International Journal of Innovative
Computing, Information and Control ICIC International (©)2012 ISSN 1349-4198
Volume 8, Number 12, December 2012 pp. 8311-8321

SELF-EVOLVING ANT COLONY OPTIMIZATION AND ITS
APPLICATION TO TRAVELING SALESMAN PROBLEM

XI1AO-FAN ZHOU AND RoONG-LONG WANG

Graduate School of Engineering
University of Fukui
Bunkyo 3-9-1, Fukui-shi 910-8507, Japan
wang@u-fukui.ac.jp

Received September 2011; revised January 2012

ABSTRACT. Ant colony optimization (ACO) algorithms are a recently developed, popula-
tion-based approach which has been successfully applied to combinatorial optimization
problems. Howewver, in the ACO algorithms, it is difficult to adjust the balance between
intensification and diversification and thus the performance is not always very well. In
this paper we proposed an improved ACO algorithm in which a self-evolving strategy is
adopted so as to acquire a trade-off between intensification and diversification. With this
strategy we make each ant evolve by means of multiple pheromone deposition, the total
concentration of which includes two parts, that is, one part is deposited by several best
ants of the last iteration and the ant that has searched the global-best solution by the
current iteration, and the other part is deposited temporarily by each ant itself of the
last iteration as well. The proposed algorithm is tested by simulating Traveling Salesman
Problem (TSP) and experimental results show that Self-evolving Ant Colony Optimization
has superior performance when compared with other existing ACO algorithms.
Keywords: Ant colony optimization, Combinatorial optimization problems, Traveling
salesman problem, Self-evolving strategy

1. Introduction. ACO is a recently developed meta-heuristic method [1,2] that has
successfully applied to a number of combinatorial optimization problems arising in many
different fields such as economy, commerce, engineering, industry or medicine [3-7]. The
inspiring source of ACO algorithms is the foraging behaviors of real ants which deposit a
chemical pheromone trail on the ground to mark the favorable path that should be followed
by other ants of the colony when searching for foods. In ACO, a number of artificial
ants build solutions to the considered combinatorial optimization problem and exchange
information on the quality of these solutions by means of an indirect communication which
enables them to find short paths between their nest and food sources using pheromone
trails. Compared with real ants, ACO algorithms exploit a similar mechanism for solving,
for example, discrete optimization problems.

The searching behavior of ACO can be characterized by two main features [8-10]: in-
tensification and diversification. Intensification is the ability to search thoroughly in the
local neighborhood where good solutions have previously been found, while diversifica-
tion is the ability to broadly search through the solution space. Higher intensification
leads to the rapid convergence to a suboptimal solution while higher diversification re-
sults in a better solution at higher computational cost due to the slow convergence of
the approach. Since these attributes are in conflict with each other, a trade-off between
them is important for a logical balance between the efficiency and optimality. Since the
first ACO algorithm called Ant System (AS) [11-13] was proposed by Dorigo in 1992, a
number of other ACO algorithms were introduced. The first improvement over AS was

8311

8312 X.-F. ZHOU AND R.-L. WANG

obtained by the Elitist AS (EAS) [14], which has a modified pheromone update rule, that
is, each time the pheromone trails are updated, those belonging to the edges of the global
best tour get an additional amount of pheromone so as to emphasize information about
the best solution in the algorithms’ search procedure. The biggest problem that can be
caused by such exploitative method is insufficient exploration and premature convergence
to sub-optimal solutions. As a result, different remedies using exploitative methods, such
as EAS, are proposed to solve the premature convergence problem. In Rank-based ver-
sion of AS (Rank-based AS) [15], the concept of ranking was applied and extended as
follows. A number of best ants of the current iteration are allowed to deposit pheromone
according to their ranks, while the best-so-far ants are allowed to deposit pheromone of
the highest quantity. Another improvement over Ant System is Max-Min Ant System
(MMAS) [16-18], of which the characterizing elements are that it also adopts a concept
of elitism in which only the best ant at each iteration updates trails and that the possible
trail values are restricted to the interval [Tyin, Tmax], Where the two parameters are set in
a problem dependent way.

