangle) algorithm, named as MO-DIRECT, is proposed. Af-
ter merely 5 iterations of MO-DIRECT search, we were able to find a min-max solution
with prediction error lower than 4%. In the search process, only 24 numerical simulations
are required to achieve the result with totally 2,313 steps conducted in the MO-DIRECT
search, rather than 35,343 simulations for an exhaustive search.
Keywords: Recuperator, Heat exchanger design, Multi-objective optimization

1. Introduction. Micro-turbines with output power in the range of 25-300 kW are
promising high power-density engines for distributed power generation [1]. In the past
few years, an even smaller micro-turbine with the power output in the range of 5-10 kW,
known as the personal turbine (PT), has attracted much attention [2]. It is a compact,
silent running combustion turbine to provide the total energy needs for an average home
or small factory. However, for micro-turbines, it is difficult to achieve high efficiency with-
out heat recuperation or heat regeneration, which recovers the heat from exhaust gases
to improve the cycle efficiency, as well as to decrease the fuel requirement. A recupera-
tor then becomes mandatory for micro-turbines [3]. Following this trend, an innovative
micro gas turbine with a Swiss-roll type recuperator is proposed, and the proposed unit
potentially has a compact size with higher efficiency [4-6]. Based on the feasibility study
[4], the overall thermal efficiency increases with the increase of recuperator effectiveness,
but it decreases with the rise of pressure loss. Therefore, thermal design of the Swiss-roll
recuperator with high effectiveness and low-pressure loss is the key to the success of the
proposed micro-turbine.
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The Swiss-roll recuperator is composed of two flat plates wrapped around each other,
creating two concentric channels of rectangular cross-section. It recovers part of the
exhaust heat and preheats the incoming air, effectively raising overall efficiency. Although
using flat plates suffers from small heat transfer coefficient, the arrangement has lower
pressure loss and simpler model, as assumed in this preliminary study. The idea to use
the Swiss-roll type recuperator came from the devices named heat-recirculating or excess
enthalpy burners in 1975 [7,8]. Recently, this technology has been reemerged for the
studies of micro power generation using combustion [9]. The Swiss-roll type configuration
is employed as heaters for thermoelectric power systems [10-13], and is proposed as one
of the compact heat exchanges for a new generation of high temperature solar receivers
[14].
The thermal design and performance characteristics of the Swiss-roll recuperator have

been studied through the theoretical and modeling analysis in [5]. There are several design
parameters for the Swiss-roll recuperator, including number of turns, channel width, plate
thickness, and mass flow rate. Results of the analysis showed that both effectiveness
and pressure drop of the Swiss-roll recuperator increase with the increase of the number
of turns. Increasing channel width then decreases both effectiveness and pressure loss.
Besides, thicker plate benefits the heat transfer rate, consequently the effectiveness, but
deteriorates the pressure loss because of larger flow resistance. The flow velocity is higher
for a smaller channel width at the same flow rate, which will enhance the convective heat
transfer. As the mass flow rate increases, effectiveness decreases while pressure loss rises.
The complex interconnection of the design parameters makes it difficult to analyze the

process and select adequate parameter values. It is also unpractical to assess the per-
formance of every possible configuration through computationally intensive simulations.
Optimization of the thermal system [15] is typical of many practical industrial design
problems with multiple objects [16] that require extensive computation. In order to re-
duce the amount of computation in the optimization process, a neural network [17] is
employed as surrogate model [18], and a multi-objective DIRECT algorithm, abbreviated
as MO-DIRECT, is proposed. The algorithm is a modified multi-objective version of
the DIRECT (DIviding RECTangle) algorithm [19], which is an effective single-objective
global optimization scheme [20] with systematic and decisive search steps.

2. The System under Investigation – Swiss-Roll Recuperator. As shown in Fig-
ure 1, the Swiss-roll type recuperator surrounds the combustor for the innovative micro
gas turbine. The Swiss-roll recuperator is designed as a counter-flow spiral-plate heat
exchanger, which is a typical distributed parameter system [21]. The hot fluid enters at
the center of the recuperator unit and flows outward towards the periphery. On the con-
trary, the cold fluid enters from the periphery and flows towards the center. By wrapping
up the heat exchanger in the shape of a Swiss roll, the dissipated heat can be effectively
reduced. The heat transfer between the windings and the core combustor is actually an
integral part of the thermal system. High overall heat transfer coefficients, high thermal
effectiveness and small pressure loss are the advantages of this configuration.
As mentioned above, effectiveness and pressure loss of the recuperator are two important

