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Abstract. We have demonstrated in Part I that if the initial attitude error is not
located at the unstable equilibrium or its stable manifold, then our proposed intermediate
quaternion based attitude control method is able to ensure asymptotically stable attitude
tracking. We now proceed in Part II to address global attitude tracking. By blending
the intermediate quaternion with a shifted one, we develop a systematic approach for
synthesizing a hybrid attitude control scheme capable of steering any initial attitude error
toward the desired stable equilibrium, delivering a final product for globally stable attitude
tracking control of spacecraft free of singularity, ambiguity and unwinding.
Keywords: Intermediate quaternion, Attitude tracking, Unwinding free

1. Introduction. A new 4-element variable (quaternion) has been introduced as an in-
termediate unit for attitude control design for spacecraft in Part I [1], where it is shown
that by building attitude control upon the intermediate quaternion, several advantageous
features as compared with traditional quaternion based control method can be achieved.
As a correlated portion of the work, we now further extend the results to global attitude
tracking. The fundamental idea behind achieving global attitude tracking constitutes of
two steps: i) introducing a shifted (and easily computable) quaternion so that the unsta-
ble equilibrium with respect to the original quaternion is no longer the equilibrium w.r.t.
the shifted quaternion; and ii) constructing attitude control using both the original and
the shifted quaternion variables to drive the vehicle situating at any initial attitude to
the stable equilibrium (desired attitude) asymptotically, i.e., global attitude tracking is
achieved, as detailed in the rest of the paper.

2. Motivation for Global Attitude Tracking Control Design.

2.1. Problem statement. For completeness and easy reference, some of the key points
in Part I of this work [1] are briefly repeated here. According to Euler’s eigenaxis rotation
theorem [2], the attitude tracking error in terms of the direction cosine matrix (DCM) Re

can be parameterized by a unit vector σ = [σ1, σ2, σ3]
T and an angle ϑ as follows:

Re(σ, ϑ) = cosϑI+ (1− cosϑ)σσT − sinϑσ× (1)

Now we introduce the following new intermediate 4-element variable p using σ and ϑ
as

p = (p0,p) = (cosϑ,σ sinϑ) (2)
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By using such quaternion (the vector part p), the following attitude control scheme
(i.e., (17) from [1]) is constructed,

τ = −kvωe − kpp+ F(.) (3)

where F(.) is a nonlinear term, defined as

F(.) = (Reωd)
×J(Reωd) + J(Reω̇d) (4)

Refer to [1] for the definitions of other variables/parameters. The stability is analyzed
by examining the following Lyapunov function candidate

V =
1

2
ωT

e Jωe + kp(1− p0) ≥ 0 (5)

along the error dynamics
Jω̇e = τ − F(.)−H(.) (6)

H(.) = ω×
e J(ωe +Reωd) + [(Reωd)

×J+ J(Reωd)
×]ωe (7)

leading to
V̇ = −kvω

T
e ωe ≤ 0 (8)

from which it is established in [1] that the trajectory (ωe, p) converges to the equilibria
Q = Qs ∪Qu, here Qs and Qu represent stable (desired) and unstable equilibria and are
defined, respectively, as

Qs = {(ωe, p) : ωe = 0, p = (+1,0)} = {(ωe,Re) : ωe = 0,Re = I} (9)

Qu = {(ωe, p) : ωe = 0, p = (−1,0)} = {(ωe,Re) : ωe = 0,Re = 2σσT − I} (10)

It is rigorously shown in [1] that with the control scheme (3), all trajectories (ωe, p)
attracted to the equilibria Qu form a lower-dimensional manifold Ωu (Ωu ⊃ Qu) in TSO(3)
[3,4], which is a set with measure zero [5,6], thus almost globally stable attitude tracking
is achieved in that any trajectory (ωe, p) not originating from the negligible region Ωu

always tends to the desired equilibrium Qs.
Now here comes the interesting question: if the vehicle does initially situate at the ex-

treme region Ωu (possible if considering the global operation envelope), can we still achieve
asymptotically stable attitude tracking with the proposed quaternion based method? This
represents the global attitude tracking control problem of theoretical and practical im-
portance to be addressed in this work.

