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Abstract. The original Extremal Optimization (EO) algorithm and its modified ver-
sions have been successfully applied to a variety of NP-hard optimization problems. How-
ever, there exists a problem that almost all existing EO-based algorithms have overlooked
the inherent structural properties behind the optimization problems, e.g., the backbone in-
formation. This paper proposes a novel stochastic search method called “Backbone Guided
Extremal Optimization (BGEO)” to solve the hard maximum satisfiability (MAX-SAT)
problem, one of typical NP-hard combinatorial optimization problems. The basic idea be-
hind BGEO is to incorporate the backbone information into EO to guide the entire search
process approaching the optimal solutions. The experimental results on many reported
hard MAX-SAT instances have shown the superiority of BGEO to the reported EO-based
algorithm without backbone information.
Keywords: Backbone, Extremal optimization, Maximum satisfiability problem, Phase
transition

1. Introduction. Extremal optimization (EO) [1,2] was originally inspired by far-from-
equilibrium dynamics of Bak-Sneppen model [3] of biological co-evolution, showing the
features of self-organized criticality (SOC) [4]. This method provides a novel insight into
the optimization domain as its novel evolutionary mechanism that merely selects against
the bad, instead of favoring the good, randomly or according to a power-law distribu-
tion. Beneficial from this evolutionary mechanism, the search dynamics of the EO-based
algorithms has non-equilibrium feature, which is different from other evolutionary algo-
rithms [5]. During the past decade, the basic EO algorithm and its modified versions have
been successfully applied to a variety of NP-hard optimization problems, such as graph
partitioning [6], graph coloring [7], spin glasses [8,9], Lennard-Jones clusters [10], travel-
ling salesman problem (TSP) [11-13], maximum satisfiability (MAX-SAT) problem [14]
and some practical engineering problems [15-17]. The more comprehensive introductions
concerning EO are referred to the surveys [18,19]. However, there exists a problem that al-
most all existing EO-based algorithms have overlooked the inherent structural properties
behind the optimization problems, e.g., backbone information [20].

In fact, the computational complexity of an optimization problem depends on not only
its dimension, but also some inherent structural properties, e.g., backbone. As one of
the most interesting and important structures, backbone has been used to explain the
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difficulty of problem instances [20-25]. The problems with larger backbone are generally
harder for local search algorithms to solve because the clustered solutions in these prob-
lems often result in these algorithms making mistakes more easily and wasting time for
searching empty subspaces before correcting the bad assignments [20]. On the other hand,
the utilization of the backbone information may help the design of effective and efficient
optimization algorithms. For example, Schneider et al. [26,27] have developed a powerful
parallel algorithm for travelling salesman problem (TSP) by using its backbone informa-
tion. Dubolis and Dequen [28] incorporated the backbone information in a DPL-type
algorithm for random 3-SAT problem. Telelis and Stamatopoulos [29] developed a heuris-
tic backbone sampling method to generate initial solutions for a local search algorithm
based on the concept of backbone. Zhang [30] proposed a backbone-guided WALKSAT
method where the backbone information is embedded in a popular local search algorithm,
such as WALKSAT. Furthermore, the basic idea has been extended to TSP [31], partial
MAX-SAT problem [32]. The experimental results have shown that these backbone-based
methods provide better performance than the pure local search ones.
In this paper, we focus on a novel method called ‘backbone guided extremal opti-

mization (BGEO)’ for the hard MAX-SAT problem, a well-known NP-hard optimization
problem. Recently, a modified EO algorithm called Bose-Einstein-EO (BE-EO) [14] has
been developed to solve MAX-SAT problem. The basic idea behind BE-EO is to sample
initial configurations set based on Bose-Einstein distribution to the original τ -EO search
process. The experimental results on both random and structured MAX-SAT instances
demonstrate BE-EO’s superiority to more elaborate stochastic optimization methods such
as SA [33], GSAT [34], WALKSAT [35] and Tabu search [36]. In our recent research [37],
a more generalized EO framework termed as EOSAT is proposed to solve MAX-SAT
problem. The modified algorithms, such as BE-EEO and BE-HEO, provide better per-
formance than BE-EO. Therefore, by incorporating the backbone information into the
EOSAT framework, the BGEO method proposed in this study is possible to guide the
search approaching the optimal solutions, and to further improve the performance of the
original EO algorithms.
The remainder of this paper is organized as follows. Section 2 introduces the MAX-SAT

problem and some probability distributions. Then, we present the framework of BGEO in
Section 3. Section 4 gives the experimental results on hard MAX-SAT instances. Finally,
the conclusions and the future work are given in Section 5.

