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Abstract. This paper is to investigate the coordinated attitude control problem for
flexible spacecraft formations. Considering the attitude maneuver control problem of
a formation composed of flexible spacecraft, two classes of decentralized attitude coordi-
nation control laws using behavior-based control approach are proposed. The first class
of controllers can steer the attitude states of the flexible spacecraft formation to a de-
sired reference state asymptotically in the absence of disturbances and communication
delays. The second class of controllers is an improved one which simultaneously takes
into account the effects of external disturbances and communication delays. The im-
proved control strategies are effective to overcome these unexpected phenomena subject
to arbitrary communication topologies. Finally, numerical simulations are provided to
demonstrate the effectiveness of the designed control schemes.
Keywords: Behavior-based control, Flexible spacecraft formation, Attitude maneuver,
Robustness, Communication delays

1. Introduction. Spacecraft formation flying (SFF) has been studied extensively in re-
cent decades due to numbers of advantages such as cost reduction and robustness improve-
ment [1-12]. To perform a flying task cooperatively, each individual spacecraft within the
formation must coordinate with others. Therefore, as one of the most important research
topics in SFF, attitude coordinated control has attracted much research attention.

According to the place where the control decisions are made, attitude coordination
control can be centralized or decentralized. Centralized control is fault-sensitive since a
single spacecraft takes charge of making control decisions for the formation: the failure
of the decision-making spacecraft leads to the failure of the global system. However,
decentralized control scheme is fault-tolerant because the control action of each individual
spacecraft is determined by its local information: the failure of a single spacecraft will be
confined to the region of itself and will not lead to destabilization of the entire system.

In the field of decentralized control, some results have been reported [4-12]. The at-
titude synchronization problem of a fully autonomous and distributed formation system
was solved in [4]. In [6], for depicting the information flow graph within a formation, the
algebraic graph theory was employed for formation control of multiple agents modeled
by linear dynamics. In particular, the attitude coordination control problems for rigid
spacecraft formations were addressed in [8-10] by the use of behavior-based control ap-
proach. In [9], a class of behavior-based control laws was developed to guarantee global
stability of a spacecraft formation, and the control performance with respect to different
weights of the formation-keeping control action is investigated. By introducing sliding
mode control method into control scheme design, a class of robust behavior-based control
laws was proposed in [10]. The control strategies designed in [10] can drive the attitude
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states of a spacecraft formation to a desired dynamic reference state asymptotically, and
are robust against both model uncertainties and external disturbances.
It is worth pointing out that the communication topologies considered in the afore-

mentioned literature must be undirected graphs with no communication delay. This
assumption may cause potential problems in practice because the information in SFF is
always exchanged over a network and the communication is far from being perfect. In
addition to these issues, spacecraft are always subject to unexpected environment distur-
bances which can jeopardize the mission. All these effects should be taken into account
in the controller design for the spacecraft formation to pursue an ideal performance. On
the other hand, modeling spacecraft as rigid bodies is an approximation whose validity
needs to be checked all the time. Because of the existence of flexible attachments such as
antennae and solar paddles, spacecraft within the formation are not rigid due to the flexi-
bility inherent in these structures. The attitude control problem of flexible spacecraft has
been addressed in [13-16]. In [13], an adaptive sliding mode control scheme was proposed
to counterbalance the effects of uncertainties and disturbances. A control law with no
measurement of angular velocity was developed in [14] to realize the attitude maneuver
of a flexible spacecraft. The variable structure control method was introduced in [16].
Considering bounded disturbance torque, the controller proposed in [16] can guarantee
asymptotical reachability of the desired trajectory. However, all these studies were done
in the field of single spacecraft instead of formation systems. Therefore, the development
of control strategies for flexible spacecraft formations is interesting and challenging. This
scenario is important to some practical applications such as space-based interferometry
and synthetic-aperture imaging: the satellite of the space-borne distributed Synthetic
Aperture Radar (SAR) could be flexible because of the large radar antennae it takes for
communication, and the solar paddles that the satellite takes also cause flexibility.
Inspired by these facts, it is desirable to design novel control schemes for a flexible

spacecraft formation with external disturbances, communication delays and limited net-
work. To the best of the authors’ knowledge, such type of control problem has not been
addressed in the existing literature.
In this paper, behavior-based approach is employed to solve the coordinated attitude

control problem of a flexible spacecraft formation. The overall control action of behavior-
based control is determined by a weighted sum of the control actions for each of the
behaviors including station-keeping and formation-keeping. Station-keeping is the behav-
ior that drives a spacecraft to its absolute desired attitude. Formation-keeping is the
behavior that aligns a spacecraft with other spacecraft in the formation. The contribu-
tions of this study are 1) a novel class of control schemes is proposed to solve the attitude
maneuver control problem of a flexible spacecraft formation, which has not been studied
in the existing literature; 2) the designed control laws are robust against external dis-
turbances, and can overcome the effects of communication delays which were not taken
into account in [1-12]; 3) the developed control strategies are effective subject to arbi-
trary communication topologies rather than undirected graph used in the aforementioned
literature.
This paper is organized as follows. Background and preliminaries are given in Section

2. In Section 3, a basic result is given, and the stability analysis for the proposed control
schemes is provided. In Section 4, a class of coordinated behavior-based control laws which
is proven to be robust against external disturbances and effective with communication
delays is developed. In Section 5, numerical simulations are presented. The conclusions
are given in Section 6.