2.2. Some useful observations. First note that, in view of p0 = cosϑ as given in (2),
the equilibria Qs and Qu given in (9) and (10) can be equivalently expressed in terms of
(ωe, ϑ) as

Qs = {(ωe, ϑ) : ωe = 0, ϑ = 0◦} and Qu = {(ωe, ϑ) : ωe = 0, ϑ = 180◦} (11)

Also the Lyapunov function candidate (5) is equivalent to

V =
1

2
ωT

e Jωe + kp(1− cosϑ) ≥ 0 (12)

which defines a potential field, where the potential energy V is monotonically decreasing
since V̇ ≤ 0 always holds according to (8). Now the following useful observations can be
made.
Observation 2.1. It is observed from (1) and (11) that (ωe,Re) ∈ (0, 2σσT − I) corre-
sponds to the same equilibria Qu. Furthermore, from (12) it is seen that all of the unstable
equilibria (ωe,Re) ∈ (0, 2σσT − I) bear the same potential energy V = 2kp. As a result,
any error trajectory diverging from any one of the unstable equilibria diverges actually
from all the unstable equilibria.
Observation 2.2. As mentioned earlier, the set Ωu is the stable manifold of Qu, thus
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only those trajectories (ωe, ϑ) starting from Ωu converge to the equilibrium Qu. Since
V̇ ≤ 0 holds all the time as ensured by (8), it can be concluded that

V (ωe, ϑ) ≥ V (0, 180◦) = 2kp ∀(ωe, ϑ) ∈ Ωu (13)

Namely, the unstable equilibrium Qu carries the minimum potential energy in Ωu.
Observation 2.3. From (12) one easily infers that

V (ωe, ϑ) < V (0, 180◦) = 2kp ∀(ωe, ϑ) ∈ M (14)

if the set M is defined as

M = {(ωe, ϑ) : ωe = 0, ϑ ∈ [0◦, 180◦) ∪ (180◦, 360◦]} (15)

Then, from (13) and (14), one can deduce that with the controller (3), any trajectory
(ωe, ϑ) starting from any point (ωe, ϑ) ∈ M never goes to the unstable (undesirable)
equilibria Qu, but rather, asymptotically converges to Qs in which (ωe, ϑ) = (0, 0◦), as
shown in Theorem 4.1 in [1].
Observation 2.4. If there exists a controller τη capable of driving the error trajectory
(ωe, Re) away from a point in Qu and pushing it toward the region M, then the error
trajectory (ωe, Re) actually diverges from the entire set Qu due to the same potential
energy property of all the points in Qu as mentioned in Observation 2.1. Therefore, if one
could find such τη that drives (ωe, ϑ) towards M, and as soon as (ωe, ϑ) enters into M,
the controller (3) is activated, then with such strategy the trajectory (ωe, ϑ) never goes to
the unstable (undesirable) equilibria Qu, but rather asymptotically converges to the desired
stable equilibrium (ωe, ϑ) = (0, 0◦) according to Observation 2.3.

2.3. Main idea for global attitude tracking control. Inspired by the above obser-
vations, we construct a hybrid attitude control strategy by combining τη with τp through
a signal χ as follows:

τ = χτp + (1− χ)τη (16)

where τp denotes the original intermediate quaternion based control (3), τη is the control
with the capability as imposed in Observation 2.4 (as designed later, see (25)), and χ is a
switch signal taking 0 or 1 according to the following simple logic reasoning mechanism,

Initially χ(0) = 1;

IF χ = 1 and (ωe, ϑ) ∈ Qu, THEN χ = 0;

IF χ = 0 and (ωe, ϑ) ∈ M, THEN χ = 1.

To see how the proposed control scheme (16) would act during the entire control process
so as to achieve global attitude tracking, we only need to examine how the two cases –
Case 1: (ωe(0), ϑ(0)) ∈ Ωu and Case 2: (ωe(0), ϑ(0)) /∈ Ωu are handled by the control
scheme since any initial error (ωe(0), ϑ(0)) falls into either case.

First note that since χ(0) = 1 the control scheme (16) initially is τ = τp. Then if Case
1 happens (i.e., initially (ωe(0), ϑ(0)) ∈ Ωu), then since χ = 1 the control τp is active from
that moment on till the trajectory reaches a point in Qu, as soon as that time instant
comes, χ is updated to 0 and then, by (16), the control τη takes over from that moment.
Such control is capable of driving the system away from Qu and pushing it towards a point
(ωe, ϑ) ∈ M as assumed in Observation 2.4. Once (ωe, ϑ) enters into M , χ is updated
back to 1, thus τη is off and τp becomes active again, with which the trajectory (ωe, ϑ)
starting from a point in M converges to the point Qs as analyzed in Observation 2.3.