2. MAX-SAT Problem and Probability Distributions. As the optimization coun-
terpart of the Boolean satisfiability (SAT) problem, the MAX-SAT problem is one of
well-studied NP-hard optimization problems [38].

Definition 2.1. The weighted MAX-SAT problem can be defined to find an assignment
S = (x1, x2, . . ., xn) to maximize the total weight Wc (C, W, S) of the satisfied clauses,
i.e.,

maxWc(C,W , S) = max
∑

Ci(S)=1

wi (1)

where {x1, x2, . . ., xn} is a set of Boolean variables, C = {C1, C2, . . ., Cm} is a set of
clauses, each of which is a disjunction of literals lij and lij is a Boolean variable xi or its
negation, and W = (wi)∈N

m is an integer vector and wi is the weight of the clause Ci.
Clearly, the dual problem is to find an assignment S to find an assignment S to minimize
the total weight Wcu(C,W , S) of unsatisfied clauses, i.e.,

minWcu(C,W , S) = min
∑

Cj(S)=0

wj (2)
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Remark 2.1. If each clause consists of K literals, where K is a positive constant, we
call this problem as MAX-K-SAT. Specially, when wi = 1 for each clause, the problem
is called unweighted MAX-SAT. It is obvious that MAX-K-SAT is more general than K-
SAT, because its solution can be used to answer the question of K-SAT problem, but not
vice versa [30].

Remark 2.2. The parameter controlling the satisfiability of an instance is α = m/n,
the ratio of clauses to variables. Extensive empirical and analytical research [21,39] have
shown that for K-SAT (K ≥ 3), the solving-cost of many local search algorithms can
be characterized as “easy-hard-easy” phase transition. There exists a similar feature for
MAX-K-SAT but with “easy-hard” phase transition [30].

Originating from quantum physics, Bose-Einstein (BE) distribution [40] describes the
statistical behavior of bosons (integer spin particles).

Definition 2.2. In the context of combinatorial description [41], BE distribution can be
defined as:

px =
1

(n+ 1)

(
n

x[V ]

) , ∀x ∈ {0, 1}n (3)

where px is the probability distribution of x in the space {0, 1}n, V = {1, 2, . . ., n} is a base
set for a given n, x = {x1, x2, . . ., xn} is a set of Boolean variables, and x[V ] =

∑
i∈V xi

is the number of the variables of x equal to 1 in V . Its conditional probability is

p(xj = 1) =
x[S] + 1

(j − 1) + 2
, where S = {1, 2, . . . , (j − 1)} (4)

Definition 2.3. The power-law Pp(k), exponential distribution Pe(k) and hybrid distri-
bution Ph(k) used for evolution in EO [13] are described as follows:

Pp(k) = k−τ , (1 ≤ k ≤ n) (5)

Pe(k) = e−µk, (1 ≤ k ≤ n) (6)

Ph(k) = e−hkk−h, (1 ≤ k ≤ n) (7)

where τ , µ and h all are positive constants for a specific problem with size n.

3. Backbone Guided Extremal Optimization. It has shown that for the MAX-SAT
problem, only the BE distribution can guarantee that an initial assignment set is gener-
ated with an arbitrary proportion of 1s and 0s [41]. Moreover, the experimental results
[14] on random and structured MAX-SAT instances have shown that BE-EO algorithm
starting from BE-based initial configurations outperforms τ -EO from uniformly random
ones. Therefore, a BE-based assignment called “BE-based Initial Configuration Genera-
tor (BEICG) [37]” will be used as the initial configuration of the proposed framework in
this paper.

According to the seminal work [1,2], one of the most important issues for designing
the EO-based algorithms is the appropriate definition of local and global fitness. More
specifically, the global fitness (i.e., objective function) of an optimization problem should
be decomposed into the local fitness (i.e., the contribution from the decision variables).

