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Abstract. A hardware string matching architecture is usually used to accelerate string
matching in various applications that need to filter content in high speed such as intrusion
detection systems. However, the throughput of the hardware string matching architecture
inspecting data character by character is limited by the achievable highest clock rate. In
this paper, we present a string matching architecture based on the Aho-Corasick algo-
rithm. The proposed architecture is able to inspect multiple characters simultaneously
and the throughput of string matching can be multiplied. We first describe an intuitive
algorithm to construct a multi-character finite state machine (FSM) that accepts mul-
tiple characters per transition based on an Aho-Corasick prefix tree (AC-trie). Then
we propose an architecture for multi-character transition string matching consisting of
multiple matching units for processing the transition rules that are generated from the
derived multi-character FSM. The design of proposed architecture utilizes the properties
of the failure links of an AC-trie to reduce the transition rules derived from the failure
functions linked to the initial state. As a result, the state growth rate is moderate in the
number of the derived multi-character transition rules as the number of the characters
inspected at a time increases. The proposed architecture was implemented on an ASIC
device for evaluation and the resulting throughput can achieve 4.5 Gbps for a 4-character
string matching implementation operated at 142 MHz clock.
Keywords: String matching, Finite state machine, Aho-Corasick algorithm

1. Introduction. String matching generally including exact string matching and regular
expression matching is used in many applications. Exact string matching is more efficient
though less flexible for searching keywords in a text as compared with regular expression
matching. Aho and Corasick [1] have proposed a multiple-pattern string matching algo-
rithm (AC-algorithm) that can locate all occurrences of multiple keywords in a string in a
one pass search. The AC-algorithm has excellent performance for exact string matching.
Some applications like network intrusion detection systems (NIDS) that need to inspect
a data stream on line usually first use exact string matching to filter out expected data
quickly, then check the filtered out results further by other more complicated and slower
approaches, such as regular expression matching. For example, Snort [2], which is an
open source project of NIDS, first uses the AC-algorithm to quickly filter out potentially
malicious packets, then uses regular expression matching to check the filtered out packets
further.

The network bandwidth has ever been increasing with the advances of fiber commu-
nication and integrated circuit technologies. In order to keep up with the throughput
of the network, hardware accelerators of string matching are needed to speed up the
throughput of the packet inspection in NIDS. However, most hardware implementations
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are character based string matching architectures that inspect the packet data charac-
ter by character. The throughput of a character based string matching architecture is
limited by the operating clock. The advances of the semiconductor technology make it
come true that much more devices can be put in the same area. However, on the other
hand, the operating speed of the integrated circuit does not increase significantly. To
take the modern CPU as an example, a single CPU can contain multiple cores while the
operating clock only increases slightly. In addition, the higher the clock rate is, the more
the power consumption is increased. Moreover, to increase the clock rate it needs more
sophisticated circuit design technique to develop the device. Therefore, in order to speed
up the throughput of the hardware accelerator of string matching while not to increase
the operating clock, we need to design a multi-character string-matching engine that can
inspect multiple characters in every clock cycle.
We will focus on the hardware string-matching architecture based on the AC-algorithm.

The following problems need to be considered when designing a multi-character string-
matching engine based on the AC-algorithm. First, the AC-algorithm is a character-
based algorithm that can process only a character in a transition. We need to develop
a systematic algorithm to convert an AC-trie to a multi-character finite state machine
(FSM) that accepts the same keyword set. After that we can design a multi-character
string-matching engine based on the derived multi-character FSM. Secondly, the multi-
character FSM derived from an AC-trie should be able to deal with the alignment problem.
We use a simple example to explain the alignment problem here. Considering the keyword
“he” and the input text is “xhex”, in which ‘h’ and ‘e’ do not appear in the beginning and
the ending of the input text respectively, which means the keyword “he” does not align
with the input text. Thirdly, when an AC-trie is converted to a multi-character FSM, the
number of transitions will be increased explosively. Therefore, we need to develop some
techniques for suppressing the growth of the transitions.
In this paper, we propose an approach to construct a multi-character FSM from an AC-

trie and an architecture to implement the derived multi-character FSM. We first present
an intuitive and efficient algorithm for generating multi-character transition functions
that represent a multi-character FSM based on an AC-trie. In this algorithm, we use
the 1-character transition functions of a deterministic finite automaton (DFA) converted
from an AC-trie as basis and concatenate the 1-character transition functions iteratively
to obtain all the multi-character transition functions of the multi-character FSM. The
derived multi-character FSM can deal with the alignment problem naturally.
Our proposed hardware architecture for implementing the derived multi-character FSM

consists of multiple matching units where each matching unit is responsible for one multi-
character transition function. A transition function is represented as a transition rule that
includes both the pattern and the matching result in the implementation. The proposed
architecture is similar to the architecture of a Ternary Content Addressable Memory
(TCAM), while the matching units of the proposed architecture store both the patterns
and matching results and the output stage is implemented by a priority multiplexer instead
of a priority encoder. In the proposed architecture, the transition functions represented
in negation expressions is reduced by using the don’t-cared character in patterns and
assigning different priorities for transition rules. Consequently, the growth rate of the
multi-character transition rules can be suppressed. For example, when implementing
an n-character transition FSM in a lookup table, the growth of the required space is
256n generally. While implementing the n-character transition FSM in our proposed
architecture, the growth of the required space is about n × 5.7n for 1000 keywords. The
proposed architecture is evaluated in FPGA synthesis tools using ASIC devices. The
results show that the operating clock is about 142 MHz for an implementation of five
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hundred 4-character matching units. It is equivalent to an implementation of a 1-character
transition string matching engine operated on 568 MHz. The main contributions of this
paper can be summarized as follows.

– To the best of our knowledge, the algorithm proposed by this paper is the first
algorithm using concatenating method to derive a multi-character FSM from an AC-trie.
In addition, the derived multi-character FSM can resolve the alignment problem naturally.