characteristics in the thermal design. For example, from the cycle analysis for the baseline
designs (power output of 9.3 kW with airflow rate at 0.154 kg/sec; compression ratio
being 2.8; the turbine inlet temperature being 900 ◦C and the rotor speed being 130000
rpm), a swiss-roll recuperator with effectiveness of 0.85 and pressure drop below 10% is
required to achieve the state-of-art performance [4]. The question is then how to design
the recuperator to meet these requirements. In this section, the design procedures are
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Figure 1. The micro gas turbine under study, showing a Swiss-roll recu-
perator surrounding the combustor

firstly through the thermal analysis to find basic configuration design parameters, and
then construct the numerical model for performance analysis.

Notations used in the following investigation are listed as follows.
A Area
c Specific heat
ε Effectiveness
F Correction factor
ṁ Mass flow rate
n Number of turns
NTU Number of transfer units (NTU)
∆P Pressure loss
q Heat transfer rate
ri Core radius
∆r Channel width
R Ratio of the heat capacity between cold and hot flows
∆Tm Log mean temperature difference (LMTD)
T Temperature
U Universal heat transfer coefficient

2.1. Thermal analysis. For a counter-flow heat exchanger shown in Figure 1, the heat
transfer between hot and cold flows can be expressed as:

q = ṁccc(Tc1 − Tc2) = ṁhch(Th1 − Th2) = UAF∆Tm (1)

where U is the universal heat transfer coefficient, F is the correction factor and ∆Tm is
the log mean temperature difference. The subscripts c and h represent the cold and hot
channels, respectively. The effectiveness of the heat exchanger ε is defined as the ratio of
the actual heat transfer over the maximum possible heat transfer (qmax = (ṁc)min(Th1 −
Tc2)), and is expressed as:

ε =
q

qmax

=
ṁcc(Tc1 − Tc2)

(ṁc)min(Th1 − Tc2)
or

ṁch(Th1 − Th2)

(ṁch)(Th1 − Tc2)
,

depending on which fluid, cold or hot, with smaller heat capacity. Here the heat capacity
in cold flows is smaller, we have that (ṁc)min = ṁccc, and

ε =
Tc1 − Tc2

Th1 − Tc2

. (2)



8202 Y.-Z. CHANG, K.-T. HUNG, H.-Y. SHIH AND Z.-R. TSAI

By introducing the number of transfer unit, NTU ≡ UA
(ṁc)min

, Equation (1) becomes the

following relation:

F ×NTU = ε
(Th1 − Tc2)

∆Tm

, (3)

which is the major equation for the preliminary design of the Swiss-roll recuperator.
Since the Swiss-roll recuperator resembles the spiral-plate heat exchanger, the correction

factor for counter-flow spiral-plate heat exchange is used [22,23]. If we define the ratio
of the heat capacity between cold and hot flows as R, where R = ṁcCc/ṁhCh, the
correction factor F for a spiral exchanger is simply a function of NTU per turn, i.e.,
NTU/n, as follows [23]:
If R = 1,

F ∼=
n

NTU
tanh

(
NTU

n

)
(4)

If R 6= 1,

F ∼=
1

(1−R)NTU/n
ln

(
1 +

1−R

1/εi − 1

)
(5)

where

εi =
1− exp [−(1 +R)NTU/n]

1 +R
(6)

For a desired effectiveness ε with given inlet temperature of hot and cold flows (Th1, Tc2),
pairs of (n,NTU) can be found from Equation (3). Once the number of turns n and the
number of heat transfer unit NTU are determined, the width of the channels can be
derived using a new analytical approximation for F as [24]:

F = z ln

(
1 +

1

z + x

)
(7)

where

x = y2/(1 + 2y) (8)

y = ri/(2n∆r) (9)

z = (1 + 2y)/[(NTU/n)2R] (10)

The parameter y is the core radius ri divided by the total width of the double spiral
pack of 2n channels, with the individual channel width being ∆r. Therefore, for the
Swiss-roll recuperator to achieve certain effectiveness, the number of turns, corresponding
number of transfer unit, and the channel width can be estimated with this thermal design
method.