Definition 3.1. For a given configuration S of a weighted MAX-SAT problem, the local
fitness λi of each variable xi is defined as follows:

λi =
−
∑

xi∈Cj and Cj(S)=0wj∑
xi∈Ck

wk

(8)
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In other words, the local fitness is defined as the fraction of the sum of weights of unsatisfied
clauses in which the variable xi appears by the sum of weights of clauses connected to this
variable.

Definition 3.2. The global fitness C(S) is defined as the sum of the contribution from
each variable, i.e.,

C(S) = −
n∑

i=1

(
λi

∑
xi∈Ck

wk

)
= −

n∑
i=1

(ciλi), where ci =
∑

xi∈Ck

wk (9)

where ci is a constant for a given problem.

Remark 3.1. The global fitness C(S) is a linear combination of the local fitness λi, which
is consistent with the observation concerning fitness definition [42].

Definition 3.3. For the MAX-SAT problem, the exact backbone B is the set of variables
having the same assignments in the set Sglobal of global optimal solutions. The formal
definition is given as follows:

B = {xi |∀sj, sk ∈ Sglobal , sj(xi) = sk(xi)} (10)

Nevertheless, the exact backbone information of a given problem instance is even more
difficult to obtain than actual problem solutions [30]. An approximate approach to esti-
mating the backbone information is considering the local minima as “real” optimal ones.

Definition 3.4. The quasi-backbone XB is the set of variables having the same assign-
ments in the set Slocal of some local optimal solutions. Its formal definition is given as
follows:

XB = {xi |∀sj, sk ∈ Slocal , sj(xi) = sk(xi)} (11)

In this paper, we incorporate the quasi-backbone information into the EO algorithm,
and obtain the framework of “Backbone Guided Extremal Optimization (BGEO)”, which
is described in next page.
The BGEO framework can be viewed as an iterative process, which consists of backbone

estimation phase and backbone-guided optimization phase. In the first iteration, i.e., l =
1, the BGEO collects Rl local optimum solutions starting from pure randomly generated
initial solutions without any backbone information. In the following iterations, BGEO
explores the complex landscape by utilizing the backbone information obtained in the
last iteration. When the evolutionary probability distribution Pl(k1) adopted in BGEO
algorithm is chosen as power-law, exponential, and hybrid distribution, respectively, the
corresponding algorithm is called BG-PEO, BG-EEO, and BG-HEO, respectively, so the
corresponding parameter pl is τl, µl, and hl, respectively.
Obviously, the performance of BGEO depends on these parameters including MI, Rl,

SSl, MSl and pl. Therefore, determining the appropriate values of these parameters to
make BGEO achieve the best performance is a critical issue. Here, MI and Rl are all
positive constants. According to the study on BE-EO [14], the parameters SSl, MSl are
as follows:

SSl = Cl1 × |XNB(l)| (12)

MSl = Cl2 × |XNB(l)| (13)

where Cl1, Cl2 are all positive constants and |XNB(l)| is the number of non-backbone
variables in the l-th iteration.
Now we focus on the adjustable parameter pl for controlling the evolutionary probability

distribution of BGEO. Obviously, pl plays an analogous role to the proportion p of random
and greedy moves in WALKSAT [34], and the noise parameter η in FMS [43]. Due to
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Backbone Guided Extremal Optimization
Input: a MAX-SAT instance; MI: the maximum iterations; Rl: the maximum inde-
pendent runs of the l-th iteration; SSl: the maximum sample size in the l-th iteration;
MSl: the maximum steps of EO algorithm in the l-th iteration; pl: the adjustable
parameter for evolutionary probability distribution of EO algorithm in the l-th iter-
ation;
Output: SB: the best configurations found; C(SB): the total weights of unsatisfied
clauses.
1: Initialization: set the backbone set XB = 0, non-backbone set XNB = X,
2: for l = 1: MI
3: for j = 1: Rk

4: for i = 1: SSk

5: Fix the values of XB, initialize XNB = X−XB by BEICG, and
construct the initial solution Si, set Sbest = Si