2. Background and Preliminaries.



COORDINATED ATTITUDE CONTROL OF FLEXIBLE SPACECRAFT FORMATIONS 8489

2.1. Notations. For a vector ν = [(ν)1 , . . . , (ν)m]
T , we use (ν)k to represent the kth

component of ν and |ν| = [|(ν)1| , . . . , |(ν)m|]
T . νi denotes some parameters or variables

ν of the ith spacecraft. ‖ν‖ represents the Euclidean norm of the vector ν. αmax (∗)
and αmin (∗) are used to denote the maximum and minimum Eigenvalues of a matrix,
respectively.

2.2. Attitude kinematics and dynamics. Unit quaternion parameters are adopted to
describe the attitude of a flexible spacecraft. The unit quaternion parameters are defined
by

q̄ =

(
q
q0

)
=

(
n · sin

(
θ
2

)
cos
(
θ
2

) )
(1)

with the constraint qTq + q20 = 1, where n is the Euler axis; θ is the Euler angle.
The kinematic equation in terms of unit quaternion parameters is given by

q̇ =
1

2

(
q0I + q

×)ω (2)

q̇0 = −1

2
qTω (3)

where q× denotes the skew-symmetric matrix:

q× =

 0 − (q)3 (q)2
(q)3 0 − (q)1
− (q)2 − (q)1 0

 (4)

and I denotes a 3× 3 identity matrix.
The absolute attitude error q̄e denotes the relative attitude from the desired reference

frame to the body-fixed reference frame, which can be calculated as

q̄e = q̄∗d ⊗ q̄ =
(
qTe q0e

)T
(5)

where q̄∗d =
(
−qTd q0d

)T
is the inverse of the desired attitude q̄d. The symbol ⊗ represents

the quaternion multiplication:

q̄a ⊗ q̄b =

(
q0aqb + q0bqa + q

×
a qb

q0aq0b − qTa qb

)
(6)

The dynamic model of a flexible spacecraft is given by the following differential equation
[13-16]:

Jω̇ + δT η̈ = −ω× (Jω + δTη
)
+ u (7)

η̈ +Cη̇ +Kη = −δT ω̇ (8)

where J represents the symmetric inertia matrix of the whole structure; δ is the coupling
matrix between the central rigid body and the flexible appendixes; η represents the modal
displacement; u is the control torque; and C and K denote the damping matrix and
stiffness matrix, respectively. We have that

C = diag (2ϑiωni, i = 1, . . . , N) (9)

K = diag
(
ω2
ni, i = 1, . . . , N

)
(10)

with corresponding damping ϑi and natural frequency ωni, and N is the number of elastic
modes considered.
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Assuming ζ =
(
ηT

(
η̇ + δTω

)T)T
and substituting ζ into (7) and (8), we have the

following dynamics equation which will be involved in the stability analysis:

J∗ω̇ = −ω× (J∗ω +Hζ) +Lζ −Mω + u (11)

ζ̇ = Aζ +Bω (12)

where J∗ = J − δTδ; H =
(
0 δT

)
; L =

(
δTK δTC

)
; M = δTCδ; A =

(
0 I

−K −C

)
and B =

(
−δ
Cδ

)
.

2.3. Lemmas.

Lemma 2.1. [17] Suppose that a Hermitian matrix is partitioned as[
A B
B∗ C

]
(13)

where A and C are square. This matrix is positive definite if and only if A is positive
definite and C > B∗A−1B.

Lemma 2.2. [18] Consider the autonomous system ẋ = f (x) with f (x) continuous,
and let V (x) be a scalar function with continuous first partial derivatives. Assume that
V (x) → ∞ as ‖x‖ → ∞; V̇ (x) ≤ 0 over the whole state space. Let R be the set of
all points where V̇ (x) = 0, and M be the largest invariant set in R. Then all solutions
globally asymptotically converge to M as t → ∞.

Lemma 2.3. [19] If f (t), ḟ (t) ∈ L∞, and f (t) ∈ Lp for some p ∈ [1,∞), then
limt→∞ f (t) = 0.