– The proposed architecture for implementing the derived multi-character transitions
is simple and regular and is also efficient in space.

Another advantage of the proposed architecture is that when the keyword set is changed
it only needs to generate new transition rules for the new keyword set and update the
contents of the matching units with the new generated transition rules. The hardware
architecture does not need to be re-configured for the new keywords. The proposed archi-
tecture is not restricted to be implemented in a specific programmable or reconfigurable
device like FPGA. The structure of the proposed architecture is simple and regular so
that it can be easily implemented as a standalone integrated circuit (IC) chip.

The organization of this paper is as follows. Section 2 includes the related work for string
matching. Section 3 describes how to construct multi-character transitions from an AC-
trie. Section 4 describes the proposed architecture of the multi-character matching engine
and how to generate the multi-character transition rules for the architecture. Evaluation
and discussion are in Section 5. Finally, Section 6 gives conclusions and possible future
work.

2. Related Work. There are many hardware architectures based on the AC-algorithm
for accelerating string matching. The hardware architectures based on the AC-algorithm
can be roughly divided to two categories. Since the AC-algorithm is a memory exhausted
algorithm one category of the approaches focus on improving the efficiency of hardware
utilization. The other category of the approaches focus on improving the throughput of
string matching, such as increasing the clock rate of the hardware or, moreover, inspecting
multiple characters simultaneously to multiply the throughput of string matching.

Using the lookup table to implement the AC-algorithm is most intuitive while subject
to a poor hardware efficiency. To improve the hardware efficiency, Alicherry et al. [3]
proposed an architecture consisting of TCAM and SRAM to implement the AC algorithm
that utilizes the property of ternary matching of TCAM to achieve the matching of char-
acters expressed in negation expressions. As a result, the space required for the transitions
can be reduced. Pao et al. [4] and W. Lin and B. Liu [5] proposed pipeline architectures
to implement the partial trie that only contains goto functions of the AC-trie so that it
can reduce the space induced by failure functions. N. Hua et al. [6] proposed another
approach based on a block-oriented scheme instead of usually byte-oriented processing of
patterns to reduce the memory usage.

To achieve high-speed exact string matching, D. P. Scarpazza et al. [7] proposed an
optimized software approach for a multi-core processor that splits keywords to fit in the
local memories of the processing cores such that it can reach very high overall throughput.
The throughput of the string matching engine that inspects one character every clock is
limited by the clock rate. If the string matching engine can inspect multiple characters
simultaneously every clock then the throughput can be multiplied. Y. Sugawara et al.
[8] proposed a string matching method called suffix based traversing (SBT) that is an
extension of the AC-algorithm to process multiple input characters in parallel and to
reduce the size of the lookup table. The article of Alicherry et al. [3] also proposed a
k-compressed AC DFA to achieve a parallel k-character matching engine. A k-compressed
AC DFA only consists of the states corresponded to the states whose depth is a multiple
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of k in the original AC-trie and the leaf states of the original AC-trie. G. Tripp [9]
proposed an architecture consisting of parallel multiple FSMs to achieve multi-character
transitions. All the FSMs in the architecture proposed by G. Tripp are identical to
that are implemented by lookup tables based on the AC-algorithm. In the architecture,
each FSM is responsible for matching each character respectively from the multiple input
characters, and there is a specific logic for combining the matching results from every
FSMs. V. Rahmanzadeh and M. B. Ghaznavi-Ghoushchi [10] proposed another parallel
string matching approach in which search patterns are sliced into multiple interleaved
substrings and matching the substrings by parallel individual FSMs. It then obtains the
matching result by combining the outputs of the FSMs.
N. Yamagaki et al. [11] proposed an intuitive algorithm to construct a 2k-character

NFA from a 1-character NFA that is converted from a regular expression. The algorithm
of N. Yamagaki et al. eliminates the alignment problem by adding a self edge to the initial
node and a new final node to each final node. The algorithm proposed by N. Yamagaki
et al. is not related to the AC-algorithm, while our proposed approach for constructing a
multi-character FSM is based on an AC-trie.

3. Constructing Multi-character FSM. In this section, we describe the approach for
constructing a multi-character FSM that is represented by the multi-character transition
functions derived from an AC-trie. The derived multi-character FSM keeps the property
of the AC-trie that the number of states is the same and exact one state is active at a
time. In the later section, this algorithm is used to generate the multi-character transition
rules used in our proposed hardware architecture.

3.1. Aho-Corasick algorithm. Figure 1 shows an AC-trie for the keywords {he, she,
his, hers}, which is an example of the paper of Aho and Corasick [1]. We use this AC-trie
as an example to explain our proposed approach in this paper. In Figure 1, the physical
lines represent the goto functions and the dotted-lines represent the failure functions linked
to the non-initial states. State 0 is the initial state or the root state of the AC-trie. Every
non-initial state has failure functions while the failure functions linked to the initial state
are not shown. The non-empty matching outputs are shown beside the corresponding
states. Each state in an AC-trie represents a unique string which is the prefix of one of
the keywords forming the AC-trie. For example, the initial state represents an empty
string, state 4 represents “sh”, and state 9 represents “hers”.
Aho and Corasick has described the fact that the goto and failure functions can be

converted to next move functions (δ) so that they represent a DFA-version AC-trie. The

Figure 1. AC-trie for keywords {he, she, his, hers}
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failure links are eliminated in the DFA-version AC-trie and an exact one state transition
is made for each input character. The DFA-version AC-trie is convenient for the hardware
implementation like the lookup-table approach. However, since the next move functions of
each state include the goto functions of the states pointed to by the failure link, the number
of the next move functions increases explosively and the space needed for the DFA-version
AC-trie is much more than the space needed for the original AC-trie. For example, the
next move functions of state 1 include two functions δ(1, e) = 2 and δ(1, i) = 6 which are its
own goto functions and other three functions δ(1, h) = 1, δ(1, s) = 3, and δ(1,¬{h, s}) = 0
which are derived from the goto functions of state 0. For the sake of brevity, here we use
“the transition functions of state x” to represent “the transition functions beginning from
state x”.