6: For the current solution Si

(a). Evaluate λi for each variable xi and rank all the variables accord-
ing to λi, i.e., find a permutation Π1 of the labels i such that
λΠ1(1) ≥ λΠ1(2) ≥ · · · ≥ λΠ1(n);

(b). Select a rank Π(k) according to a probability distribution Pl(k1),
1 ≤ k1 ≤ n and denote the corresponding variable as xj;

(c). Flip the value of xj and set Snew = Si in which xj value is flipped;
(d). Accept Si = Snew unconditionally;
(e). If C(Snew) ≤ C(Sbest), then Sbest = Snew;

7: Repeat the step 6 until the maximum steps MSl, and obtain the best
solution Sif = Sbest

8: end for
9: Choose the best solution Sbj from the solution set {Sif}
10: end for
11: Obtain the solution set Sl = {Sbj}, extract the backbone information from

Sl, update XB and XNB

12: end for
13: Choose the best solution SB from S =

∪MI
l=1 Sl, and obtain the corresponding

cost C(SB)

the different features of the first and the remaining iterations, pl is given in the following
form:

pl =

{
pc, l = 1
pc + d ∗ |XB(l − 1)| , 2 ≤ l ≤ MI

(14)

where pc is the initial value of the parameter pl and d is a positive constant.
From the BGEO framework, it is clear that the optimization of the (l+ 1)-th iteration

always starts from the initial solutions where are all based on the backbone information
extracted in l-th iteration, so the size of the backbone extracted in (l + 1)-th iteration is
generally more than at least equal to that in l-th iteration, i.e., n ≥ |XB(MI)| ≥ · · · ≥
|XB(l + 1)| ≥ |XB(l)| ≥ · · · ≥ |XB(l)|. In other words, the size of the remaining problem
that needs to be optimized will be smaller and smaller as the number of iteration increases.
As a consequence, there must exist a finite constant MImax such that |XB(MImax)| → n.
To illustrate this observation, Figure 1 shows the dynamics of the pseduo backbone size
during the search process of BGEO for some uniform satisfiable MAX-3-SAT instances
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Figure 1. The dynamics of the preduo backbone size during the search
process of BGEO

Figure 2. For uf-100:430, the left is the search dynamics of the best global
fitness in BGEO and the right is the comparison of BG-EEO and BE-EEO

“uf-n:m” [40], in which n is the number of the variables and m is the number of the
clauses. The backbone size increases as the number of iteration increases.
For the uf-100:430 instance, the search dynamics of the best global fitness in BGEO

are shown in the left of Figure 2. For the hard MAX-3-SAT instances, BGEO can reach
high-quality solutions in finite iterations. The right of Figure 2 gives the performance
comparison of BE-EEO and BGEO algorithms. Obviously, BGEO performs better than
BE-EEO in the same runtime. Furthermore, the superiority of BGEO algorithm is demon-
strated by the experimental results in next section.
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4. Experimental Results and Discussion. In order to demonstrate the effectiveness
of the BGEO, we choose the hard MAX-SAT problem instances from SATLIB [44] as a
testbed. The tested problems include random unweighted MAX-3-SAT instances, MAX-3-
SAT instances near phase transition, and MAX-3-SAT instances with controlled backbone
size. Note that all algorithms are implemented in MATLIB7.6 on a Pentium 1.86 GHz PC
with dual-core processor T2390 and 2GB RAM running Windows Vista Basic systems.
The performances of these algorithms are measured by the best, mean, and worst errors
denoted as eb, em and ew respectively. The errors are defined as eb(%) = 100 × (mb −
mo)/m, em(%) = 100×(mm−mo)/m and ew(%) = 100×(mw−mo)/m respectively, where
mb, mm and mw are the minimal, average and maximal number of unsatisfied clauses over
10 independent runs respectively and mo is the optimal solution.

Remark 4.1. The experimental results [14] on random and structured MAX-SAT in-
stances have shown that BE-EO can provide better or at least competitive performance
than more elaborate stochastic optimization methods, such as SA [33], GSAT [34], WSAT
[35], and TS-CSP [36]. Furthermore, the superiority of the BE-EEO and BE-HEO algo-
rithms under EOSAT framework to the BE-EO algorithm is demonstrated by our recent
research [37]. Consequently, this paper concentrates on comparing BG-EEO with these
reported algorithms by the experiments on the random unweighted MAX-3-SAT instances
[14].