If Case 2 happens, which is equivalent to (ωe(t), ϑ(t)) /∈ Ωu ∀t ≥ 0, according to the
control setting, χ(t) = 1 always holds so that τ = τp is activated all the time, such control,
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as already shown in [1], is able to drive any trajectory initially on the point (ωe, ϑ) /∈ Ωu

to the desired position Qs, i.e., (ωe,Re) → (0, I).
Based upon the above analysis, it is seen that control τη plays a crucial role in achieving

global tracking. Therefore, the problem of designing global attitude tracking control boils
down to the construction of the control τη, which is addressed in next section.

3. New Intermediate Variable Based Control for Global Tracking. From the
new intermediate quaternion defined in (2), it is not difficult to infer that p = 0 leads to
ϑ = 0◦(360◦) or ϑ = 180◦. Thus, if there exists a vector η, based on which a controller
τη is designed such that the closed-loop system has the equilibria (ωe,η) = (0,0) where
ϑ 6= 180◦ (i.e., at that moment (ωe, ϑ) ∈ M), then such controller τη is exactly the one
as imposed in Observation 2.4 that can be incorporated in (16).
Therefore, we focus on i) finding (introducing) the vector η; ii) building τη upon such

η and showing that under the control of τη the closed-loop system has the equilibria
(ωe,η) = (0,0) where ϑ 6= 180◦; and iii) proving that the hybrid control (16) consisting
of τp and τη indeed ensures global and asymptotic attitude tracking in the rest of the
paper.

3.1. Shifted intermediate variable. We first define a shifted intermediate variable
p∗ , (p∗0,p

∗), which is obtained by rotating the original intermediate quaternion p with a
small angle δ along an axis ξ. Mathematically, the variable p∗ is computed by [2,7-10]

p∗ , (p∗0,p
∗) = p⊗ ¯̃p = (p̃0p0 + p̃Tp, p̃0p− p0p̃− p×p̃) (17)

where “⊗” denotes quaternion multiplication, ¯̃p is the conjugate of p̃ = (p̃0, p̃), a known
small orientation shift, defined as

p̃ = (p̃0, p̃) = (cos δ, ξ sin δ) (18)

where δ is a small constant angle chosen by the designer and ξ = [ξ1, ξ2, ξ3]
T is a given

constant unit vector.
Recalling that ṗ is given by (11) in [1], it is not difficult to show that the time derivative

of p∗0 is obtained as

ṗ∗0 = −
(
p̃0p− p0p̃− 1

2
p̃+

1

2
RT

e p̃

)T

ωe (19)

It is interesting to note that if a variable η is defined as

η = p̃0p− p0p̃− 1

2
p̃+

1

2
RT

e p̃ (20)

one gets ṗ∗0 = −ηTωe from (19). Clearly, such intermediate variable η deriving from p∗

can be straightforwardly and uniquely determined from the physically available Re and
the chosen p̃ = (p̃0, p̃) as given in (18). Furthermore, the vector η so defined exhibits an
interesting feature as stated in the following lemma.

Lemma 3.1. Let η be defined as in (20). If σTξ 6= 0 then η = 0 is equivalent to either
one of the following two cases

(σ, ϑ) ∈ {σ = ξ, ϑ = δ or ϑ = 180◦ + δ} (21)

(σ, ϑ) ∈ {σ = ξ, ϑ = δ∗ or ϑ = 180◦ − δ∗} (22)

where δ∗ represents an angle given as

δ∗ = arcsin(tan δ) (23)
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Proof: In view of Re as defined in (1) and η as given in (20), we see that η = 0 implies
that

x1σ + x2ξ + x3σ
×ξ = 0 (24)

where x1 = 2 cos δ sinϑ+sin δ(1− cosϑ)σTξ, x2 = − sin δ(cosϑ+1), and x3 = sin δ sinϑ.
Note that since both σ and ξ are unit vectors, for any σ and ξ one has i) σ = ξ, ii)
σ = −ξ, or iii) σ 6= ±ξ. Thus from (24) one has that x1 = −x2 if σ = ξ; and x1 = x2 if
σ = −ξ; if σ 6= ±ξ, then we have σ×ξ 6= 0, σ ⊥ σ×ξ and ξ ⊥ σ×ξ, so that the solution
of (24) is x1 = x2 = x3 = 0. Therefore, Equation (24) would have three solutions if no
additional constraint is imposed.

Solution 1: σ = ξ and x1 = −x2. For this case, it follows from x1 = −x2 that
2 sin(ϑ− δ) = 0 (noting that σTξ = 1), from which one infers that ϑ = δ or ϑ = 180◦ + δ,
leading to (21).

