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ABSTRACT. This paper focuses on fault diagnosis for a class of digital sensors. The first
derivative and second derivative of these sensors’ output signal under normal conditions
will not involve a great jump due to physical limitations. It is similar to maneuvering
targets which do not exhibit particularly jump in velocity and acceleration. So, a real-time
random sensor fault diagnosis is transformed into a manewvering target tracking problem.
And a fault diagnosis method independent on system models is proposed. An improved
unscented Kalman filter (UKF) is employed to track the output and estimate the value
of various states. A mean-adaptive acceleration (MAA) model is established to find the
faults of digital sensors online. According to the analysis of the failure characteristics
in different sampling conditions, a method is proposed to isolate the faults. Theoretical
analysis and experimental results show that the method can diagnose and isolate digital
sensor fault accurately in real applications.
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1. Introduction. Numerous sensors are applied in almost all industrial mechatronic
system, and any fault of the sensors could be extremely deteriorate system performance,
or even cause systems to break down. Fault diagnosis of sensors helps to ensure the
normal operation of the system.

Sensor fault diagnosis methods can be grouped into two categories: model-based ap-
proaches and knowledge-based approaches [1, 2]. Model-based approaches make use of
quantitative analytical models of a physical system. Knowledge-based approaches do
not need full analytical modeling and allow one to use qualitative models based on the
available information and knowledge of a physical system [3]. Kalman filter and its im-
proved forms as a kind of typical model-based approaches were adopted in [4, 5, 6, 7, §]
to estimate model parameters which reflect the states of sensors. These methods have a
good real-time performance. However, the plant model that the Kalman filter and most
information fusion approaches rely on is difficult to obtain in actual applications. For sys-
tems which are hard to model, the characteristic data which are analyzed and extracted
from mass data are used for fault diagnosis. Consequently, the model-based methods are
not applicable. In order to relax the restrictions on system models, the knowledge-based
approaches use qualitative models based on available information and knowledge of the
system to detect and isolate faults [9, 10, 11, 12]. Wavelet transformation was also uti-
lized by many scholars to analyze the output signal of sensors [13, 14, 15]. Nevertheless,
these methods can only detect the failure but fail to isolate the effect of sensor faults.
Besides, real-time sensor fault diagnosis is one of the difficult issues for Knowledge-based
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approaches, especially when the sensor’s output is a random signal and the true value of
its current point cannot be obtained.

A fault diagnosis method for a class of digital sensors independent on system models
and true values is proposed in this paper. We found that general sensors’ output data
under normal conditions, the first derivative and second derivative of the signal are smooth
without jump, as maneuvering targets like aircrafts do not appear particularly jump in
velocity and acceleration due to physical conditions. The real-time random sensor fault
diagnosis is transformed into a maneuvering target tracking problem. Output signals
of digital sensors are tracked and the values of various states are estimated by filters.
A mean-adaptive acceleration (MAA) model is established to find the faults of digital
sensors online. Some inherent characteristics of this kind of digital sensors are utilized to
isolate the different kinds of failures.

This paper is organized as follows. Section 2 presents the digital sensor definitions
and main fault features. Section 3 presents the real-time fault detection method based
on improved UKF. Section 4 gives the fault location method. Experimental results are
demonstrated in Section 5, and concluding remarks are given in Section 6.

2. Problem Statement and Preliminaries. This section gives the description of a
class of digital sensor and the failure characteristics of the digital sensors in uniform sam-
pling and random sampling. The characteristics of a class of digital sensor are described
from Equation (1) to (3).

The sensor’s output y(k) is a linear combination of n sub-functions,

y(k):Zgi(:Ej) J=12-,K (1)

where k is the sampling instant, sub-function g;(z;) is a periodic function which consists
of finite states (< k). The occurring probability of each state is equal in any sampling
period with cycle T; (frequency f;).

The sub-functions satisfy the following relation matrix:

1 c2 -+ cumn
1—,1; f] Co1 1 Con,
m=d=Wy= 2
Tj fi ! : : .. : ( )
Cpl Cp2 ++0 1

where W;; is the relation matrix for sub-functions. In this matrix, the following relation-
ship is holds:

Cij:_:/{iij i:l...n,jzl...n (3)

Remark 2.1. The output of this kind of digital sensors, such as the parallel port angle
sensors, which convert analog data to digital data through A/D converters, can be described
by Equation (1) to (3), as every bit of the digital data has different weights. And for
binary(k) sensors, each bit of the digital data has two (k ary) states. Therefore, the
specific expression of gi(x;) depends on the band and weight. For example, the g;(x;) can
be expressed as follows in binary case:

gi(z;) =27 ey x; € {0,1} (4)