The results on the random unweighted MAX-3-SAT instances are shown as Table 1,
where the performances of these algorithms are measured by the average error (%). It is
obvious that BG-EEO is superior to these reported algorithms.

Table 1. Comparsion of BG-EEO and the reported algorithms on random
unweigheted MAX-3-SAT instances

Variables (n) 100 100 300 300 500
Clauses (m) 500 700 1500 2000 5000

SA [33] 1.64 2.587 2.000 2.900 4.528
TS-CSP [36] 0.453 1.755 0.523 1.595 3.328
GWSAT [34] 0.556 1.914 0.551 1.597 3.279
WSAT [35] 0.552 1.914 0.541 1.614 3.340
τ -EO [14] 0.800 1.880 0.600 1.900 3.352
BE-EO [14] 0.632 1.860 0.500 1.550 3.100
BE-EEO [37] 0.524 1.732 0.486 1.479 3.003
BG-EEO 0.400 1.553 0.264 1.245 2.875

Remark 4.2. The tested MAX-3-SAT satisfiable (unsatisfiable) instances are represented
as “uf-n:m (uuf-n:m)” here, in which n is the number of the variables and m is the
number of the clauses. For example, ‘uuf-50:218’ represents the unsatisfiable instance
has 50 variables and 218 clauses. These instances with α = m/n ranges from 4.260
to 4.360, which are close to the critical threshold of phase transition αc ≈ 4.267. For
each unsatisfiable instance, the optimal number of unsatisfied clauses is 1, i.e., mo =
1. Therefore, we focus on the optimization problem, MAX-3-SAT, that is to find an
assignment to maximize the number of satisfied clauses. In other words, MAX-3-SAT is
equivalent to minimize the number of unsatisfied clauses.

The experimental results on these satisfiable and unsatisfiable instances near phase
transition are shown in Table 2 and Table 3, respectively. Table 4 gives the comparison
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Table 2. Comparsion of BG-EEO and the reported BE-EO [14], BE-EEO
[37] algorithms for MAX-3-SAT satisfiable instances near phase transition

Problem α
BE-EO [10] BE-EEO [33] BG-EEO
eb em ew eb em ew eb em ew

uf-50:218 4.360 0.92 2.20 2.75 0.46 1.74 2.29 0.00 0.00 0.00
uf-75:325 4.333 1.54 2.62 3.07 0.62 1.45 2.15 0.00 0.15 0.31
uf-100:430 4.300 1.63 2.47 2.80 0.70 1.83 2.33 0.00 0.23 0.46
uf-125:538 4.304 2.04 2.68 3.35 1.11 1.99 2.23 0.19 0.28 0.37
uf-150:645 4.300 2.17 2.53 2.95 1.40 1.95 2.33 0.16 0.31 0.47
uf-175:753 4.303 2.39 2.76 2.92 1.59 1.91 2.26 0.13 0.33 0.40
uf-200:860 4.300 2.67 3.13 3.49 1.86 2.29 2.56 0.12 0.17 0.23
uf-225:960 4.267 2.08 2.79 3.23 1.67 1.99 2.29 0.10 0.31 0.62
uf-250:1065 4.260 1.88 2.76 3.29 1.60 1.94 2.07 0.09 0.35 0.66

Table 3. Comparsion of BG-EEO and the reported BE-EO [14], BE-EEO
[37] algorithms for MAX-3-SAT unsatisfiable instances near phase transition

Problem α
BE-EO [10] BE-EEO [33] BG-EEO
eb em ew eb em ew eb em ew

uuf-50:218 4.360 1.38 2.38 3.21 0.46 1.88 2.75 0.00 0.00 0.00
uuf-75:325 4.333 1.85 2.65 3.37 1.23 1.94 2.46 0.00 0.17 0.31
uuf-100:430 4.300 1.86 2.63 2.80 1.16 1.88 2.56 0.00 0.26 0.46
uuf-125:538 4.304 1.86 2.70 3.35 1.30 2.08 3.16 0.19 0.30 0.37
uuf-150:645 4.300 2.17 2.71 3.41 1.40 2.05 2.64 0.16 0.32 0.47
uuf-175:753 4.303 2.92 3.33 3.98 1.73 2.30 2.67 0.13 0.34 0.40
uuf-200:860 4.300 3.49 3.85 4.30 2.44 2.72 3.14 0.12 0.16 0.23
uuf-225:960 4.267 2.81 3.48 4.17 2.19 2.64 3.44 0.10 0.44 0.62
uuf-250:1065 4.260 3.09 3.51 4.38 1.78 2.28 2.72 0.09 0.45 0.66