Solution 2: σ = −ξ and x1 = x2. Again from x1 = x2, it holds that 2 cos δ(sinϑ +
tan δ) = 0 (noting that σTξ = −1), from which we obtain sinϑ+tan δ = 0 since cos δ 6= 0
for a nonzero small angle δ, thus one can get ϑ = −δ∗ or ϑ = −180◦ + δ∗, where δ∗ is
defined in (23). Note that (σ, ϑ) and (−σ,−ϑ) induce the same Re as defined in (1), so
that this case is also equivalent to the situation σ = ξ with ϑ = δ∗ or ϑ = 180◦ − δ∗, as
given in (22).

Solution 3: σ 6= ±ξ and x1 = x2 = x3 = 0. For this case, from x2 = x3 = 0 and
sin δ 6= 0, one gets ϑ = 180◦, which with x1 = 0 leads to σTξ = 0.

However, since σTξ 6= 0 ∀t ≥ 0 as imposed in the lemma, the third solution to (24)
does not actually exist, leading to the conclusion that only (21) and (22) are equivalent
to η = 0, which completes the proof.

Remark 3.1. The important implication of this lemma is that (ωe,η) = (0,0) ensures
(ωe, ϑ) ∈ M if σTξ 6= 0. Therefore, if we build τη upon η which can drive the system
to the equilibria (ωe,η) = (0,0), then such controller τη is capable of driving the error
trajectory (ωe, ϑ) away from a point in Qu and pushing it toward some point (ωe, ϑ) ∈ M ,
as will be shown shortly. Also note that the condition σTξ 6= 0 must be satisfied in order
to maintain the property as stated in the lemma. Interestingly, since the Euler axis ξ is
chosen freely by the designer, literally there are infinite numbers of choices, as detailed
later.

3.2. Shifted intermediate variable based control. Now we are ready to present the
following theorem regarding how to design τη with η so that τη is capable of driving the
error trajectory (ωe, ϑ) away from Qu and pushing it toward some point in M , where
ωe = 0 and ϑ 6= 180◦.

Theorem 3.1. Consider the error dynamic system (6). If the attitude control is designed
as

τ = τη = −kvωe − kpη + F(.) (25)

where η is determined by (20) in which ξ is chosen properly such that ξTσ(0) 6= 0,
then any trajectory (ωe, ϑ) starting from Qu asymptotically converges to the equilibria
(ωe,η) = (0,0) in which (ωe, ϑ) ∈ M .

Proof: Choose a Lyapunov function candidate as

V ∗ =
1

2
ωT

e Jωe + kp(1− p∗0) ≥ 0 (26)

Under the control of (25), it follows from (6) and (26) that

V̇ ∗ = ωT
e Jω̇e − kpṗ

∗
0 = ωT

e (τ − F(.)−H(.)) + kpω
T
e η
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= −kvω
T
e ωe − ωT

e H(.) = −kvω
T
e ωe ≤ 0 (27)

where ωT
e H(.) ≡ 0 as shown in [1], it follows from (26) and (27) that ωe ∈ L2 ∩L∞, thus

F(.) ∈ L∞ and H(.) ∈ L∞ from (4) and (7) as the desired angular velocity ωd and its rate
ω̇d are bounded. Now it is observed that all terms in the controller (25) are bounded at
any time, thus τ ∈ L∞, as a result, combining ωe ∈ L∞, F(.) ∈ L∞ and H(.) ∈ L∞, one
gets ω̇e ∈ L∞ from (6). According to Barbalat lemma, ωe ∈ L2 ∩ L∞ and ω̇e ∈ L∞ (i.e.,
ωe uniformly continuous) imply that ωe → 0 as t → ∞, and then H(.) → 0 as t → ∞
from (7). Taking derivative of (6) with respect to time yields

Jω̈e = τ̇ − Ḟ(.)− Ḣ(.) (28)

In light of the fact that ω̇d and ω̈d are bounded, it is not difficult to show Ḟ(.) and

Ḣ(.) are also bounded (because ω̇e ∈ L∞). Thus from (25) τ̇ is also bounded since from
(20) η̇ ∈ L∞ due to ωe ∈ L∞, Re ∈ L∞ and ṗ ∈ L∞ (from (11) in [1]). Then from
(28) we have ω̈e ∈ L∞, implying that ω̇e is uniformly continuous, which, together with
ωe → 0, allows the Barbalat lemma to be used again so that ω̇e → 0 as t → ∞ [11-13].
Consequently, from the closed-loop error dynamics Jω̇e = −kvωe − kpη −H(.) obtained
from (6) and (25), one obtains that η → 0 as t → ∞ since ωe → 0, ω̇e → 0 and H(.) → 0
as t → ∞. In other words, the system with any initial condition asymptotically converges
to the equilibrium (ωe,η) = (0,0).
To complete the proof, we need to show that any trajectory (ωe, ϑ) starting from