2.2. Model analysis. A numerical model was carried out for fluid dynamics and heat
transfer analysis of the configuration. Both two-dimensional and three-dimensional config-
urations were constructed to represent two limiting scenarios. The two-dimensional model
computes the ideal case with adiabatic boundary conditions, and the three-dimensional
model is for the case with heat loss from both sides while the ambient temperature is
300 K on the boundary. The fluid at the inlet of the cold channel is compressed air from
the compressor, and the hot gas at the inlet of the hot channel is combusted gas through
the turbines. The outlet boundary conditions are gradient-free. For the simplicity of the
model, air is used as the fluid media for both channels.
The resultant Navier-Stokes equations of the steady and compressible k − ε turbulent

flows with heat transfer are solved with STAR-CD, a well-known Computational Fluid Dy-
namics software [25], using the SIMPLE algorithm [26]. Totally 19,952 grids and 602,640
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grids are used for two-dimensional and three-dimensional calculations, respectively. The
grid independence has been checked.

The simulation results from the two-dimensional model are demonstrated in Figure 2,
where the temperature and pressure distributions are presented for the Swiss-roll recuper-
ator with basic design parameters, that is, 6-turns recuperator with cold channel width
of 5.8 mm separated by 1.4 mm-thick plates, where hot channel width is kept 1.5 times
of cold channel width. The mass flow rate is 0.154 kg/s, and the core radius of the can
combustor is assumed to be 25 mm.

These results indicate that, in hot channel, the inlet temperature of hot gas is 1,016
K, and it is cooled to 673.4 K at the outlet. On the other hand, temperature of cold air
is heated from 411 K to 759.3 K in cold channel. The effectiveness of the recuperator is
estimated as 0.60. The pressure distribution, in terms of the relative value to the inlet
pressure, shows that the inlet pressure for the exhaust gas is 1.12 atm (113.5 kPa) in

(a) The temperature distribution

(b) The pressure distribution

Figure 2. Simulated characteristics of a 6-turns Swiss-roll recuperator un-
der baseline design
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the hot channel, and a decrease of 12.3 kPa was found at the exit. The pressure loss
is 10.8%. For cold channel, the inlet pressure of the compressed air is 2.77 atm (280.6
kPa), and a drop of 33.4 kPa was obtained, approximately 11.9% pressure loss through
the recuperator.
The above analysis clearly demonstrates that the baseline design is not optimal when

both the effectiveness and the pressure loss are considered simultaneously. In the following
investigation, we choose four parameters for the Swiss-roll type recuperator design: the
number of turns n, cold channel width ∆r, plate thickness d, and mass flow rate ṁ. The
design goal is to build a recuperator with the highest effectiveness P1 and lowest pressure
drop P2. The scheme for multi-objective optimization is then proposed and presented
next.

3. The Proposed Scheme for Multi-objective Optimization. We propose to apply
a modified version of the DIRECT optimization algorithm [19,27] to optimize the Swiss-
roll recuperator. The name of the DIRECT algorithm is an abbreviation of DIviding
RECTangles, describing a specific manipulation procedure. Developed by Jones et al. in
1993, the procedure is an effective implementation of multidimensional Lipschitzian opti-
mization without the Lipschitz constant [27]. It is deterministic, guaranteed to converge,
and has a very fast convergence rate without trapping in local extremes [28-30].
The design variables in the DIRECT algorithm correspond to coordinates of a point in

an n-dimensional search space, which can be viewed as an n-dimensional hyper-box. By
employing the principle of “Divide and Conquer”, the algorithm proceeds by partition-
ing this hyper-box into smaller hyper-boxes, each of which has its center evaluated for
objective functions (cost functions), and select promising hyper-boxes for further division.
The selection of these hyper-boxes is based on both box size and objective function

value at center points. According to [19,28], a potentially optimal hyper-box in a single
objective minimization problem is defined as follows. Let xi denote the coordinate vector
of the center point of an arbitrary hyper-box i, and di the distance from its center point
to its vertex, which is an index of box size. Besides, let σ be a positive constant and fmin

the current lowest cost value. The hyper-box j is said to be potentially optimal if there
exists some constant, the so-called Lipschitz constant, K > 0 such that

f(xj)− f(xi) ≤ −K · (di − dj) for any i
f(xj)−K · dj ≤ fmin − σ · |fmin|

(11)

In order to avoid considering all the possible values of K, the potential hyper-boxes
are those in the lower-right convex hull of a graphical alignment [28]. In the graph, each
hyper-box is represented by a circle of which the horizontal coordinate is its size, and the
vertical coordinate is the objective function value at its center point
Based on the DIRECT algorithm, we plan to optimize the multi-objective problem in

the sense of Pareto optimality [16,31,32] since we assume no a priori preference among
the conflicting objectives. The multi-objective DIRECT algorithm, abbreviated as MO-
DIRECT, modify the selection strategy of the DIRECT algorithm while preserving its
dividing strategy.