Ant Colony System (ACS) [19,20] introduced by Dorigo uses a more aggressive action
choice rule than AS, called pseudo random proportional rule which favors transitions
towards nodes connected by short edges and with a large amount of pheromone. In ACS
the pheromone updating rule is only applied to the edges belonging to the global-best
tour, and a local pheromone updating rule, by which each time an ant uses an edge (i,)
to move from city i to city j, it removes some pheromone from the edge, is also adopted.

Although modifications on preventing ant from converging to local optimum through
exploiting new pheromone update rules have been carried out and acquired relatively
good performance, the balance between intensification and diversification is still the most
important theme in the study of ACO algorithms.

In this paper, focusing on the balance between intensification and diversification, we
proposed a new anti-stagnation method, called self-evolving ACO algorithm, to which the
rank-based strategy of pheromone update in ACO algorithms is applied so as to concen-
trate the search around the good solutions as a means of encouraging the intensification of
the method. On the other hand, together with the rank-based pheromone, the pheromone
related with the result that each ant found in the last iteration is also introduced as a new
way of employing pheromone to enhance the diversification. By this method, the result
of each ant evolves iteration by iteration. AS pheromone of each ant itself played a vital
role in solution construction, we call the proposed algorithm self-evolving Ant Colony
Optimization in this paper.

To evaluate the performance of the proposed improved ACO algorithm, we simulate
some TSPLIB benchmark problems [21,22]. The simulation results show that the proposed
algorithm performs better than the existing ACO algorithms on some TSP benchmark
problems.

Since the first ACO was proposed, a lot of improved versions of it were introduced
and successfully applied to various combinatorial optimization problems arising in many
different fields. Many studies on the ACO algorithms were conducted and extensive
experiments were implemented on different benchmark problems such as TSP, and the
theoretical results can be widely applied to many real-world applications. For instance,
in the order-picking problem in warehouses, some vehicle has to collect all items of an
order that contains a certain subset of the items stored in the warehouse, and ship them
to the customer. The problem of finding a shortest route for the vehicle with minimum
pickup time can be solved by the ACO algorithms. Besides, the scheduling problem in the
manufacturing plant can be also solved by a practical application using ACO algorithm.
The objective of the problem is to find a way to successfully manage resources in order

SELF-EVOLVING ACO AND ITS APPLICATION TO TSP 8313

to produce products in the most efficient way possible and design a production schedule
that promotes on-time delivery, and minimizes objectives such as the flow time of a
product. In addition, other practical uses of the ACO algorithms include the drilling
problem of printed circuit boards, the facility layout problems, the routing problems in
telecommunication networks and other optimal problems.

2. Ant Colony Optimization. The first ACO algorithm, called Ant System (AS) was
introduced in the early 1990’s by Marco Dorigo and his colleagues, and was firstly applied
to the traveling salesman problem (TSP). In TSP, a set of cities is given and the distance
between each of them is known. The goal is to find the shortest tour so that each
city is visited exactly once and the tour ends in the initial city. For a set of cities, we
consider d;; to be the distance between any given cities 7 and j, such that the path length
dij = [(z; — ;)% + (y; — y;)%)2, where (24, y;), (x;,;) is the coordinates of city i and city
J. Let 7; be the amount of pheromone in the edge that connects ¢ and j. Initially, each
of m ants is put on some randomly chosen city, and then decides independently which
city to go to using a transition rule that is a function of the distance to the city and the
amount of pheromone of the present connecting path, until the tour is completed. The
probability, which shows the transition rule, of the kth ant making the transition from
city ¢ to city 7, is given by:
7ii1%n: s B P

. _ | S i€k
Dbi; = 1esk (1)

0, otherwise

where 7;; = 1/d;; is a heuristic value, a and are two parameters which determine the
relative importance of pheromone value and heuristic information, and J¥ is the feasible
neighborhood of ant k, that is, the set of cities remains to be visited by ant k positioned
on city 7. After all ants have built a tour, ants perform following pheromone update rule:

Ti(t+1) = (1= p) - 75(t) + Y ATE(?) (2)

where p € (0,1) is the evaporation rate of the pheromone trail, and AT,Z is the amount of
pheromone laid on path (7, j) by the kth ant. The amount of pheromone an ant k& deposit
on an edge (i, j) is defined by L¥(t), the length of the tour created by that ant at iteration
t as follows:

9 if (4,) is used by ant k

ATE() =4 LF®)
(1) { 0, otherwise

(3)

where @) is constant [23]. In this way, the increase of pheromone for an edge depends on
the number of ants that use this edge, and on the amount of the solutions found by those
ants.