Binary digital angle sensor is a very commonly used sensor. A whole circle is repre-
sented as a binary weighted sum. For example, an n-bit absolute optical encoder divides
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a 360-degree circle into 2™. The weight of each bit is 2°='. Its measured output value can
be expressed with the following statement.

y(k) = 22“1:@(@, zi(k) € {0,1} (5)

2.1. The failure characteristics under uniform sampling. In uniform sampling con-
ditions, the true value of sampling points can be directly calculated from time or reference
value provided by other sensors. Set the true value to be y*(k), and the relationship be-
tween the measured value and the reference value is given as follows:

y(k) =y* (k) + fr82 (6)

where fy is the failure function at point &, € is the fault matrix with elements value 1(0)
in failure(normal) case.

Definition 2.1. In uniform sampling condition, the main failure mode of sensor is defined
as follows:
(1) Complete failure:
Qy (k) + fr =0 (7)

where § is a constant, and for any sampling point, the output is a constant.
(2) Deviation:

Jfe=Jfr-1=20 (8)
The output value is biased with a constant.
(3) Drift:
fe=Je1-90, fo=0 (9)

The measured values are corrupted by both constant and trend terms.
(4) Accuracy decline:

E(fr) =0, E(f)=o07=0" (10)

The output value is normal in a single detection, but the failure function is subjected
to a certain probability distribution.

2.2. The failure characteristics under random sampling. There is no reference
value for fault feature extraction in random sampling conditions. Therefore, fault char-
acteristics should be associated with sampling conditions.

Definition 2.2. The main failure mode of the sensors in random sampling is defined as
follows:

(1) Complete failure: For any sub-wire i, there exist

where 0 is a constant. For any sampling point, the output is a constant.
(2) Partial failure: For some sub-wire i, there exist

gi(wj) =0 (12)



8476 F. DENG, J. CHEN AND L. XU

3. Real-Time Fault Detection Based on Output Tracking. In this section, we use
the improved UKF to detect the real-time fault.

The fault diagnosis method based on Kalman filters needs to obtain the system model
and the sensor model. However, in practice, it is difficult to build the model of the sensor
and get the true value of sensor without using other instruments. In this case, the sensor’s
output is assumed to be a target and an improved UKF is utilized as an estimator to track
the sensor’s output. Consequently, the sensor fault detection is transferred into a target
tracking problem. The improved UKF is employed to track the output and estimate the
value of various states. A MAA model is established to find the faults of digital sensors
online.

Suppose that the sensor output is a function of time ¢, z(¢), the velocity of output
is #(t), and the acceleration is #(¢). The acceleration of the sensor output cannot be
accurately obtained in real applications, and the mean of acceleration is assumed not to
be zero. A ‘current’ model (MAA) [22] is adopted to represent the sensor’s output. The
model of the MAA is presented as follows:

1 T (-1+aT+e°T)/a?
Xpp1=10 1 (1—e ) /a X
0 0 e oT 13
(T%/2) = (~1+oT + e °T) /a? 13)
+ T-(1-e")/a ay + wg
1—e T

where £ indicates the kth step of state estimation filter; 7" is the sampling period, a = &
is acceleration; wy is the state noise at step k; @ = 1/7, and 7 is the system maneuver
time. @y is the mean of current acceleration and aj can be expressed as [23]:

Q41 :E[akﬂ ‘Zk]
=e " Elay [F]+ (1 - ") ay (14)

= eiaTCAlk + (1 — e*O‘T) ay

As the maneuver time constant 7 increases (i.e., T decreases), the Singer model reduces
to the Constant Acceleration (CA) model.

The MAA model has a good tracking performance. It can track and estimate the
output value. In the case of failures, the sensor’s output will be abnormal and the value
of position estimation in tracking model will jump, thus the mean of position estimation
will have offset. The velocity and acceleration values are hopping or outside the normal
range. This method can be adopted as a real-time fault detection method for sensor
failures.

The traditional maneuvering target tracking methods, such as the EKF (extended
Kalman filter), UKF [16, 17] and PF [18, 19] (particle filter), can be utilized to track
the sensors’ outputs. When there is a fault in the digital sensor, its output exists jump
signal. Thus the traditional EKF that is used to track the output is often divergent or
unstable. Particle filtering is a sequential Monte Carlo simulation based on nonlinear
filtering algorithms. The main problem with PF is the degradation of particles [18]. After
several iterations, only a small number of particles have greater weight and the weight of
other particles is approximately zero. Meanwhile, particle filters have to face a serious
computational burden when they are applied to estimate the parameters and states in
output tracking.
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UKF is a nonlinear filter with high precision, strong stability and small computational
burden. Because of its robustness and stability [20, 21], it is satisfactory for UKF to solve
strongly nonlinear problems.