Qu converges to the equilibria (ωe,η) = (0,0) (where ϑ 6= 180◦) asymptotically. Note
that at the initial position (ωe(0), ϑ(0)) ∈ Qu, we have ϑ(0) = 180◦, which, together
with ξTσ(0) 6= 0, infers from Lemma 3.1 that η(0) 6= 0, which implies that initially
(ωe(0),η(0)) 6= (0,0), thus the trajectory (ωe, ϑ) must diverge from the initial position
(ωe(0), ϑ(0)) ∈ Qu. Furthermore, from (17) it is obtained that p∗0 = −p̃0 as (p0,p) =
(−1, 0), thus from (26) we have

V ∗(ωe, ϑ) = kp(1 + p̃0) ∀(ωe, ϑ) ∈ Qu (29)

which implies that once the system diverges from the initial position (ωe(0),Re(0)) ∈
Qu, it diverges from all points in Qu (because of the same potential energy property as
indicated in (29)). Therefore, with the controller (25), any trajectory (ωe, ϑ) originating in
Qu diverges from Qu, then converges to the equilibria (ωe,η) = (0,0), in which ϑ 6= 180◦

(i.e., (ωe, ϑ) ∈ M), more specifically, ϑ ∈ {δ, δ∗, 180◦ − δ∗, 180◦ + δ} (where δ∗ is given in
(23)) according to Lemma 3.1, and the proof completes.
From this theorem, the control scheme τη that possesses the property as described in

Observation 2.4 has been constructed as in (25). By making use of such τη, global attitude
tracking results can be readily established, as presented in next subsection.

3.3. Globally asymptotic attitude control design. We have shown in previous sub-
section that τη constructed as in (25) exhibits the property as imposed in Observation
2.4. It then remains to show that the controller (16) consisting of τη and τp ensures glob-
ally and asymptotically stable attitude tracking, as formally presented in the following
theorem.

Theorem 3.2. Consider the error dynamic system (6). If the hybrid control scheme (16)
is applied, in which τp is designed as in (3) and τη is generated by (25). Then it is ensured
that i) the error trajectory never rests on the point Qu given (10) or (11); and ii) globally
and asymptotically stable attitude tracking is ensured in that the error trajectory starting
from any initial position converges to Qs asymptotically, i.e., (ωe,Re) → (0, I) as t → ∞.
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Proof: Since initially χ(0) = 1, the hybrid control (16) initially is

τ = τp = −kvωe − kpp+ F(.) (30)

Choose a Lyapunov function candidate

V =
1

2
ωT

e Jωe + kp(1− p0) ≥ 0 (31)

Considering the error dynamic system (6) with the control (30), it has been shown in
[1] that V̇ = −kvω

T
e ωe ≤ 0, from which it is concluded that the error trajectory starting

from any position asymptotically converges to the equilibria Q = Qs ∪Qu, as detailed in
[1].

According to the rule for updating χ as described in (16), if (ωe(0), ϑ(0)) /∈ Ωu, then
(ωe(t), ϑ(t)) /∈ Ωu ∀t ≥ 0 because only those trajectories starting from Ωu converge to Qu,
as described in Observation 2.2, therefore, χ = 1 holds for any time instance, and only
controller (30) is in action during the entire control process. Since (30) is identical to that
as developed in [1], it has been shown that (30) is able to drive the system attitude errors
asymptotically to the stable equilibrium Qs as long as (ωe(0), ϑ(0)) /∈ Ωu.

If, however, (ωe, ϑ) hits Q
u at some time instant (tc1), χ is updated to 0 according to

the control setting, and then the hybrid controller (16) becomes

τ = τη = −kvωe − kpη + F(.) (32)

in which η is given as (20), where p̃ = (cos δ, ξ sin δ), here ξ is properly chosen such that
ξTσ(tc1) 6= 0 and δ 6= 0 is a constant small angle (e.g., δ = 2◦ or δ = 5◦).