Even though the original AS algorithm showed to be a viable method for attacking
the TSP problem, it was found to be inferior to state-of-the-art algorithms for the TSP
as well as for other problems. Therefore, several extensions and improvements of the
original AS algorithm were introduced over the years. In Rank-based AS [15], a number
of best ants of the current iteration are allowed to add pheromone and the global-best
tour is always used to update the pheromone trails. To this aim the ants are sorted by
tour length, and the amount of pheromone an ant may deposit is weighted according
to the rank r of the ant. In each iteration, only the (w — 1) best-ranked ants and the
ant that produced the best-so-far tour are allowed to deposit pheromone. The rth best
ant of the current iteration contributes to pheromone updating with a weight given by

8314 X.-F. ZHOU AND R.-L. WANG

max{0,w—r}. Additionally, the global best solution, which gives the strongest feedback,
is given weight w. Thus the improved update rule is

w—1

T (t+1) = p-7;(t) + i: (w—7r)- AT5(t) +w - Arf}b(t) (4)

r=1

where A7/ (t) = Q/L"(t) and ATZ%b(t) = Q/L%(1).

3. Self-Evolving Ant Colony Optimization. The same as in other heuristic algo-
rithm, the adjustment of the balance between intensification and diversification is one of
the most important themes in the study of ACO algorithm. In detail, too much emphasis
on the intensification can make ants converge to a local minimum and too much emphasis
on the diversification can cause an unstable state. In Section 2, we surveyed the original
ACO algorithm and some improvements. We note that only the pheromone information
of ants that have good solutions was strengthened and thus these algorithms are apt to
converge too early. So most of existing ACO algorithms are aiming to adjust the inten-
sification in depositing pheromone. However, it remains difficult to control the balance
between intensification and diversification.

In order to acquire good balance between intensification and diversification, traditional
ACO algorithms always try to change the pheromone update rule, such as EAS [14],
Rank-based AS [15], MMAS [16-18] and ACS [19,20]. However, in this paper, we adopted
the update rule of rank-based AS directly, as the basic pheromone update rule, but not
introduce a completely new pheromone update rule. Moreover, a self-evolving mechanism
was adopted. In this mechanism, two kinds of pheromone information are used, which are
the group pheromone information and the individual information of each ant. The group
pheromone information is used for pheromone trail updating by rank-based rule, while
the individual information of each ant is employed as a temporary addition of individual
information to the updated pheromone trail. As a result, different to rank-based AS,
the solution construction of each ant will be affected not only by the overall pheromone
amount on each edge after partial evaporation and deposition in a rank-based model, but
also by the quality of solution searched by this ant in the last iteration, respectively. So
each ant self-evolves by its individual information and the group information.

By tuning € € (0, 1), a parameter which shows the relative influence of group pheromone
information and temporary individual pheromone information, the balance of the inten-
sification and diversification is adjusted and evolvement of each ant is expected. In other
words, the solution quality of each ant is expected to grow better generation by generation,
by the use of the two kind of pheromone information to guide the solution construction.

Through this way, compared with the rank-based AS, the diversification of the method
will be greatly affected by the individual ants, so paths of unvisited or relatively unex-
plored search space regions will get more desirable for the following ants. Thus, instead of
quickly converging to a sub-optimal solution, ants will evolve to more promising solution
space regions generation by generation.

In order to interpret the proposed method, we introduce the high-level view of the self-
evolving ACO in Figure 1 and the outline of the proposed solution construction in Figure
2 where 7;; and Ti’j- are used to express the amount of ordinary pheromone trail and the
amount of pheromone trail which ant k uses to construct solution.