For tracking and estimating the output sinal of digital sensors, the improved UKF
algorithm is utilized to improve the tracking ability of common UKF.

(1)

(3)

Compute the Sigma points and weights [24, 25]
The n-dimensional random variable x; with mean Z; and covariance Py is approx-
imated by 2n 4 1 weighted samples or sigma points selected by the algorithm
we=[an at (VB a— (Vo nB) | (15)
13 13
Wy™ = n/(n+m)
Wy =n/(n+n) + (1 -a”+ )
wm =wl9 =1/@2n+2y), i=1,---,2n 18
n=a*(n+¢) —n 19
where (‘/Pk)i is the ith row or column of the matrix square root of Py, and W; is the
weight associated with the sth point, and 7 is a scaling parameter. The parameter «
determines the spread of the sigma points around Z;, and is usually set to be a small
positive value (e.g., 0.001). ( is a secondary scaling parameter which is usually set
to be 0, and 3 is used to incorporate prior knowledge of the distribution of z;, (for
Gaussian distributions, f = 2 is optimal).
State prediction
Sigma-point will be substituted into the nonlinear state equation and observation

equation, the transformation Sigma-points are evaluated for each of the 0 —2n points
by

16

(16)
(17)
(18)
(19)

Xe+1k = f(Xk) (20)
The mean of transformed set of sigma points Z1x is computed by
2n
Tp1je = Z W™ X1l (21)
i=0
The predicted observation is computed by
Ve+1/k = h (Xk+1/k) (22)
2n
Yr+1/k = Z VVi(m)%,kJrl\k (23)
i=0
and the predicted covariance is computed by
2n
. . T
Peie = A ZWi(C) Xt — Besie ] gt — Thaip] +@Q (24)
i=0

where x; g1k and ;g1 are the sth row of xpy1x and 41 respectively.
Measurement update

Compute the covariance and the cross correlation matrix by

2n
c N N T
szﬂykﬂ = Nit1 E Wi( ) [Xi,k+1|k - $k+1\k] [%’,kJrl\k - yk+1/k] (25)
i=0

2n
c ~ ~ T
Pyigpr = M1 E Wi( ) [Vigertpe — Ges1/k) [Yigr1ie — Gerin] + Rir (26)
i=0
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Ky =P, p! (27)

ThA+1Yk+17" Yr41Yk+1
Then update the mean and covariance

Pry1 = Peyig — Ky Py Kl (28)

Tt = Bhark + Kier (Ybs1 — Uks1/k) (29)
where A\ > 1 is a fading factor.
The parameter A, is computed as (30)-(36):
)\i,k+1 = YiCht1, 1=1,2,---,n (30)

where ¢ and (¢ are pre-defined constants; ¢y is a factor to be determined, which is
computed as follows:

k+1Yk+1

Yeppr < Cppa

)‘k-i-l = Ck4+1 1< Crt1 < C (31)
1 Cer1 < 1
tr (Nk+1)
= A k) 32
Ni41 =tr [Vojr1 — Ry (33)
2n
. N T
M1 = ZM/Z [Aiksie = Treisn] [Dijesripe — Griye] (34)
i=0
v { A AT k=0 (35)
0,k+1 — pVor+Ap 1 AT
1+p Hl’ k>1
Ak+1 = Yk+1 - Yk+1/k (36)

When the failures are detected by the improved UKF, we should locate and isolate the
fault, thus the specific fault location methods based on the characteristics of the data will
be given in the following section.

4. Fault Location Method. This paper uses the statistical and relative change charac-
teristics to detect and isolate faults. The steps of fault isolation are presented as follows.

4.1. The statistical fault characteristics of random sampling data.

Theorem 4.1. For the sensor described in Equation (1) to (3) in a certain period of time,
when the sample number far exceeds the number of its states, and the sampling value of
the sub-wire contains various states of the sub-wire, the average of each wire data is close
to

K

]:
Bloia) = = (37)
where Kk s the mazimum number of every possible state for the sensor’s each wire. Mean-
while, the greater the number of samples is, more the average of each wire data is more

close to left of (37).

Proof: From Equation (1) to (3), ¢;(z;) is a periodic function and its state number is
not more than k. The probability of each state appears to be the same in a full cycle.
Denote the probability of each state that appears by P;(z;), the sample number by K
and the number of each sampled state by k;. The following statements hold.