Choose a Lyapunov function candidate

V ∗ =
1

2
ωT

e Jωe + kp(1− p∗0) ≥ 0 (33)

with p∗0 defined as in (17). It follows from (6), (32) and (33) that V̇ ∗ = −kvω
T
e ωe ≤

0. Therefore, as shown in the proof of Theorem 3.1, under the control of τη the error
trajectory (ωe, ϑ) (already hitting Qu as assumed, thus (ωe, ϑ) ∈ Qu) asymptotically goes
to the position (ωe, ϑ) ∈ M (i.e., ωe = 0 and ϑ 6= 180◦) and never approaches any other
point (ωe, ϑ) ∈ Qu. Note that at the moment (tc2) that the trajectory (ωe, ϑ) enters into
the region M , χ changes back to 1 and the controller (32) changes to (30), at this time
the potential energy V (ωe(tc2), ϑ(tc2)) defined by (31) is bounded as

V (ωe(tc2), ϑ(tc2)) < V (0, 180◦) = 2kp (34)

for ωe(tc2) = 0 and ϑ(tc2) ∈ {δ, δ∗, 180◦ − δ∗, 180◦ + δ}, namely, ωe(tc2), ϑ(tc2) /∈ Ωu, thus
under the control of (30), the error trajectory (ωe, ϑ) starting from ωe(tc2), ϑ(tc2) /∈ Ωu

asymptotically converges to Qs, as shown in Theorem 3.1 in [1].
Consequently, the error dynamic system under the controller (16) never rests onQu (i.e.,

unstable equilibrium w.r.t. τp) and furthermore globally and asymptotically converges to
the desired equilibrium (ωe,Re) = (0, I), which completes the proof.

Remark 3.2. Note that the controller (16) is able to drive the error trajectory from any
point to the desired position automatically without the need for judging where the error
trajectory is initially situated. Furthermore, with the proposed intermediate quaternion
based control (3), the closed-loop error dynamic system has unstable equilibria with exactly
the same potential energy, thus the attitude error trajectory diverging from any one of the
unstable equilibria will diverge from all the unstable equilibria, it is this feature that makes
it possible to construct the hybrid controller (16) to achieve global attitude tracking, where
the sub-controller τη is triggered at most once during the entire control process. On the
contrary, if the rotational matrix is directly used for attitude control design as in [4,14],
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it leads to three unstable equilibria with different potential energy, as a result, the system
might shift from one of their unstable equilibria to another repeatedly. As such only almost
global results are obtained with those methods as it is difficult to develop a systematic yet
graceful solution like the one introduced here.

4. Implementation Consideration and Feature Analysis.

4.1. Implementation consideration. It should be stressed that in order to establish
the global tracking result of the proposed control scheme rigorously, the analysis and
stability proof are somewhat involved; however, the resultant control scheme itself and
the concept/fundamental idea behind the control scheme are quite simple. In fact, the
following simple steps are needed in designing and programming the proposed control
scheme:
Step 1: Set χ = 1;
Step 2: Calculate F(.) from (4);
Step 3: IF χ = 1

if (ωe, p0) ∈ NQ, then χ = 0, select a small angle δ,
and determine ξ (i.e., p̃ = (cos, ξ sin)), go to Step 6

else, go to Step 4
ELSE
if (ωe, p0) ∈ NM , then χ = 1, go to Step 4
else, go to Step 6

Step 4: Calculate p from (9) in [1];
Step 5: Calculate τ from (30); END
Step 6: Calculate η from (20);
Step 7: Calculate τ from (32); END

where the sets NQ and NM are used to replace Qu and M for practical application of the
proposed controller (16), and defined by

NQ = {(ωe, p0) :‖ ωe ‖≤ εw, | 1 + p0 |≤ εp} (35)

NM = {(ωe, p0) :‖ ωe ‖≤ εw, | 1 + p0 |> εp} (36)

where εw > 0 and εp > 0 are small numbers chosen by the designer, which significantly
facilitates the real-time implementation.
Also, at Step 3, one needs to specify the vector ξ to satisfy the condition ξTσ(tc) 6= 0

at the moment (tc) that the controller τη is initiated. There are many possible choices
for such ξ and the simplest one is to choose ξ such that it is parallel to the vector σ(tc),
namely ξ = ±σ(tc), such that ξTσ(tc) = ±1, where the vector σ(tc) is derived from
Re(tc). Note that according to the setting for the control (16), τη is switched on at the
time instant tc that (ωe(tc), ϑ(tc)) = (0, 180◦), where Re(tc) = 2σ(tc)σ

T (tc) − I, thus
σ(tc) can be determined from Re(tc) as

σi(tc) = ±
√
(Reii(tc) + 1)/2 (i = 1, 2, 3) (37)

σi(tc)σj(tc) = Reij(tc)/2 (i, j = 1, 2, 3 and i 6= j) (38)