Table 4. BG-EEO vs. BE-EEO algorithm [37] for the large MAX-SAT instances

Problems α
BE-EEO [33] BG-EEO
eb em ew eb em ew

f600 2550 4.25 1.73 2.96 3.89 0.52 0.96 1.57
f1000 4250 4.25 2.08 3.35 4.74 0.67 1.21 1.92
f2000 8500 4.25 2.87 4.01 4.92 0.83 1.50 2.33

of BG-EEO and BE-EEO for some large instances. Clearly, BG-EEO outperforms the
reported BE-EO [14] and BE-EEO [37] algorithms for these hard instances. Especially,
the BG-EEO algorithm reaches the optimal solutions for some instances shown as the
bold.

Remark 4.3. MAX-3-SAT instances with controlled backbone size (CBS) are different
from those given in the next subsection in that they have some backbone variables, where
the backbone size is defined as b. Singer et al. [22] have shown that the search cost is
very high even for the small size problems but with large backbone size. Therefore, these
CBS instances from SATLIB are chosen for testing the superiority of the proposed BGEO
method. The control parameter α of these instances ranging from 4.03 to 4.49 is near the
critical threshold of the phase transition αc ≈ 4.267. Moreover, the values of b in these
instances range from 10 to 90 at each α value.
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Table 5. BG-EEO vs. the BE-EO [14], BE-EEO [37] algorithms for CBS instances

Problem α b
BE-EO [10] BE-EEO [33] BG-EEO
eb em ew eb em ew eb em ew

CBS 100 403 4.03

10 1.99 2.68 3.23 0.99 1.91 2.48 0.00 0.07 0.25
30 1.99 2.46 2.98 1.24 1.76 2.23 0.25 0.45 0.74
50 1.49 2.06 2.48 1.24 1.61 1.98 0.50 0.74 0.99
70 2.43 2.75 3.16 1.24 1.74 1.98 0.50 0.74 0.99
90 2.23 2.73 3.47 1.74 2.13 2.48 0.74 0.99 1.24

CBS 100 411 4.11

10 1.46 2.12 2.68 0.97 1.58 1.95 0.24 0.49 0.73
30 1.22 2.19 2.92 1.22 1.68 2.68 0.24 0.49 0.97
50 1.95 2.68 3.16 1.70 2.09 2.92 0.24 0.61 0.97
70 1.95 2.70 3.89 1.70 2.12 2.19 0.49 0.78 0.97
90 1.95 2.53 3.41 1.46 1.85 2.19 0.24 0.68 0.97

CBS 100 418 4.18

10 1.67 2.34 3.11 1.22 1.75 2.19 0.24 0.38 0.72
30 2.39 2.68 3.11 1.44 2.08 2.39 0.24 0.36 0.72
50 2.63 2.73 3.11 1.44 2.03 2.39 0.48 0.72 0.96
70 0.96 2.44 3.11 0.96 1.48 2.15 0.48 0.62 0.72
90 2.15 2.68 3.11 1.20 1.87 2.39 0.48 0.72 0.96

CBS 100 423 4.23

10 1.65 2.13 2.60 0.71 1.47 2.13 0.00 0.47 0.95
30 1.42 2.48 3.55 1.18 1.84 2.13 0.24 0.47 0.71
50 1.65 2.53 3.07 1.18 1.80 2.36 0.24 0.57 0.71
70 1.42 2.41 2.84 0.95 1.77 2.36 0.24 0.54 0.71
90 1.89 2.55 3.31 1.42 2.00 2.13 0.24 0.80 0.95