To exactly describe this algorithm with a mathematical model, we first give the outline
of the proposed solution construction in the proposed ACO algorithm in Figure 2. As
depicted in this figure, after all of the ants have built solutions in last iteration, the
best-so-far solution is updated in the statistic information update step, and pheromone

SELF-EVOLVING ACO AND ITS APPLICATION TO TSP 8315

procedure Self-evolving ACO
Initialize data
while (not terminate) do
Construct solutions
Update statistics
Update pheromone trails
end-while
end-procedure

F1GURE 1. Procedure of an ACO algorithm

Each ant respectively search on the

pheromone information ri‘f

Update statistical information

Update pheromone information z;
by the rule of rank-based AS

FIGURE 2. Outline of proposed solution construction

information is updated by the rule of Rank-based AS in pheromone information update

step while an additional weight ¢ € (0,1) is exploited to adjust the influence of the
newly updated rank-based pheromone deposition, which we call it group information 7'5',

upon the solution construction of the next iteration. With this newly adopted parameter
e € (0,1), we give the equation of pheromone update as:

Tii(t+1) = (1 — p)75(t) + € - Ti?(t +1) (5)

The group information 75 (¢) in Equation (5) can be described as follows:

-1

g

G r b
Tt +1) = (w—r)-AT/(t) +w - ATigj (1) (6)
r=1
Ay = { T HEDETT®) ™
G0, otherwise
Q@ if (i,5) € T9(¢)
A gb — Lgb(t) 9 1 9 .]
i () { 0, otherwise ®)

where @) is constant, L"(t) is the length of the tour generated by the rth best ant in
iteration ¢, T7(t) is the set of edges constituting the tour, L9 is the length of the tour
generated by the global best ant and 79 is the set of edges constituting it.

8316 X.-F. ZHOU AND R.-L. WANG

procedur e Construct solutions
Empty memory of each ant
for each ant do
Deposit temporary individual pheromone trails
Assign arandom initia city
while (tour is not completed) do
Decide the next city on temporary
individual pheromone information
end-while
Evaporate all temporary individual pheromone trails
end-for
end-procedure

F1GURE 3. Outline of proposed solution construction

Once the previous pheromone update step terminates, each ant starts its solution con-
struction on its respective pheromone information 7'5-, which is only used by tour con-
struction but not used to pheromone update, and can be described as below:

HE+1) =75+ 1)+ (1—¢e)-rk(t+1) (9)

A (5,) € THY)
0, otherwise

T+ 1) = { (10)

where Tlé-k, called temporary individual pheromone information in this paper, is the
pheromone quantity related with the tour length which is found by the kth ant in last
iteration and is temporarily added to current pheromone trails with weight (1 — €), to
obtain respective pheromone on which each ant uses to search solution respectively, and
Q is constant, L¥(t) is the length of the tour generated by the kth ant in iteration t. As to
detailed procedure on how to execute solution construction in a program, we give Figure
3.

To sum up, based on prior description, we can note that the respective pheromone
information, which is used to construct solution by each ant, can be derived by integrating
Equation (5), Equation (6) and Equation (9) as follows:

RE+1) =1 —p) mi;(t)+e- 75t + 1)+ (1—e)-TF(E+1) (11)

By Equation (11), we can conclude that the respective pheromone which is used by
each ant when building its solution consists of two parts, that is, the left part is the group
information and the right part is the temporary individual pheromone information, and
that € € (0, 1) controls the relative influence of the two kinds of information upon solution
construction of each ant.

4. Simulation Results. In order to assess the effectiveness of the proposed ACO algo-
rithm, extensive simulations were carried out over some TSPLIB benchmark problems on
a PC Station (Intel, 2.66GHz). As the parameter setting of the proposed method, if « is
too high compared with 5, the ACO algorithm tends to enter stagnation behavior without
finding good solutions. If « is too low, the algorithm operates like a repeated construction
heuristic and generates good solutions, but can not exploit the positive feedback. The
same is true for p. If p is too close to zero, most of the global information contained in the
trail levels evaporates immediately and learning does not take place. If p is too close to
one, there is the danger of early convergence of the algorithm. The parameter () measures

SELF-EVOLVING ACO AND ITS APPLICATION TO TSP 8317

the influence of the new information (length of the tours) relative to the influence of the
initial trail levels. As long as @) is not too small, this parameter is not crucial for the
convergence of the algorithm. The setting « =1, =5, p = 0.5, Q = 100 and w = 6
is suggested to be advantageous in [12,15]. In addition, through extensive experiments
on the proposed method, we found that if the colony size is too small or too big, the
proposed method shows bad performance, so the colony size is set to 30.