Note that (37) is well defined due to |Reii(.)| < 1 for any DCM. The sign for σi can
be easily determined. For example, if the sign of σ1 is chosen (either positive or nega-
tive), then the signs of σ2 and σ3 can be determined from σ1(tc)σ2(tc) = Re12(tc)/2 and
σ1(tc)σ3(tc) = Re13(tc)/2, which implies from Re(tc) that one gets two possible Euler axes
with opposite directions, and either of which can be adopted, thus no ambiguity for the
selection of ξ exists, though “+” “−” signs are involved here. Furthermore, such ξ needs
to be determined and computed only once since τη is triggered at most once (see Remark
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3.2) during the entire control process, thus there is no need for repetitively computing
(37).

4.2. Control magnitude variation due to switch. Since a switch control is involved
in the proposed control (16), it is worth examining the control torque variation before and
after the switch. From (30) and (32), it is seen that the variation of the control action
due to switch is

∆τ = τp − τη = −kp(p− η) (39)

At the moment that τη is switched on, and ϑ = 180◦. By virtue of p̃ = sin δξ, the
vector η can be determined from (20) as η = sin δξ, leading to

‖∆τ‖ = kp‖η‖ = kp sin δ (40)

At the time instant that τη is turned off, η = 0 and ϑ ∈ {δ, δ∗, 180◦ − δ∗, 180◦ + δ} as
given in Lemma 3.1, then from (2), we have p = σ sinϑ. Thus, from (39) one gets

‖∆τ‖ = kp‖p‖ = kp sin δ0 (41)

where δ0 ∈ {δ, arcsin(tan δ)}. It is seen that although a switch control is involved, the
control variation as reflected in (40) and (41) during switch is fair small since δ can be
chosen arbitrarily small. Similar conclusion can be drawn if the switch signal is determined
according to (35) and (36). Also note that control τη is triggered only once during the
whole control process, thus no consistent discontinuity is involved in the control action.

5. Numerical Simulation and Verification. A series of numerical simulation studies
are conducted in this section to validate the effectiveness of the global tracking control
scheme (16). The same dynamic model of the spacecraft as in [1] is considered. The
control parameters are chosen as kv = 10, kp = 10.

5.1. Attitude tracking control performance. In this subsection, seven cases are sim-
ulated and analyzed to validate the effectiveness of the proposed controller (16). The
seven initial simulation conditions are listed in Table 1, where the Euler eigenaxis eb(0)
and the rotation angle θb(0) are used to calculate the actual initial attitude Rb(0) of the
vehicle according to Formula (1).

Under these conditions, the control (16) is simulated and the results are presented in
Figure 1, where (a), (b) and (c) are the attitude tracking errors in terms of the intermediate
quaternion (error) and angular velocity error. It is seen that (ωe, p) → (0, (1,0)) as
t → ∞. Also from (d), one can observe that either ϑ → 0◦ or ϑ → 360◦ as t → ∞, both
correspond to zero orientation error. It is interesting to note that the orientation angle
error ϑ for all cases does not cross the position ϑ = 180◦ during the control process. In
other words, the results validate that tracking along the shorter path is ensured and the
unwinding phenomenon [15] is prevented with the proposed quaternion based method.

Also note from (c) and (d) that (ωe, ϑ) → (0, 180◦) does not occur, thus no need for
triggering τη for all the simulation cases during the entire control process – only the
intermediate quaternion based controller τp is activated, as shown in (f), as a result, the
control actions generated by (16) for all cases are bounded and smooth, as shown in (e).

5.2. Globally stable tracking performance. To test and validate the global tracking
capability of the proposed control scheme (16), we purposely choose the initial desired
angular velocity and attitude (ωd(0),Rd(0)) and initial actual angular velocity and atti-
tude (ωb(0),Rb(0)) in such a way that the initial tracking error (ωe(0),Re(0)) situates
at unstable equilibrium Qu. More specifically, we consider five simulation cases as shown
in Table 2, where it is easy to examine (ωe(0),Re(0)) ∈ Qu for all the five cases, thus
according to the control setting, controller (32) is activated initially, in which p̃ is chosen
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Table 1. The initial conditions simulated

Simulation eb(0) θb(0) ωb(0) Rd(0)
ωb(t)