3.1. The division strategy of MO-DIRECT. Figure 3 demonstrates the first three
iterations of an optimization problem with three design variables. At the start of iteration,
the center points of the hyper-boxes are evaluated for objective values. DIRECT then
selects one or more of the hyper-boxes for further search using a strategy to be described
in Subsection 3.2. Finally, each selected hyper-box is trisected along one of its long sides.
By trisection, the original centers remain at the center of resultant smaller hyper-boxes
and only two new centers have to be evaluated for each division.
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Figure 3. Illustration of the dividing strategy of the DIRECT algorithm
in a three-dimensional search space

At the first iteration, there is only one hyper-box and the process of selection for
trisection is trivial. It is then trisected into three hyper-rectangles, denoted as type-α.
At the beginning of iteration 2, the selection process is nontrivial since there are 3 type-α
hyper-boxes. In this example, we select just one hyper-box, which is then trisected into
even smaller hyper-rectangles, denoted as type-β. At the start of iteration 3, there are 2
type-α hyper-boxes and 3 type-β hyper-boxes. For this demonstration, one of each type
is selected and trisected, resulting in one type-α hyper-box, 5 type-β hyper-boxes, and 3
small hyper-cubes, denoted as type-γ.

If the design parameters are of finite resolution, the division procedure can be con-
veniently modified for integers by the introduction of the floor function, which is the
greatest possible integer of the argument. For details regarding the floor function for
center definition and trisecting manipulation, interested readers are referred to [28].

3.2. The selection strategy of MO-DIRECT. For the algorithm to be truly global,
potential optimums should not be overlooked. On the other hand, local search near the
current best solution is required for an efficient exploration. Thus, the main operation
of the algorithm is to select all the potentially optimal hyper-boxes, and precede the
partition strategy described in Subsection 3.1.

Selection strategy modified from the DIRECT algorithm is proposed for the multi-
objective problem. We solve the problem in the sense of Pareto optimality, which is
defined based on the concept of strict dominance and Pareto frontier [31,32], as described
below.

Suppose x1 and x2 are vectors of the design variables, we have that x1 strictly dominates
q, denoted as x1 � x2, when every component of x1 is not worse than x2 and at least one
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component is better. Furthermore, the set of vectors that are not strictly dominated by
any other vectors is defined as the Pareto frontier.
In other words, a four-factor design vector x∗ ∈ Ω, with Ω being the domain of all

candidate vectors, is in the Pareto frontier for two objectives, P1 and P2, if and only if
there is no vector x ∈ Ω with the following characteristics

P1(x) ≥ P1(x
∗) and P2(x) ≤ P2(x

∗) (12a)

P1(x) > P1(x
∗) or P2(x) < P2(x

∗). (12b)

Since the solution x∗ is not worse than x in all objectives (Equation (12a)) and x∗ is
strictly better than x in at least one objective (Equation (12b)), we have that x∗ is not
strictly dominated by x. The same concept can be applied with little modification to the
optimization problems with more than two objectives.
Additionally, we may sort the population into ranks, such that members of the Pareto

frontier are categorized as rank 1, and members of the newly emerged Pareto frontier
when the original Pareto frontier is temporarily removed are categorized as rank 2, and
so on for the subsequent members.

Figure 4. An illustrative example used to demonstrate how hyper-boxes
are selected for dividing in the MO-DIRECT algorithm

With this ranking, we can now describe how hyper-boxes are selected for dividing by
Figure 4. In the figure, the hyper-boxes are represented by circles which are gathered in
size groups, denoted as Bk, Bk+1, Bk+2, . . ., Bk+5 and Bk+6. Note that, in a size group,
there might be more than one hyper-box with the same rank, and some ranks might be
absent. For instance, there are two Rank 3 members in Bk+6, and no Rank 1 member in
Bk+5. The selection strategy of MO-DIRECT can be briefly described as follows:

• Select the lowest rank member of a size group if there is no lower rank member in
all of its right-hand side (larger) groups. When two or more hyper-boxes have the
same lowest rank in a size group, a hyper-box is randomly selected for dividing.