XK: k=K (38)
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S Py =1 (39)
j=1
The sum of all states is
> k=K (Z Pj(%)%) (40)
j=1

The mean of every wire is

E(gi(z;)) = (41)

If the number of sampling points is sufficient, the probability to cover each state is closer:

Sk, K (Z Pj(%)%)
j=1 - Jj=1
K K
. g Zlffj
= P - P —T: = 1=
Z i () 321 H‘TJ o

j=1

E(gi(x;)) = )

when K — oo, the approximately equal sign of (42) can become an equal sign.

Remark 4.1. According to Theorem 4.1, for a binary sensor, it is known that Kk = 2,
namely, the mean of each wire data is close to 0.5.

The fault location operation based on Theorem 4.1 can be given as follows:

Step 1: Sampling. It is better that the sampling number is as many as possible and
the sampling rate is as uniform as possible. The large the sampling number is, the more
precise the diagnostic result is.

Step 2: Compute the mean of each wire.

Step 3: Failure location. If the mean of each wire is far away from (41), the sampling
values tend to some constants, the sampling period of the wire is the short one and the
sampling state is to cover all of the state changes, it is a wire failure. If all of the state
changes are not covered, the number of sampling need to be increased.

Step 4: Precision diagnosis. The closer to 0.5 the mean is, the better its quality and the
lower the probability of failure is. The higher-weight bits have greater impact on sensor
output precision.

4.2. The relative change characteristics of random sampling data. The statistical
method based on Theorem 4.1 locates faults by the mean of digital sensor all wire status.
The method requires that the number of samples is large enough, only when the number
of samples is large enough and the sampling is uniform, its conclusion would be more
accurate. The method’s real-time performance is limited as relies on a large amount of
calculation. To solve these problems, we give the following definition:

Definition 4.1. State change number: The number of the digital sensor’s bit change.

Remark 4.2. For the sensor described in Equation (1) to (3), the state change number
15 K in one period. For example, for a binary sensor, assume that there are five sampling
points. The lowest bit data is 01010, 0 — 1 — 0 — 1 — 0, so that the state changes
four times in a cycle; the second lowest bit data s 00110, 0 — 0 — 1 — 1 — 0, the state
change number is 2.
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Based on Definition 4.1, a new theorem is proposed as follows:

Theorem 4.2. For the sensor which satisfies Equation (1) to (3), assume that the sam-
pling number is K and the sampling data range is v (0 < ), then the state change number
s proportional to the frequency of each wire, and the state change number between different
sensor wires satisfy the following relation:

I e -+ cm
m; ci2 1 - Ca
—~ W= . . . : (43)
m; Do o
Cin  Con 1
1 o
cj=—=kr""7 4,j=1--«a (44)
Cji
cj=c;i=0 i>ao0rj>a (45)

where a is the highest bit’s value that is not zero and in the normal data range. The range
satisfies the following relation

KO <y < KY (46)

Meanwhile, the larger the number of samples included in the state is, the closer to Wy;
the ratio i1s. When the sample data is insufficient, the state change number ratio of higher
bits is closer to (43) than lower bits.

Proof: From Equation (1) to (3), ¢;(z;) is a period function, and satisfies (2), hence

1 ¢+ ¢
Ti_fj_w | e L cop
T = ij = . . . .
i i

Cn1 Cp2 - 1

When the sampling range satisfies the following condition
KM <y < K" (47)
the state change number of each bit satisfies following relation

L _Ji

My

m; N T] a fi (48)
When the sampling range cannot cover all the change
a<n (49)
the state change number of the wire which satisfies 7 > « is 0, namely
m; =0, j>a (50)
where « is the highest bit value that the sampling data is not zero.
The relation of low bit state change number is as follows:
mi oL (51)
m; T; f;

As the sampling is random, lower bits change fast. If the sampling interval is too large,
it will miss some relevant information, so the left and right side of (51) approximately
equal. The larger the sample number and state is, the closer the two sides of (51).

From (48) to (51), we can draw the conclusions in Theorem 4.2.
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According to Theorem 4.2, for binary sensors, we know x = 2, and the sampling scope
is 2771 < ~. The state change number of the sensor ith bit satisfies the following formula:

m; = 20t 1 (52)

Theorem 4.2 can be utilized to locate the failure without specific sample values and
other sensors to provide any the calibration. The state change numbers are recorded and
employed to locate the failure. To record the change number is easier than to measure
sensors’ frequency, period or to calculate the average. It is suitable for real-time fault
location and application in embedded systems.

The fault location step based on Theorem 4.2 is as follows:

Step 1: Sampling.

Get as many samples as possible. The larger the sampling number is, the more precise
the diagnostic result is. Even if the sampling number is not enough, the conclusion of
Theorem 4.2 is also holds.