3.2. Deriving multi-character transitions from AC-trie. First, we define the next
move functions of the DFA version of the AC-trie where each next move function accepts
an input state and an input character then outputs a next state as 1-character transition
functions and use them to derive the multi-character transition functions. The derived
multi-character transition functions represent a multi-character FSM that accepts the
same keyword set of the original AC-trie.

For the sake of convenience, an n-character transition function is denoted as δn(s, c) = s′

that transits from state s to s′ on an n-character symbol c. For example, δ1(0, h) = 1 is
a 1-character transition function which transits from state 0 to state 1 on character ‘h’,
and δ2(0, he) = 2 is a 2-character transition function which transits from state 0 to state
2 on characters ‘he’.

Our proposed approach for deriving the multi-character transition functions from the 1-
character transition functions is intuitive. We explain the approach by examples first. For
example, concatenating the 1-character transition function δ1(0, h) = 1 with its successive
1-character transition function δ1(1, e) = 2 can obtain a 2-character transition function
δ2(0, he) = 2. Furthermore, concatenating the derived 2-character transition function
δ2(0, he) = 2 with its successive 1-character transition function δ1(2, r) = 8 can obtain a
3-character transition function δ3(0, her) = 8.

For another example, concatenating the 1-character transition functions δ1(0,¬{h, s}) =
0 with its successive 1-character transition function δ1(0, h) = 1 can obtain a 2-character
transition function δ2(0,¬{h, s}h) = 1. Furthermore, concatenating the derived 2-charact-
er transition function δ2(0,¬{h, s}h) = 1 with its successive 1-character transition function
δ1(1, e) = 2 can obtain a 3-character transition function δ3(0,¬{h, s}he) = 2. Alterna-
tively concatenating the derived 2-character transition function δ2(0,¬{h, s}h) = 1 with
its another successive 1-character transition function δ1(1, s) = 3 can obtain another 3-
character transition function δ3(0,¬{h, s}hs) = 3. This transition means that the current
state is 0 and the next state is determined by the third character ‘s’ only. The 3-character
transition function δ3(0,¬{h, s}hs) = 3 is an example showing that the multi-character
transition functions derived by this approach solve the alignment problem naturally.

According to the examples described above, because there is a self linked transition
of the initial state and all the non-initial states are eventually linked to the initial state
through failure links in an AC-trie, there is no alignment problem for the derived multi-
character FSM and no additional assistant state is required for constructing a complete
multi-character transition. Consequently the states of the derived multi-character FSM
are identical to the original AC-trie.

Figure 2 shows the example for deriving the 2-character transition functions beginning
from state 1. There are five 1-character transition functions beginning from state 1. In



8372 C.-C. CHEN AND S.-D. WANG

Figure 2. Deriving 2-character transition functions of state 1

which ¬{e, h, i, s} includes all the characters excepting ‘e’, ‘h’, ‘i’, and ‘s’. For the exam-
ple of 1-byte character, ¬{e, h, i, s} should be 252 characters. Therefore, the transition
function δ1(0,¬{e, h, i, s}) = 0 represents 252 transition functions that are linked to the
initial state. For the sake of convenience, we use only one transition function to represent
the 252 transition functions linked to the initial state.
The five 1-character transition functions of state 1 are δ1(1, e) = 2, δ1(1, i) = 6,

δ1(1, h) = 1, δ1(1, s) = 3, and δ1(1,¬{e, h, i, s}) = 0. By concatenating δ1(1, e) = 2
with the four transition functions of state 2, concatenating δ1(1, i) = 6 with the three
transition functions of state 6, concatenating δ1(1, h) = 1 with the five transition func-
tions of state 1, concatenating δ1(1, s) = 3 with the three transition functions of state
3, and concatenating δ1(1,¬{e, h, i, s}) = 0 with the three transition functions of state 0
respectively, we can obtain all the 2-character transition functions of state 1.
When multiple characters are inspected simultaneously in each matching cycle, the

information of passed states is hidden. Therefore, the matching outputs corresponding to
the passed states have to be kept in the derivation process. For example, the labels shown
beside the top four states 8, 4, 3, and 0 in the right part of Figure 2 are the output sets
{he, φ} which mean that the matching outputs corresponding to the first character ‘e’ and
the second character ‘r’, ‘h’, ‘s’, or ¬{r, h, s} are “he” and empty string (φ) respectively.
In addition, the label shown beside the state 2 is the output set {φ, he} which means
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that the matching outputs corresponding to the first and second characters ‘h’ and ‘e’ are
empty string (φ) and “he” respectively. For the sake of brevity, the output sets are not
shown if all matched outputs are empty strings.

Following the procedure described above, concatenating every 1character transition
function with its successive 1-character transition functions respectively can obtain all
the 2-character transition functions for an AC-trie. Furthermore, concatenating every new
derived 2-character transition function with its successive 1-character transition functions
respectively can obtain all the 3-character transition functions for the AC-trie. Repeating
the concatenating process iteratively can obtain the n-character transition functions for
any required positive integer n. The derived n-character transition functions represent an
n-character FSM which accepts n characters in every transition.

Algorithm 1. Algorithm for deriving multi-character transitions

3.3. Algorithm for deriving multi-character transitions. Algorithm 1 shows a gen-
eralized algorithm for deriving the n-character transition functions from the next move
functions of a DFA-version AC-trie. Using Algorithm 1 with the next move functions
of the DFA-version AC-trie as 1-character transition set can derive the corresponding n-
character transition set for any desired n. The input parameter n is the number of char-
acters to be inspected simultaneously. The input parameter NXSET contains the original
1-character transition set, and the result of this algorithm is the derived n-character tran-
sition set which is stored in variable TRSET. The algorithm consists of multiple level
iterative loops to derive the n-character transition set for each state in the AC-trie.