Cases (chosen randomly) (deg) (rad/sec) (rad/sec)
Case 1 [0.2270, 0.2426, –0.9432] 120 [0, 0, 0] I [0.2, –0.25, 0.2]
Case 2 [–0.6099, 0.7617, 0.2190] 140 [0, 0, 0] I [0.15, 0.2, –0.2]
Case 3 [–0.5855, 0.7924, 0.1712] 160 [0, 0, 0] I [0.15, –0.1, 0.2]
Case 4 [0.7441, 0.5726, –0.3442] 180 [0, 0, 0] I [–0.2, 0.2, 0.25]
Case 5 [0.9673, –0.0546, –0.2475] 200 [0, 0, 0] I [0.2, –0.25, 0.2]
Case 6 [–0.4734, 0.2794, 0.8353] 220 [0, 0, 0] I [0.15, 0.2, –0.2]
Case 7 [0.5267, –0.8162, –0.2374] 240 [0, 0, 0] I [0.15, –0.1, 0.2]

(a) (b)

(c) (d)

(e) (f)

Figure 1. Control performance of the control (16) under the seven opera-
tion conditions. (a) Quaternion tracking error (scalar part), (b) quaternion
tracking error (vector part), (c) angular velocity tracking error, (d) angular
position tracking error, (e) control torque demanded, (f) switch control sig-
nal.

as p̃ = (cos 2◦, ξ sin 2◦) with ξ = σ(0) (where σ(0) is determined by (37) and (38)), and
εw = εp = 0.0001 is chosen to define the sets NQ and NM (35) and (36), respectively.
Under the five extreme operation conditions, the controller (16) with the above setting

is applied and the results are presented in Figure 2, where it is seen from (a), (b) and (c)
that (ωe, p) → (0, (1,0)) is achieved as t → ∞. From (d) it is observed that the orientation
error ϑ diverges from ϑ = 180◦ quickly and then converges to ϑ = 0◦ asymptotically. These
results validate that globally and asymptotically stable attitude tracking is achieved by
the proposed intermediate quaternion based control (16). As p̃ = (cos 2◦, ξ sin 2◦) is used
in this simulation, the variation of control action due to switch is imperceptible, as shown
in (e). Also note that control (32) is triggered only once, as shown in (f), thus no consistent
discontinuity is involved in the control action, as confirmed in (e).
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Table 2. Simulation conditions

Simulation eb(0) θb(0) ωd(0) Rd(0)
ωd(t)

Cases (chosen randomly) (deg) (rad/sec) (rad/sec)
Case 1 [–0.4709, 0.3733, –0.7993] 180 –[0.4075, 0.0355, 0.0521] I [0.2, 0.2, –0.30]
Case 2 [0.5193, 0.1172, –0.8465] 180 [–0.2984, 0.2278, –0.0396] I [0.2, –0.25, 0.2]
Case 3 [–0.5627, 0.8207, –0.0997] 180 [–0.2622, –0.0364, 0.1801] I [0.15, 0.2, –0.2]
Case 4 [0.2006, 0.2251, –0.9535] 180 [–0.2235, 0.0176, 0.1492] I [0.15, –0.1, 0.2]
Case 5 [0.5046, 0.5941, –0.6265] 180 [0.0600, –0.3648, –0.0762] I [–0.2, 0.2, 0.25]

(a) (b)

(c) (d)

(e) (f)

Figure 2. Control performance of the control (16) under the five extreme
initial conditions. (a) Quaternion tracking error (scalar part), (b) quater-
nion tracking error (vector part), (c) angular velocity tracking error, (d)
angular position tracking error, (e) control torque demanded, (f) switch
control signal.

6. Conclusions. Euler angle-based attitude control method is not suitable for large ori-
entation maneuver due to its singularity, whereas Hamilton quaternion based method is
free of singularity, and has thus gained wide applications for attitude control of space-
craft. However, such a quaternion is unable to distinguish attitudes that differ by a 360◦

rotation about a principal axis, resulting in undesirable unwinding phenomenon. This
means that attitude tracking along the shortest path is not guaranteed to take place in
that even when a vehicle reaches the desired orientation, any small perturbation may
cause 360◦ rotation about some axis. Removal of unwinding and ambiguity while achiev-
ing truly global tracking is highly desirable yet technically challenging. In this work a
new intermediate quaternion is introduced and invoked for spacecraft attitude control
design that ensures globally stable attitude tracking without singularity, ambiguity and
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unwinding phenomena. Moreover, it is rather straightforward to determine the elements
of the new intermediate quaternion from the real orientation information via the DCM,
thus simplifying the design and implementation procedures. Extension of the new inter-
mediate quaternion based method to robust adaptive (inertia-independence, disturbance
rejection) attitude control represents an interesting topic for future work.
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