According to the rule, hyper-boxes a, c, d, e and g are selected for division. Hyper-boxes
b and f are skipped because there are lower rank members, c and g, in larger groups, Bk+4

and Bk, respectively.
There are two differences between MO-DIRECT and the standard DIRECT algorithm

in the selection strategy:
1. The MO-DIRECT is based on the Pareto ranking, while DIRECT is directly based

on the objective value.
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2. In MO-DIRECT, a hyper-box is selected even when there is a larger hyper-box with
the same rank. In the standard DIRECT, if there is a larger hyper-box with the same
objective value, the smaller one is ignored.

After several iterations, each size group will have a large number of candidate solutions
sharing the same rank, especially in the smallest size group. Hence, the procedure can
easily result in exhaustive search. To improve overall performance, we apply the crowding
distance computation [33] to trim the hyper-boxes each iteration such that each size group
has only a limited number, say 120 for example, of hyper-boxes with the same rank.

The basic procedure of MO-DIRECT is summarized by the following steps.

Step 1) Initialize the first hyper-box as the entire design space.
Step 2) Evaluate the center points of current hyper-boxes.
Step 3) Sort the hyper-boxes into Pareto ranks according to the results of Step 2.
Step 4) Trim the hyper-boxes such that each size group has only a limited number of

hyper-boxes with the same rank.
Step 5) Select all of the potentially optimal hyper-boxes that satisfy the following two

conditions:
(1) It is of the lowest rank in its size group.
(2) There is no lower rank member in all of its right-hand side (larger) groups.

Step 6) Trisect the selected hyper-boxes.
Step 7) Go back to Step 2 until the maximum number of function evaluations is reached

or some termination criterion has been met.

3.3. Artificial neural network as surrogate model. In order to reduce the effort of
numerical analysis in the optimization process, an artificial neural network (ANN) [34]
is employed as surrogate model [18] for interpolation. Surrogate model accelerates the
search for promising designs by replacing expensive design evaluations or simulations.
They provide a global model of performance with respect to design variables, which can
then be used in the optimization procedure efficiently.

Nine pilot simulations, with results listed in Table 1, were conducted for the training
of neural networks that build the numerical relationships between the four processing
parameters (n, ∆r, d, and ṁ) and the two objective characteristics (effectiveness and
pressure drop, P1 and P2).

We use a multilayered feed forward neural network [34] as the interpolation model.
Without loss of generality, the artificial neural network (ANN) has two hidden layers.
The number of the neurons in the two hidden layers was optimized by the standard
DIRECT algorithm [35] to find an ANN with minimum prediction error. The Levenberg-
Marquardt training algorithm was applied to train the network. Figure 5 shows the
optimization history when a search space is defined as 40 by 40 for the number of neurons
in the two hidden layers. In this figure, the temporarily best solutions for the iterations
are connected together, showing the trace of search.

Within 58 steps, we have reached a global optimal structure design for the surrogate
neural network, instead of 1,600 trials in an exhaustive search. The optimized 4-5-2-2
network was then employed in the following procedure.

3.4. Overall optimization method – MO-DIRECT and ANN. The optimization
procedure combines the surrogate model and the MO-DIRECT algorithm to find the
optimal design in the sense of Pareto optimality.

As shown in Figure 6, the design procedure begins with the preparation of pilot simu-
lation data for the surrogate model using computational fluid dynamics (CFD) described
in Section 2. These data are not only used for the training of ANN, but also for the
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design of number of nodes in the hidden layers, since the architecture of an ANN plays
an important role in its approximation and interpolation. The ANN architecture design
is based on the integer DIRECT algorithm, as described in Subsection 3.3. Once trained,
the ANN is ready for supplying the corresponding performance values, P1 and P2, for

Table 1. Pilot simulation data showing the numerical relationships be-
tween the 4 design parameters (n, ∆r, d, and ṁ) and the corresponding
two design goals (effectiveness and pressure drop, P1 and P2)

Figure 5. Searching history in optimizing the size of the hidden layers of
the surrogate ANN
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Figure 6. Flow chart of the design procedure showing the interaction
between the MO-DIRECT algorithm and the ANN surrogate model

each combination of design parameters without the computationally intensive numerical
simulations.

Optimization of the recuperator is then directed by the MO-DIRECT algorithm to find
the best combination of design parameters (n, ∆r, d, and ṁ) in the Pareto front. Since
there are infinitive solutions in the Pareto front, theoretically, we select two extremes and
one min-max solution as representatives. Correctness of these three solutions is verified
by the deviation between the performances (P1 and P2) obtained by the surrogate model
and those calculated by numerical simulations.