At the beginning of algorithm, TRSET (line 2) is cleared. In the loop between line
3 and line 21, the n-character transition set for each state Si of the AC-trie is derived.
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In line 5, all 1-character transition functions of state Si are duplicated to NSET. The
loop between line 6 and line 19 is executed repeatedly n− 1 times to concatenate the 1-
character transition functions of Si with n− 1 succeeding 1-character transition functions
iteratively to obtain the n-character transition functions of Si. After executing the loop
between line 7 and line 19 repeatedly n − 1 times, NSET contains all the n-character
transition functions beginning from Si. In line 20, add NSET to TRSET, and then go
back to line 5 to continually process the next state. When all states are processed, the
algorithm terminates.
Now we look into the loop between line 6 and line 19. In line 8, TMPSET is cleared.

The loop between line 9 and line 17 expands each transition function NXi stored in NSET.
In line 11, the next state of NXi is assigned to NX ST. In the loop between line 12 and line
16, for each transition function NXj beginning from NX ST, the transition function NXi
is concatenated with transition function NXj to obtain new transition function NEW TR
in line 14 and the transition function NEW TR is added to TMPSET in line 15. The
number of pattern character of the transition function NEW TR is one more than the
number of the pattern character of the transition function NXi.
In a 1-character FSM, the matching output of each transition can be represented by

the next state. However, in an n-character FSM for n > 1, if the n-character transition
functions only output the next states, the information about the passed states will be
hidden. Thus, we can only know the matching output corresponding to the last character,
and the matching outputs corresponding to the preceding n−1 characters are lost. Hence,
when using the derivation algorithm to derive the n-character transition functions, the
matching results for every transition should be kept in the concatenating process, though
the details are not included in Algorithm 1.

4. Proposed Architecture. As an intuitive approach, the n-character FSM derived
according to our proposed algorithm can be implemented by a lookup table. However,
implementing the n-character FSM by a lookup table requires a huge amount of space to
store the table because the space required for the lookup table grows exponentially to the
number n.
For example, we can consider the generally used 1-byte character set whose size is 256.

The AC-trie has nine states for the keywords {he, she, his, hers}. The lookup table for the
1-character transition functions should have 9 ∗ 256 = 2, 304 elements. The lookup table
for 2-character transition function should have 9 ∗ 2562 = 589, 824 elements, and each
element includes two states. Furthermore, the lookup table for a 3-character transition
function should have 9 ∗ 2563 = 150, 994, 944 elements, and each element includes three
states.
In the following, we propose an architecture for the derived n-character FSM that

utilizes the property of the failure links in the AC-trie to reduce the required hardware cost.
In an AC-tire, all the states are linked to the initial state eventually through the failure
links. Therefore, the 1-character transition functions of the initial state are repeatedly
included in the 1-character transition functions of every non-initial state. According to
the definition of the AC-trie, two states linked by a failure link have a common suffix.
When the failure function of a state is linked to the initial state, it means there is no
matched prefix for any keywords, because the initial state represents an empty string.
Hence, when constructing the multi-character rules, we can determine the outputs and

next state individually. For example, let us consider the case of matching two characters
in parallel where the current state is 4 and the two input characters are “es”. The state
will transit to state 5 on the first character ‘e’, and the matching output is “she”. For the
next character ‘s’, because there is no transition on ‘s’ for state 5, following the failure
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function of state 5 which points to state 2, the goto functions of state 2 will be matched.
However, there is no transition on ‘s’ for state 2 too and the failure function of state 2
points to state 0. Hence, the next state will be 3 which is determined according to the
goto functions of the initial state. As the procedure described above, we can determine
the matching output “she” by the current state 4 and the first input character ‘e’. Since
the next character ‘s’ causes the failure function linked to the initial state, meaning that
there are no matching prefix of any keywords, the matching process should go back to
the initial state and start the matching process from the initial state. The next state is
determined to be 3 by the initial state and the second character ‘s’, meaning that there
is a transition rule beginning from the initial state which matches the pattern “?s” and
the next state should be 3.

According to the observation, we propose a hardware architecture which can effectively
save the hardware cost. In the rest of this section, we first describe the hardware architec-
ture and the transition rules used in the hardware architecture, and then explain how to
derive the transition rules. At last, we use examples to explain the matching operations
of the proposed architecture.

4.1. Hardware architecture. Figure 3 shows the overall hardware architecture of the
multi-character transition string matching device and Figure 4 shows the block diagram
of a matching unit.

The string matching device accepts n-character input IN CHRS and produces n match-
ing outputs OPT1 to OPTn that are corresponded to the first to the last characters of
IN CHRS respectively. The number n is decided as required, such as 3, 4, or more. The
more the characters are matched in every clock cycle the more the matching speed in-
creases. However, the transition rules become more complicated and the hardware cost
also grows.

The multi-character string matching device includes m matching units, n + 1 priority
multiplexers, and n + 1 registers. Each matching unit is responsible for executing one
n-character transition rule. For the example as shown in Tables 1 and 2, there are 38
3-character transition rules and at least 38 matching units are required. Each matching
unit matches its own pattern with current state CUR ST and input characters IN CHRS
then outputs the matching results that include a next state NX ST, n matching outputs
from OP1 to OPn, and control signals NX FLG and OF1 to OFn. In it, each of matching
outputs OP1 to OPn is corresponding to each input character respectively.

The signals NX FLG and OF1 to OFn are control flags corresponding to NX ST and
OP1 to OPn respectively. For example, when NX FLG is ‘1’, the data of NX ST is valid,
and when NX FLG is ‘0’, the data of NX ST is not valid. For another example, when
OF1 is ‘1’, the data of OP1 is valid. While OF1 is ‘0’, the data of OP1 is not valid.