4.1. Parameter value of €. In the proposed ACO algorithms, as described in Sec-
tion 3, parameter ¢ was adopted to control the relative importance between the group
pheromone information and the temporary individual pheromone information. By tuning
this parameter, the relative degree of exploration and exploitation was adjusted to achieve
best performance, that is to say, the performance of the proposed method is affected by
the choice of whether to concentrate the search of the system around the best-so-far
solution or to explore other tours in the search process. Too small value of ¢ leads to
less emphasis of group experience and temporary individual experience dominates in the
search process and as a result, it is difficult to find the optimal results because of rapid
change of the search space. On the other hand, too large value of € causes that at the
initial stage, ants are apt to concentrate around some local optimal solution, resulting
in a stagnation situation. To see the influence of this parameter upon the performance,
we tested the proposed ACO algorithm on problem Oliver30 including 30 cities, problem
eil50 including 50 cities, problem €il75 including 75 cities, and problem kroA100 includ-
ing 100 cities using different values of parameter €. For each different value of ¢ of each
problem, 100 runs were performed. The simulation results on different TSP instances are
summarized in Table 1. In this table, we give the rates to find the optimal solutions when

TABLE 1. Simulation results

€ oliver30 ¢il50 eil75 kroA100

0 2% 0% 0% 0%
0.025 50% 2% 4% 2%
0.075 100% 16% 54% 23%
0.125 100% 7% 90% 100%
0.175 99% 60% 48% 38%
0.225 49% 39% 30% 27%
0.275 28% 9% 16% 7%
0.325 25% % 13% 3%
0.375 24% 4% 12% 1%
0.425 17% 3% 4% 0%
0.475 16% 2% 5% 0%
0.525 16% 1% 4% 0%
0.575 18% 0% 3% 0%
0.625 12% 1% 1% 0%
0.675 9% 2% 0% 0%
0.725 8% 1% 0% 0%
0.775 % 0% 0% 0%
0.825 5% 0% 0% 0%
0.875 2% 0% 0% 0%
0.925 2% 0% 0% 0%
0.975 1% 1% 0% 0%

1 1% 1% 0% 0%

8318 X.-F. ZHOU AND R.-L. WANG

w
(=]
5]
o

28000

26000

24000

22000

average length of the best tour

1 1 1 1 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09 1
epsilon

N
o
5]
o

FIGURE 4. Average tour length using different ¢

38000

35000 |
32000
29000

tour length

26000 |
23000

20000
0 01 02 03 04 05 06 07 08 09 1
epsilon

FIGURE 5. Best and worst tour length using different ¢

using different ¢ on these TSP instances. From this table we note that when ¢ = 0, that
is, there is no group pheromone information to affect the solution construction, the rates
to find the optimal solutions are very low or even 0, and when € = 1, that is, there is no
individual pheromone information to affect solution construction, the rates are also very
low or even 0.

Through observing this table, we can conclude a characteristic of our proposed algo-
rithm, that is, the proposed algorithm can find the optimal solution with the highest rate
when ¢ is around 0.125. In addition to the rate to find the optimal solution, we can also
assess the effectiveness of the algorithm under a specific € by the average length of the
best tour, or the difference between the best and the worst tour. As we know that the
smaller the average length of the best tour or the difference between the best and the
worst tour is, the better the the algorithm performs, we present Figure 4 and Figure 5,
in which the results of the simulation carried out over problem kroA100 are given. In
Figure 4, we give average length of the best tour when using different ¢, and in Figure
5 we give the best and worst tour lengths when using different . From both figures, we
find that the proposed algorithm can get the smallest average length of the best tour and
even the same value of the best and worst tour when ¢ is around 0.125. As described
above, the proposed algorithm shows the best performance when ¢ locates around 0.125.
In following simulations, we set the value of ¢ with 0.125.