If the deviation, or the prediction error, is larger than a predefined value, the newly
calculated numerical data should be included in the training data set, and we re-train the
ANN to fit the augmented data set. After that, the MO-DIRECT algorithm is used in
the next iteration to find the updated Pareto front. These procedures are repeated until
the prediction error is small enough.

4. Effectiveness of the Proposed Scheme. As shown in Table 2, mere four iterations
are required to find an optimal solution set with prediction error lower than 4%. The
prediction errors are further plotted in Figure 7, showing the convergence trend. Note
that the prediction error of the first cost value (P1) is always higher than that of the
second cost value (P2), but both converge to a very small value at the end of the fifth
iteration.

Figure 8 shows the Pareto front obtained at the end of the iterations, with an optimum
min-max solution of n = 8, ∆r = 5.4, d = 2.0, and ṁ = 0.125. It is worth to mention
that only 2,313 cost function evaluations (derived from the ANN) are required to obtain
the representative Pareto front solutions. This is much less than the exhaustive search



8210 Y.-Z. CHANG, K.-T. HUNG, H.-Y. SHIH AND Z.-R. TSAI

Table 2. Record of five optimization iterations. In each iteration, 3 pre-
diction sets of design goals (P1 and P2) from the Pareto front are obtained
using the ANN model. The design goals are compared with the numerical
simulation results.

which requires 35,343 evaluations. (Based on the fact that n has 3 different values: 6,
7, 8, ∆r has 21 alternatives: 4.8 to 6.8 with resolution 0.1, d has 11 alternatives: 1.0 to
2.0 with resolution 0.1, and ṁ has 51 alternatives: 0.125 to 0.175 with resolution 0.01;
3× 21× 11× 51 = 35, 343.)
As the ANN represents the relationship between the design parameters and the design

goals, it is ready to be investigated for trends. Figure 9 and Figure 10 show the variation
of effectiveness and the pressure loss with respect to the flow rate and plate thickness. It
is clear that both design goals increase with the increase of these two design parameters,
thus a trade-off is required for this two-objective problem. Note that, as there are four
design parameters, two of them (the number of turns and channel width) must be fixed
to plot these three dimensional figures.
Furthermore, there are nine primary simulations to collect data to train the ANN, and

five iterations of MO-DIRECT, each requires three simulations to verify correctness of
the surrogate model, totally only 24 numerical simulations are required to reach the two-
objective global optimization design. Considering that each numerical simulation takes
more than 15 minutes when a Intel Core i7-2630QM 2.0 GHz CPU equipped with 4 GB
main memory are used, the proposed design procedure is efficient enough for practical
design applications.
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Figure 7. Convergence history of the prediction errors of the ANN surro-
gate model

Figure 8. The Pareto front obtained by the MO-DIRECT optimization algorithm

5. Conclusion. An effective multi-objective design procedure is proposed for the design
of Swiss-roll recuperator that is used as a heat exchanger to recover the exhaust heat of
a micro gas turbine.

Preliminary theoretical analysis of the recupeator shows that the complex interconnec-
tions between these design parameters make it difficult to analyze the process and select
adequate parameter combination to build a recuperator with the highest effectiveness and
lowest pressure drop. We take the number of turns, channel width, plate thickness, and
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Figure 9. The influence of flow rate and plate thickness on the effective-
ness of the Swiss-roll recuperator

Figure 10. The influence of flow rate and plate thickness on the pressure
loss of the Swiss-roll recuperator

mass flow rate, totally four design parameters, to be optimized for these two objectives
in the sense of Pareto optimality.
In order to reduce the number of numerical analysis in the optimization procedure,

a two-layered feed-forward neural network is employed as surrogate model, and a multi-
objective DIRECT algorithm, named as MO-DIRECT, is developed. The structure of the
neural network was optimized by the normal DIRECT algorithm, resulting in a 4-5-2-2
network.
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After merely 5 iterations, with 3 representative parameter sets selected from the Pareto
front for correctness test of the surrogate model in each iteration, we were able to find
a min-max solution with prediction error lower than 4%. Also, only 24 numerical sim-
ulations are required to achieve the results, and only 2,313 steps were conducted in the
MO-DIRECT search, rather than 35,343 required for an exhaustive search.
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