The results of the matching units are sent to the n+1 priority multiplexers to determine
the matching results of the current matching cycle. Priority multiplexers 0 to n select
the highest priority results to be sent to the outputs Dout and then to registers REG0 to
REGn. Since the operations are synchronized with the clock signal CLK, the results of
this matching cycle will be latched in registers REG0 to REGn when the CLK is changed.
REG0 is a state register storing the current state, and register REG1 to REGn are output
registers storing the n matching outputs corresponding to the n input characters.

The input signal SET IN is designated for setting the contents of the matching units.
The detail of the setting function is not shown in the block diagrams because the function
is not the critical portion of this paper. When the keywords are changed, the generated
new rules are sent to the matching units through the SET IN.
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Figure 3. Hardware architecture of multi-character string matching

Figure 4. Architecture of matching unit
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Table 1. 3-character transition rules 1 to 20

rule no.
Pattern Data Output Data

TMASK P ST P CHRS OMASK NX ST OP1 OP2 OP3
1 1111 1 ers 1111 9 he hers
2 1100 1 e?? 0100 – he – –
3 1111 1 ish 1111 4 his
4 1110 1 is? 0110 – his –
5 1111 2 rsh 1111 4 hers
6 1110 2 rs? 0110 – hers –
7 1111 3 her 1111 8 she he
8 1110 3 he? 0110 – she he –
9 1111 3 his 1111 7 his
10 1111 4 ers 1111 9 she he hers
11 1100 4 e?? 0100 – she he – –
12 1111 4 ish 1111 4 his
13 1110 4 is? 0110 – his –
14 1111 5 rsh 1111 4 hers
15 1110 5 rs? 0110 – hers –
16 1111 6 she 1111 5 his she he
17 1111 6 shi 1111 6 his
18 1100 6 s?? 0100 – his – –
19 1111 7 her 1111 8 she he
20 1110 7 he? 0110 – she he –

Table 2. 3-character transition rules 21 to 38

rule no.
Pattern Data Output Data

TMASK P ST P CHRS OMASK NX ST OP1 OP2 OP3
21 1111 7 his 1111 7 his
22 1111 8 she 1111 5 hers she he
23 1111 8 shi 1111 6 hers
24 1100 8 s?? 0100 – hers – –
25 1111 9 her 1111 8 she he
26 1110 9 he? 0110 – she he –
27 1111 9 his 1111 7 his
28 0111 0 her 1111 8 he
29 0110 0 he? 0110 – he –
30 0111 0 his 1111 7 his
31 0111 0 she 1111 5 she he
32 0111 0 shi 1111 6
33 0011 0 ?he 1111 2 he
34 0011 0 ?hi 1111 6
35 0011 0 ?sh 1111 4
36 0001 0 ??h 1111 1
37 0001 0 ??s 1111 3
38 0000 0 ??? 1111 0
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The number of priority multiplexers is determined by the characters processed in paral-
lel; for example, when there are n characters compared in parallel, n+1 priority multiplex-
ers are required. One priority multiplexer is used to select the output of next state, and
the other n priority multiplexers are used to select the n matching outputs respectively.
Here we explain the operation of a priority multiplexer briefly. The control signals

C1 to Cm are used to control the corresponding data inputs D1 to Dm respectively to
decide which one of D1 to Dm should be output. The priority of C1 is the highest, while
the priority of Cm is the lowest. When there are multiple control signals enabled, the
data corresponded to the highest priority control signal will be selected to output. For
example, when C2 and C3 are both ‘1’, because the priority of C2 is higher than C3, the
data D2 will be selected to output through Dout. In addition, control signals C1 to Cm
are single-bit signals, while data inputs D1 to Dm are multiple-bit signals. The widths of
inputs D1 to Dm are determined by the matching outputs and the number of states.
Referring to the block diagram shown in Figure 4, each matching unit includes data

registers, a matching circuit, and a control circuit. The block enclosed by dash line is a
control circuit. The control circuit consists of multiple AND gates. The control circuit is
used to perform AND of the output EQ of the matching circuit with the corresponding
bits of output mask OMASK to obtain the control flags NX FLG and OF1 to OFn.
Transition rule is stored in the data registers. The data registers are logically partitioned
to two groups. The first group registers store the pattern data, and the second group
registers store the output data. The matching circuit matches the input data with the
pattern data. If the matching result is matched, then the output EQ is true; otherwise
the output EQ is false.
The pattern data include the ternary mask TMASK, the pattern characters P CHRS,

and the current state P ST. The output data include the output mask OMASK, the
matching outputs OP1 to OPn, and the next state NX ST. The details of pattern data
and output data are explained together with the description of the transition rules.

4.2. Transition rules. Tables 1 and 2 show the examples of 3-character transition rules
for the keywords {he, she, his, hers}. There are total 38 3-character transition rules and
the rules are divided to two tables to fit the layout of the page. We list all the rules
because we think it can help clarify our proposed approach.
In the tables, ‘−’ represents a don’t-care output, while in the real work it is determined

by the corresponding bits in OMASK. The first field is rule number which is only for the
sake of convenience in explanation and no register is required to store the rule number
in the matching unit. The orders of the rules in the table represent the priorities of the
rules. The priorities of rule 1 to 38 are from highest to lowest.
The fields of each rule are grouped to pattern data and output data. The pattern data

include ternary mask TMASK, current state P ST, and pattern characters P CHRS. The
output data include output mask OMASK, next state NX ST, and matching outputs OP1
to OPn. The pattern data are compared with input characters and the current state, if
the compare result is matched then the rule is activated and the output data with flag
are generated. The matching outputs OP1 to OP3 are corresponded to the first, second
and third characters of the pattern characters P CHRS respectively.
Each bit of the ternary mask TMASK determines if the corresponding pattern data

should be matched or not. For example, each bit from the most significant bit (MSB) to
the least significant bit (LSB) of TMASK is corresponded to the current state P ST, the
first, second, and third pattern characters of P CHRS respectively.
A pattern data character is compared only when the corresponding ternary mask bit is

‘1’; otherwise the pattern data character is don’t-care. For example, the bit 3 of TMASK
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in rules 28 to 38 are all ‘0’, it means the current states P ST of these rules are don’t-
care. Each bit of the output mask OMASK determines if the corresponding output data
is valid or not. For example, each bit from the MSB to the LSB of OMASK in the
rules is corresponded to the next state NX ST, and the matching outputs OP1 to OP3
respectively. For example, bit 3, bit 1, and bit 0 of the OMASK in rule 2 are all ‘0’, which
means the NX ST, OP2, and OP3 are not valid, that is, when rule 2 is activated, it does
not affect both the next state and the matching outputs corresponded to the second and
third input characters.