4.2. Search ability of the proposed algorithm. As described in Section 3, different
to the traditional ACO algorithms, two kinds of different pheromone information were

SELF-EVOLVING ACO AND ITS APPLICATION TO TSP 8319

38000
----- ACS
35000 1 the proposed algorithm
< 32000 f
=) .
8 29000 o
s) T \
= 26000 I A
23000 |
20000 ‘ ‘ ‘ ‘

0O 100 200 300 400 500 600 700 800
iteration

F1GURE 6. Tour length varying with iteration

introduced in this paper. Because the group pheromone information controls the in-
tensification and the individual pheromone information affects the diversification of the
algorithm, the balance of intensification and diversification can be easily adjusted by tun-
ing the relative influence of the two kinds of pheromone information, while the traditional
ACO algorithms have no quantitative parameter like ¢ in the proposed method to adjust
the balance of intensification and diversification.

From experiment result of Section 4.1, we obtain the optimal value of €. To see the
search ability of the proposed algorithm, we compared the evolving process of the tour
length of the proposed algorithm with a conventional ACO algorithm called ACS [19,20],
an extension of the first ACO, through developing simulations on problem kroA100 respec-
tively as well. The experimental simulation results are given by Figure 6. The figure shows
that the proposed algorithm converged to a value very close to the optimal tour length
after 400 iterations and to the optimal length after 695 iterations, while the conventional
method converged very slowly and to a very large value that is far away from the optimal
value even after 800 iterations. In addition, the curve of the proposed method is smoother
than the traditional method. So we can conclude that the self-evolving mechanism takes
effect indeed. In other words, the better search ability of the proposed algorithm is mainly
due to the self-evolvement of each ant by exploiting individual information that gradually
affects the solution construction iteration by iteration based on the rank-based pheromone
deposition.

4.3. Comparison with other algorithms. In addition to the problem kroA100, we
also tested the proposed ACO algorithm on some other TSPLIB benchmark problems to
see the ability of the global search and local converge of the proposed algorithm. For
each of instances, 100 simulation runs were performed. The results are shown in Table
2 where the results produced by the ACS [19,20], genetic algorithm (GA), evolutionary
programming (EP), simulated annealing (SA) are also listed for comparison. We report
the best integer tour length, the best real tour length (in parentheses) and the number
of tours required to find the best integer tour length (in square brackets). The difference
between integer and real tour length is that in the first case distances between cities are
measured by integer numbers, while in the second case by floating point approximations
of real numbers. Table 2 shows that for the integer results the proposed algorithm can
acquire the optimal results using the least calculation time, and for the results of real
lengths, the proposed algorithm can also find the smallest solutions. Through observing
the table, it is easy to note that the proposed ACO algorithm outperforms other algorithms
in both the solution quality and the computation cost.

8320 X.-F. ZHOU AND R.-L. WANG

TABLE 2. Simulation results

Problem Optimum GA EP SA ACS Proposed algorithm
420 421 420 424 420 420
Oliver30
(30-city) 423.74 (N/A) 423.74 (N/A) 423.74 423.74
[3200] [40 000] [24 617] [830] [199]
425 428 426 443 425 425
Eil50
(50-city) (N/A) (N/A) 427.86 (N/A) 427.96 427.86
[25 000] [100 000] [68 512] [1 830] [360]
535 545 542 580 535 535
Eil75
(T5ciry) (/A (N/A) 54918 (N/A) 54231 542.31
80 000 [325 000] [173 250] [3 480] [597]
21 282 21 761 N/A N/A 21 282 21 282
KroA100
(100-city) (N/A) (N/A) (N/A) (N/A) 21 285.44 21 285.44
[103 000] [N/A] [N/A] [4 820] [695]

5. Conclusions. An improved ACO algorithm called self-evolving ant colony optimiza-
tion for efficiently solving combinatorial optimization problems was proposed in this paper.
In the proposed ACO algorithm, the balance between intensification and diversification
can be adjusted by the gradually self-evolving of each ant, using the temporary indi-
vidual information of last iteration and the group information that applied rank-based
pheromone-update rule. The proposed ACO algorithm was evaluated experimentally
through simulating some TSP benchmark problems. From the simulation results, we
noted that the proposed improved ACO has superior performance compared with the
original Rank-based AS and some other methods. It is worth noting that the idea to
adjust the balance between intensification and diversification can also be applied to other
ACO algorithms.

REFERENCES

[1] C.Blum and A. Roli, Metaheuristics in combinatorial optimization: Overview and conceptual com-
parison, ACM Computing Surveys, vol.35, no.3, pp.268-308, 2003.