CBS 100 429 4.29

10 1.17 2.45 3.03 0.47 1.52 2.10 0.00 0.65 0.93
30 1.63 2.17 2.56 1.17 1.75 2.10 0.00 0.47 0.70
50 2.10 2.66 3.26 0.93 1.70 2.33 0.00 0.47 0.70
70 1.40 2.24 2.80 0.70 1.70 2.33 0.23 0.58 0.93
90 2.10 2.77 3.26 1.86 2.24 2.56 0.23 0.70 0.93

CBS 100 435 4.35

10 1.15 1.91 2.53 0.69 1.22 1.61 0.00 0.28 0.46
30 1.38 1.91 2.53 0.92 1.47 1.84 0.00 0.32 0.46
50 2.30 2.67 3.45 1.61 2.05 2.30 0.46 0.69 0.92
70 1.61 2.46 2.99 1.15 1.89 2.30 0.23 0.64 0.92
90 2.30 2.57 2.76 0.92 1.66 2.30 0.23 0.60 0.92

CBS 100 441 4.41

10 1.36 2.12 2.49 0.68 1.45 2.04 0.23 0.45 0.68
30 1.59 2.15 2.95 0.45 1.16 2.04 0.00 0.23 0.45
50 1.81 2.59 3.40 1.13 1.88 2.72 0.23 0.45 0.91
70 1.81 2.49 2.95 1.59 1.90 2.49 0.45 0.68 0.91
90 2.49 2.90 3.63 1.36 2.06 2.72 0.45 0.73 0.91

CBS 100 449 4.49

10 1.56 2.27 3.12 0.67 1.44 2.00 0.22 0.45 0.67
30 1.78 2.45 3.12 1.34 1.87 2.23 0.45 0.58 0.89
50 1.78 2.05 2.90 0.89 1.27 1.78 0.22 0.33 0.67
70 2.45 2.92 3.34 1.34 2.16 2.67 0.22 0.56 0.89
90 2.67 3.27 3.79 1.56 2.32 2.90 0.67 0.89 1.11

The comparison of BG-EEO and the reported BE-EO and BE-EEO algorithms for
these CBS instances is shown in Table 5. It is clear that BG-EEO performs much better
than BE-EO [14] and BE-EEO [37] for these hard CBS instances. Especially, BG-EEO
algorithm reaches the optimal solutions for some instances shown as the bold.
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Figure 3. The control parameter µc vs. the performance of BG-EEO

As analyzed in previous section, the parameters in BGEO, such asMI, Rl, SSl, MSl, are
determined easily. For the above experiments, these parameters MI, Rl are set as MI =
10, Rl=3 and SSl, MSl are determined according to Equations (12) and (13), respectively.
The evolutionary probability distribution control parameter pc plays a critical role in
governing the performance of BGEO. The optimal values of pc are determined according
to Equation (14). Figure 3 illustrates the effects of µc on the performance of BG-EEO
for the uuf-100:430 instance. Obviously, the optimal value of µc is approximately 0.28 for
the uuf-100:430 instance. Similarly, for other MAX-3-SAT instances in Tables 1 and 2,
the optimal values of µc are approximately from 0.24 to 0.36. For the instances in Table
3, the optimal values are approximately from 0.26 to 0.32.

5. Conclusions. In this paper, we develop a novel optimization method called ‘backbone
guided extremal optimization (BGEO)’ for the hard SAT and MAX-SAT problems. The
basic idea behind BGEO is to incorporate the backbone information extracted from the
history of search process into EO to guide the entire search process approach the optimal
or at least high-quality solutions. The BGEO is essentially a biased local search method
that exploits the “big valley” structure of the configuration space [30]. Also, it is similar
to the population learning the large-scale structure of the fitness landscape [45]. The
experimental results on a variety of hard MAX-SAT problem instances have shown that
BGEO outperforms the reported BE-EO algorithm. Nevertheless, it should be stressed
that the main purpose of this research is to develop a new optimization method rather than
provide the best algorithm for a particular problem. As a consequence, the performance of
BGEO is possible to be further improved by fine-tuning the control parameters or adapting
other backbone-guided search strategies, which is well-studied in our future work. In fact,
how to design an effective adaptive search strategy under the BGEO framework is future
work.
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