In Tables 1 and 2, the matching outputs are expressed as output strings. However, in
a hardware implementation, the matching outputs can be expressed as the corresponding
state numbers. For example, since the OP2 of rule 7 is “she he” which is corresponded
to the output of state 5, the OP2 (“she he”) of rule 7 can be represented by the state
number 5. In this manner, the outputs can be stored in fixed width spaces instead of
storing the variable length string data, and it is convenient for hardware design.

We now estimate the hardware cost for the proposed architecture. Suppose each input
character is bc bits, P ST and NX ST are bs bits, and OP1 to OPn are bp bits. The widths
of TMASK and OMASK are n+1 bits. The total width of OP1 to OPn is n × bp bits
and the width of P CHRS is n× bc bits. The required space bm of each matching unit for
storing one n-character transition rule is calculated as following:

bm = (n+ 1) + bs + n× bc + (n+ 1) + bc + n× bp = (bc + bp + 2)× n+ 2bs + 2 (1)

From (1), we can know the space for storing the rule in each matching unit is proportional
to the number of characters (n) matched in parallel. If the used character set is usually
an 8-bit one and the matching outputs are represented by state numbers, then bc = 8 and
bp = bs, and (1) is simplified as following:

bm = (bs + 10)× n+ 2bs + 2 (2)

From (2), we can know that the number of states determines the widths of the registers
and further determines the space for rules and complexity of comparators.

4.3. Generate multi-character transition rules. After describing the proposed ar-
chitecture and the transition rules, now we explain how to generate the transition rules
used in the proposed architecture. For the sake of distinguishability, we call the new de-
rived transition functions and transition rules used in the proposed architecture as reduced
transition functions and reduced transition rules.

We use the examples shown in Figures 5 and 6 to explain how to generate the reduced
multi-character transition rules. Because the failure links pointing to initial state are
pruned in the deriving procedure, we add assistant transition functions for assisting to
complete multi-character transition functions. For example, in Figure 5, δ(2, ?) = − and
δ(−, ?) = − are assistant transition functions. In which, ‘?’ represents don’t-care and ‘−’
represents non-existed null state or null output.

Figure 5 shows the examples of the reduced 1-character transition functions of states 1,
2, and 5. In Figure 5(a), we can see there are only two 1-character transition functions of
state1 δ(1, e) = 2 and δ(1, i) = 6, compared with the example shown in Figure 2, and three
1-character transition functions δ(1, h) = 1, δ(1, s) = 3, and δ(1,¬{e, h, i, s}) = 0 derived
from the failure functions linked to the initial state are pruned. In Figure 5(b), because
state 2 has a matching output, we add an assistant transition function for assisting the
derivation of multi-character transition functions. In Figure 5(c), since state 5 is a terminal
state which has a matching output, we add an assistant transition function to state 5.
Furthermore, since the failure function of state 5 is linked to state 2, the 1-character
transition functions of state 2 should be included in the 1-character transition functions
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Figure 5. Examples of reduced 1-character transition functions of state
1, 2, and 5

Figure 6. Examples of constructing reduced 3-character transition func-
tions for state 1

of state 5. Following the above procedure, we can obtain all the reduced 1-character
transition functions for every state in the AC-trie.
Figure 6 shows the example for constructing the reduced 3-character transition func-

tions for state 1. The constructing procedure is similar to the example shown in Figure
2. In Figure 6(a), concatenating the reduced 1-character transition functions of state
1 with their successive reduced 1-character transition functions can obtain the reduced
2-character transition functions of state 1. In Figure 6(b), concatenating the derived re-
duced 2-character transition functions of state 1 with their successive reduced 1-character
transition functions can obtain the reduced 3-character transition functions of state 1.
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From the example described above, we can see that the transition functions of each state
do not include the transition functions beginning from the initial state and the transition
functions of each state are reduced.

Algorithm 1 is also used to generate the transition rules used in the proposed archi-
tecture. While we use the reduced 1-character transition functions instead as the input
NXSET for Algorithm 1. In addition, the line 5 of the algorithm must be modified as the
following:

NSET ← all 1-character transitions of Si in NXSET excluding assistant transitions

The assistant transition functions are excluded, because the assistant transition functions
need not to be expanded.

After generating the n-character transition rules, we must arrange the rules in an ap-
propriate order. The priority of a rule with exact matching pattern should be higher than
the priority of a rule with partial matching pattern. For example, in Tables 1 and 2, the
rules of the same state (the field P ST in the tables) are arranged together. The current
states of rule 1 and rule 2 are the same, which is state 1, and the pattern characters of rule
1 and rule 2 are “ers” and “e??”, respectively. Since the last two characters of the pattern
characters of rule 2 are do not care, the priority of rule 2 is lower than the priority of
rule 1 and rule 2 is arranged behind rule 1. In addition, since the current states of all the
transition rules of initial state need not to be matched (i.e., don’t care), all the transition
rules of initial state are arranged behind the transition rules of the other non-initial states.

An intuitive approach is to arrange the rules according to the order of the binary values
of the ternary mask TMASK. A rule with a larger TMASK value has a higher priority. For
example, “1111” should be the highest. The orders of the rules with the same TMASK
are not important because these rules will not be matched at the same time. The ternary
mask of rule 38 is “0000” and its priority is the lowest, so that it is arranged at the last
of the rule table. Rule 38 will be matched always to ensure the current state will stay at
initial state when no other rules are matched.