[2] S. D. Shtovba, Ant algorithms: Theory and applications, Programming and Computer Software,
vol.31, no.4, pp.167-178, 2005.

[3] C. Blum, Ant colony optimization: Introduction and recent trends, Physics of Life Reviews, vol.2,
no.4, pp.353-373, 2005.

[4] S. S. Kim, I.-H. Kim, V. Mani and H. J. Kim, Ant colony optimization for SONET ring load-
ing problem, International Journal of Innovative Computing, Information and Control, vol.4, no.7,
pp-1617-1626, 2008.

[5] M. Dorigo and T. Stiitzle, Ant Colony Optimization, The MIT Press, 2004.

[6] J. Bell and P. Mcmullen, Ant colony optimization techniques for the vehicle routing problem, Ad-
vanced Engineering Informatics, vol.18, no.1, pp.41-48, 2004.

[7] S. S. Kim, I.-H. Kim, V. Mani, H. J. Kim and D. P. Agrawal, Partitioning of mobile network into
location areas using ant colony optimization, ICIC Express Letters, Part B: Applications, vol.1, no.1,
pp-39-44, 2010.

[8] A. Colorni, M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini and M. Trubian, Heuristics from nature
for hard combinatorial optimization problems, International Transactions on Operational Research,
vol.3, no.1, pp.1-21, 1996.

[9]

SELF-EVOLVING ACO AND ITS APPLICATION TO TSP 8321

D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck and B. Baesens, Classification with
ant colony optimization, IEEE Transactions on Evolutionary Computation, vol.11, no.5, pp.651-665,
2007.

C. Twomey, T. Stiitzle, M. Dorigo, M. Manfrin and M. Birattari, An analysis of communication poli-
cies for homogeneous multi-colony ACO algorithms, Information Sciences, vol.180, no.12, pp.2390-
2404, 2010.

M. Dorigo, M. Birattari and T. Stiitzle, Ant colony optimization, IEEE Computational Intelligence
Magazine, vol.1, no.4, pp.28-39, 2006.

M. Dorigo, V. Maniezzo and A. Colorni, Ant system: Optimization by a colony of cooperating
agents, IEEFE Transactions on Systems, Man and Cybernetics, vol.26, no.1, pp.29-41, 1996.

M. Dorigo, Optimization, Learning and Natural Algorithms, Ph.D. Thesis, Dipartimento di Elettron-
ica, Politecnico di Milano, Italy, 1992.

M. Dorigo and C. Blum, Ant colony optimization theory: A survey, Theoretical Computer Science,
vol.344, no.2-3, pp.243-278, 2005.

B. Bullnheimer, R. Hartl and C. Strauss, A new rank based version of the ant system, Central
European Journal of Operations Research, vol.7, no.1, pp.25-38, 1999.

T. Stiitzle and H. H. Hoos, MAXMIN ant system, Future Generation Computer Systems, vol.16,
n0.9, pp.889-914, 2000.

T. Stiitzle and M. Dorigo, A short convergence proof for a class of ACO algorithms, IEEE Transac-
tions on Evolutionary Computation, vol.6, no.4, pp.358-365, 2002.

R. Pitakaso, C. Almeder, K. F. Doerner and R. F. Hartl, A MAX-MIN ant system for unconstrained
multi-level lot-sizing problems, Computers and Operations Research, vol.34, no.9, pp.2533-2552,
2007.

M. Dorigo and L. M. Gambardella, Ant colonies for the traveling salesman problem, BioSystems,
vol.43, no.2, pp.73-81, 1997.

M. Dorigo and L. M. Gambardella, Ant colony system: A cooperative learning approach to the
traveling salesman problem, IEEE Transactions on Evolutionary Computation, vol.1, no.1, pp.53-
66, 1997.

G. Reinelt, A traveling salesman problem library, ORSA Journal on Computer, vol.3, no.4, pp.376-
384, 1991.

L. M. Gambardella and M. Dorigo, Solving symmetric and asymmetric TSPs by ant colonies, Proc.
of the IEEE Conference on Evolutionary Computation, New York, pp.622-627, 1996.

S. D. Shtovba, Ant algorithms: Theory and applications, Programming and Computer Software,
vol.31, no.4, pp.167-178, 2005.