Step 2: Record the state change number of each bit m;, 2 =1,--- ,n.

Step 3: Find the bit a with largest weight. The « is decided by sampling range -,
Kafl S v S K.

Step 4: Normalization processing
m;

Mg = -2 i=1,---.n (53)
HO&*l
From (47) and (53), when i > «:
mi=m; =0, i=a+1,---,n (54)
From (53) and (54), the criterion to locate the fault is
i} 1 i=1,-,a
mi_{o i=a+1,---,n (55)

Step 5: Failure location

From (55), when m; satisfies (55), the wire is normal. When the sampling is not enough,
the low bit is short of data, so its normalized value is less than 1. If the value is far less
than 1, it is a fault wire.

For a better description of the method of this paper, the algorithm flow chart is shown
in Figure 1.

5. Experiment Results. In the experiment, we take a 15-bit absolute optical encoder
as an example shown in Figure 2. Absolute optical encoder is a very commonly used
sensor. A whole circle is represented as a binary weighted sum. For example, a 15-bit
absolute optical encoder divides a 360-degree circle into 2'5. The weight of each bit is
2i=1 Tts measured output value can be expressed with the following statement.

y(k) = Z 21y (k),  xi(k) € {0,1} (56)

A test bench [26] is utilized in the experiment. The sampling time and rotation step of
the test bench can be changed according to different experiments. The figure of the test
bench is shown is Figure 2.

We utilize the test bench to simulate real work conditions of the encoder and record the
encoder’s outputs. We simulated parallel port optical encoder common types of failure,
disconnection, short circuit and grounding.

First, a normal recorder is rotated manually and the data are recorded by test bench.
The normal signal is the first subgraph of Figure 3. The estimation results of states
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Run digital sensors

Sampling and record

Tracking outputs using
improved UKF and MAA model

Estimation the Velocity and
Acceleration of output

Estimated results
are jump?

Failures location

FIGURE 1. The flow chart of fault diagnosis

FIGURE 2. The test bench

including position estimation, velocity estimation and acceleration estimation are shown
from the second subgraph to fourth subgraph of Figure 3. We can see from Figure 3 that
states of the recorder output signal are smooth, so the recorder is normal.

Then, the results of the 5th experiment with faults and failures are shown in Figure 4.
As shown in Figure 4, there are some representative jump points which are marked out
in figure. These points are adopted to indicate that the fault happen and we use fault
location method described in Section 4 to locate faults.

There are five experiments for testing the algorithm of fault diagnosis and the test
results are shown in Table 1.

Remark 5.1. In Table 1, A indicates that the fault mode of disconnection, B indicates
that the fault mode of short circuit and C indicates that the fault mode of grounding. The
first column is the serial number of the experiment. The fault-bit number and failure modes
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F1GURE 4. Tracking results of manual random sampling under fault conditions

of the absolute optical encoder are located in the second and third columns respectively.
The fourth is a list of the number of sampling points. The fifth column is sample range.
The sizth column is mean of fault bits according to the Theorem 4.1. The seventh column
s the mean of all normal data. The eighth column is the state change number according
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TABLE 1. The results of fault diagnosis

Real Fault Fault Diagnosis
No.| Fault| Fault| Sampling| Sampling| Mean of | Mean of | State change | Fault | Fault
bit | mode| number |range fault bit | normal | number of | bit mode
bit fault bit
1 |6 A 200 63° 1 0.5542 6: 0 6 A
2 |14 A 200 240° 1 04773 |14: 0 14 A
3 |12, |B 200 360° 0.695 0.5100 |12,13: 7 12,13 | B
13
4 |2 A 997 800° 1 0.5166 |2: 0 2 A
7 A 1 7: 0 7 A
12 A 1 12: 0 12 A
5 |5 A 499 600° 1 0.5301 [5:0 5 A
8 C 0 8: 0 8 C
4,10 | B 0.7512 4, 10: 158 4,10 |B

to the Theorem 4.2. The last column fault diagnosis result including the fault location and
the fault mode.

From Table 1, the proposed method can accurately diagnose short-circuit, disconnection
and grounding fault of photoelectric encoder. Even multiple simultaneous faults can be
accurately diagnosed.

6. Conclusion. The improved UKF is employed to track the output and estimate the
value of various states, and a Mean-Adaptive Acceleration (MAA) model is established to
find the faults of digital sensors online which are widely used in digital control and calibra-
tion systems. Through analyzing failure characteristics, we propose different methods to
isolate different kinds of failures. Theoretical analysis and experimental results show that
our method can diagnose and isolate digital sensor fault accurately, and it is a practical
fault diagnosis and isolation method.
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