4.4. Example of multi-character transition matching. In order to let readers un-
derstand the transition rules and the operation of the proposed architecture more easily,
we use the example shown in Figure 7 to explain the operation of the proposed architec-
ture of multi-character string-matching engine. In this example, the input string “ushehe”
is divided into two 3-character strings “ush” and “ehe” and each 3-character string is pro-
cessed in a matching cycle. In each matching cycle, we show the matched rules and how
the results determined by the matched rules.

At the beginning, current state is reset to the initial state. In matching cycle 1, after
accepting the first 3-character string “ush”, rules 35, 36, and 38 are matched. Rule 35
which has the highest priority decides the next state and all the three outputs correspond-
ing to the three input characters. In this matching cycle, the matching outputs are all
empty string. Since the priorities of rules 36 and 38 are lower than the priority of rule 35,
rules 36 and 38 do not affect the next state and any matching outputs.

In matching cycle 2, after accepting the second 3-character string “ehe”, rules 11, 33,
and 38 are matched. Rule 11 which has the highest priority decides the matching output
corresponding to the first character to be “she he”. Rule 33 which has the next high
priority decides the next state to be state 2 and the matching outputs corresponding to
the second and third characters to be an empty string and “he” respectively. Rule 38
which has the lowest priority does not affect the next state and any matching outputs.
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Figure 7. Example of matching operations

5. Evaluation and Discussion. In this section, we evaluate the proposed approach in
two ways. First, we compare the numbers of generated transition rules for different num-
ber of keywords and different n-character FSMs. Secondly, we implement the proposed
architecture on an ASIC device using FPGA synthesis tools to evaluate the utilization of
hardware resource and estimate achievable throughput.
We used the keywords retrieved from the rules of SNORT as the sample for evaluation.

We evaluated the numbers of rules and the required spaces for n-character FSMs of 200,
400, 600, 800, and 1000 keywords for the cases of n = 1, 2, 3, and 4.
Table 3 shows the numbers of transition rules for different number of keywords and

different n-character FSMs. The numbers in the parentheses, for n = 1 is the ratio of
the rules for n = 1 to total length of keywords, and for n = 2 to 4 are the ratios of the
rules between n and n − 1. For the sake of brevity, we use len to represent the total
length of keywords, and use r1 to r4 to represent the numbers of transition rules of n-
character FSMs for n = 1 to 4. The curves shown in Figure 8 represent the relationships
between the rules and n for different sets of keywords. These curves are represented by
rn = len × kn, where the value of k is dependent on the keyword set. The value of k is
2.4, 3.6, 4.5, 5.2, or 5.7 for 200, 400, 600, 800, or 1000 keywords respectively. The value
of k is obtained by the arithmetic mean of the ratios len/r1 and ri−1/ri for i = 1 to 4.
The curve for 200 keywords is not shown in Figure 8 since it is too close to the x-axis
as compared with others. From the results shown in Table 3 and Figure 8, we can see
that the number of rules is increased more rapidly when the keywords are increased. The
reason for the increase in rules is that when keyword set size grows the failure functions
linked to non-initial states are increased, and furthermore the next move functions (δ) of
the DFA-version AC-trie are increased more. Hence, in order to decrease the number of
transition rules, the keywords should be partitioned to small subsets that each subset is
matched by a separate hardware.
Table 4 shows the required spaces of each matching unit and total matching units for

different numbers of keywords and different parallel characters n, the required total spaces
are derived by multiplying the unit spaces with total rules showed in Table 3. In it, bs
is the width of the registers which is represented in bits. The space of a matching unit
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Table 3. Rules for different n-character FSMs

keywords n = 1 n = 2 n = 3 n = 4
(total length) (r1/len) (r2/r1) (r3/r2) (r4/r3)

200 4,775 12,053 31,030 75,712
(2,321) (2.06) (2.52) (2.57) (2.44)
400 16,011 61,653 222,899 777,428

(4,692) (3.41) (3.85) (3.62) (3.49)
600 35,064 169,307 757,859 3,306,210

(8,032) (4.37) (4.83) (4.48) (4.36)
800 53,756 308,207 1,571,908 7,806,812

(10,728) (5.01) (5.73) (5.10) (4.97)
1000 73,465 458,623 2,590,140 14,249,657

(13,374) (5.49) (6.24) (5.65) (5.50)
len: total lenth of keywords

r1 to r4: numbers of rules for n = 1 to 4

Figure 8. Relationship between growths in rules and n

is derived by (2) for 8-bit character set. The spaces are all represented in bits. In this
table, it also lists the numbers of states of the generated AC-tries for different numbers
of keywords, and the numbers in the parentheses are the width (bits) of the registers
for storing the state numbers. Different numbers of keywords generate different numbers
of states, thus determining the width of the registers for storing the state numbers and
the total required space for a transition rule. In the other side, when n is increased, the
number of pattern characters and matching outputs and the widths of pattern mask and
output mask of the transition rule are increased accordingly.

The relationship between the required space and n can be obtained by simply multi-
plying the equation rn = len× kn with the space of a matching unit which is represented
in (2). The resulting equation is Sn = len× kn× [(10 + bs)× n+ 2bs + 2]. Consequently,
the growth of the required space is about n× kn.

We implement the 4-character FSM for 512 and 1024 matching units in VHDL for
evaluation. The implementations were compiled and synthesized using Altera Quartus
II tools for an Altera’s HardCopy IV ASIC HC4E35FF1517. According to the data
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Table 4. Spaces for different n-character FSMs

Keywords
Total n = 1 n = 2 n = 3 n = 4

(total length)
states Unit Total Unit Total Unit Total Unit Total
(bs) Space space Space space Space space Space space

200
(2, 321)

1, 790
(11 bits)

45 215K 66 795K 87 2.7M 108 8.2M

400
(4, 692)

3, 597
(12 bits)

48 769K 70 4.3M 92 21M 114 89M

600
(8, 032)

6, 081
(13 bits)

51 1.8M 74 13M 97 74M 120 397M

800
(10, 728)

8, 029
(13 bits)

51 2.7M 74 23M 97 152M 120 937M

1000
(13, 374)

9, 916
(14 bits)

54 4.0M 78 36M 102 264M 126 1.8G

∗spaces are all represented in bits.

Table 5. Implementation of 4-character FSM on ASIC

512 Matching units 1024 Matching units
Used HCells 304,666 608,436

HCell Utilization 3% 6%
Total registers 45,432 91,045

Clock 142 MHz 95 MHz
Throughput 4.5 Gbps 3.0 Gbps

Table 6. Comparison of different approaches

Description
Clock Data Throughput
(MHz) Width (Gbps)

Our proposed approach 142 32 bits 4.5
D. Pao et al. [4] Pipelined implementation 253 8 bits 2.0

Scarpazza et al. [7] Software program 3200 64 bits 1.6 ∼ 40
Tripp [9] Parallel string matching engine 149 32 bits 4.7

sheet of the product, the ASIC has 9774,880 HCells, where an HCell is a logic array
cell used in the HardCopy IV series devices. The results of compilation and synthesis
of the implementations are shown in Table 5. In the table, the results include total
used HCell, the utilization of HCell and registers, the maximum achievable operating
clock, and the derived maximum achievable throughput. The achievable throughput is
obtained by multiplying the data width which is 32 bits with the clock rate. In the
implementations, the widths of the state registers and the matching output registers are
8 bits, and the widths of TMASK and OMASK are 5 bits. As of the maximum operating
clock, the implementation of 512 matching units is higher than the implementation of
1,024 matching units. The reason for the degradation of the operating clock is that the
priority multiplexers are implemented by chained multiplexers. The minimal critical path
of a priority multiplexer is log2M chained multiplexers for M matching units. Therefore,
the delay of the priority multiplexer is longer for the more matching units. If the priority
multiplexers are re-designed to reduce the time delays, the operating clock should be
improved.
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Table 6 shows the comparison of different approaches. The approach proposed by
Scarpazza et al. [7] is a software implementation on the processor of IBM Cell/B.E., where
the data in columns Clock and Data Width are the operating clock and the data width of
the processor, respectively. In the other approaches, the data in columns Clock and Data
Width are the clock rate and the bits of the data bus of the hardware implementations,
respectively. The best throughput is 40 Gbps provided by Scarpazza et al. [7] with the
constraint on less than 200 keywords. However, in the situation of more than 200 keywords
the throughput of the approach of Scarpazza et al. is degraded to 1.6 Gbps. The pipelined
architecture proposed by D. Pao et al. [4] can be operated at 253 MHz. However, since the
approach of D. Pao et al. only can process one character every clock the throughput is 2.0
Gbps, which is less than our approach operating at 142 MHz. Our results are competitive
to that of Tripp [9] that can process four characters every clock and the operating clock is
149 MHz and the throughput can be 4.7 Gbps. Our proposed approach has the advantage
that it can generate the multi-character rules from the provided keywords systematically.
In addition, the structure of our proposed architecture is simple and regular that can be
easily implemented in different devices or can be designed as a stand alone integrated
circuit (IC). Our proposed architecture is also scalable that allows us to design a string
matching engine including the matching units as needed. The advantages of the hardware
string matching accelerator are revealed from the comparison. The modern CPU is a
sophisticated product that can run at very high speed and has wide data width. While
a preliminarily developed hardware string matching accelerator running at much lower
speed can achieve the throughput that is achieved by a soft program running at a very
powerful CPU. Moreover, a hardware string matching accelerator that can inspect multiple
characters in parallel can achieve multiplied throughput at the same clock rate.

6. Conclusions and Future Work. In this paper, we have described an intuitive and ef-
ficient algorithm to construct multi-character transition functions that represents a multi-
character FSM from an AC-tire. The proposed algorithm iteratively concatenates the
1-character transition functions derived from the AC-trie to construct the multi-character
transition functions. Then we proposed a hardware architecture to implement the de-
rived multi-character FSM that utilizes the property of failure functions of the AC-trie to
reduce the number of derived multi-character transition rules, and thereby the hardware
cost can be reduced. In the evaluation, we first evaluate the required hardware cost for
different n-character FSMs by using the keywords extracted from SNORT rules. The
evaluations for required space show that when the keywords are increased the complexity
of AC-trie is increased rapidly, and the required space for storing the n-character rules
is also increased rapidly. The results of the evaluations for required space suggest that
the keywords should be partitioned to small groups and each small group of keywords is
matched by a small scale architecture. Then we implement the proposed architecture on
an ASIC and the result of simulation shows that our architecture can achieve 4.5 Gbps
for an implementation of 4-character FSM operated at 142 MHz clock.

The proposed architecture for multi-character transition string matching is simple and
intuitive such that it can be easily implemented for any required number of characters
inspected in parallel every matching cycle. In addition, the proposed architecture is flexi-
ble for applications. When the searching keywords are changed, we need only to generate
new transition rules for the new keywords and update the registers of the matching units
with the new transition rules.

There are some possible future works for this proposed architecture. Since the pro-
posed architecture is regular and is similar to the architecture of a TCAM, the proposed
architecture can be easily designed as a standalone integrated circuit (IC) referring to the
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circuit of the TCAM. The standalone device based on the proposed architecture is appro-
priate for the applications that need to match multiple keywords at a time in high speed.
In addition, we can redesign the proposed architecture to further reduce the number of the
derived multi-character transition rules. For example, the proposed architecture can be
redesigned in an NFA approach that can eliminate the transitions induced from the failure
functions of the AC-trie. Furthermore, the operating clock of the proposed architecture
can be pulled up by incorporating pipeline techniques to further increase the throughput
of string matching.
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