3. Basic Result.

3.1. Problem statement. Consider an n-flexible-spacecraft formation. The desired an-
gular velocity and desired attitude are 0 and qd, respectively. The attitude maneuver
control problem in this section is to design the control torque ui for each spacecraft
within the formation, so that the attitude states of each flexible spacecraft can converge
to the desired states asymptotically, namely, ωi → 0, qei → 0, ζi → 0 as t → ∞.

3.2. Behavior-based controllers design. The behavior-based approach is used to solve
the attitude maneuver control problem. Behavior-based control is to determine the control
action through a weighted sum of control actions for each of the behaviors including
station-keeping and formation-keeping. Based on the concept of behavior-based control,
we propose the following class of behavior-based attitude control laws:

ui = u
sk
i + ufk

i , i = 1, 2, · · ·n (14)

In (14),

usk
i = −Kpiqei −Kdiωi (15)

ufk
i = −

n∑
j=1

(Kpijqij +Kdijωij) (16)

where qei calculated by (5) is the station-keeping attitude error and ωi is the station-
keeping angular velocity; Kpi, Kdi > 0 are station-keeping weight parameters, and Kpij =
Kpji > 0, Kdij = Kdji > 0 are formation-keeping weight parameters which satisfy
Kpij/Kdij = ρ for i, j = 1, . . . , n where ρ is a positive constant that will be involved
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in the following proof procedure; qij = qei − qej and ωij = ωi − ωj represent the
formation-keeping attitude error and formation-keeping angular velocity error between
the ith spacecraft and the jth spacecraft.

Remark 3.1. The station-keeping errors qei and ωi denote the attitude states of an
individual spacecraft with respect to its desired attitude states. The formation-keeping
errors qij and ωij denote the attitude states of a spacecraft with respect to other spacecraft.
In (14), usk

i is the station-keeping control action to drive the attitude of the spacecraft to

the desired state and ufk
i is the formation-keeping control action to maintain certain

relative attitude within the formation. ui is determined by a weighted sum of the station-
keeping control action and the formation-keeping control action.

In order to facilitate the stability analysis, we restate the control laws (14) as

ui = u
sk
i + ufk

i = −Kpiqei −Kdiωi −
n∑

j=1

Kdij (ρqij + ωij) (17)

Theorem 3.1. The controller (14) can solve the attitude maneuver problem of the flexible
spacecraft formation stated before.

Proof: We consider the following candidate Lyapunov function:

V =
n∑

i=1

Vi (18)

with

Vi = 2 (Kpi + ρKdi) (1− q0ei) +
1

2
ωT

i J
∗
i ωi + ρqTeiJ

∗
i ωi +

1

2
ζTi Piζi (19)

where Vi is the component Lyapunov function; Pi is a positive definite matrix which is a
solution of the Lyapunov equation AT

i Pi + PiAi = −Qi with a positive definite matrix
Qi.

Vi can be bounded by

Vi ≥
1

2
ξTi Θiξi (20)

where

ξi = (‖qei‖ ‖ωi‖ ‖ζi‖)T (21)

Θi =

 4 (Kpi + ρKdi) −ρσmax (J
∗
i ) 0

−ρσmax (J
∗
i ) σmin (J

∗
i ) 0

0 0 σmin (Pi)

 (22)

According to Lemma 2.1, Θi is positive definite if the following inequality holds:

4 (Kpi + ρKdi)σmin (J
∗
i ) > ρ2σ2

max (J
∗
i ) (23)

Therefore, the positive definiteness of Θi is obtained provided that ρ is small enough.
Calculating the derivative of V , we have that

V̇ =
n∑

i=1

V̇i =
n∑

i=1

{
(Kpi + ρKdi) q

T
eiωi + ω

T
i J

∗
i ω̇i + ρqTeiJ

∗
i ω̇i

+ρ
(
q0eiI + q

×
ei

)
J∗
i ωi + ζ

T
i Piζ̇i

} (24)
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Substituting (11) and (12) into (24) yields

V̇ =
n∑

i=1

{
(Kpi + ρKdi) q

T
eiωi + ω

T
i

(
−ω×

i (J∗
i ωi +Hζ) +Lζ −Mωi + ui

)
+ ρqTei

(
−ω×

i (J∗
i ωi +Hζ) +Lζ −Mωi + ui

)
+ρ
(
q0eiI + q

×
ei

)
ωT

i J
∗
i ωi + ζ

T
i Pi (Aiζi +Biωi)

} (25)

Substituting the control law (14) into (25), it is derived that

V̇ =
n∑

i=1

{(
Kpi + ρKdi

)
qTeiωi + ω

T
i

(
Liζi −Miωi −Kpiqei −Kdiωi

−
n∑

j=1

Kdij (ωij + ρqij)

)
+ ρqTei

(
− ω×

i (J∗
i ωi +Hiζi) +Liζi −Miωi

−Kpiqei −Kdiωi −
n∑

j=1

Kdij (ωij + ρqij)

)
+

1

2
ρ
(
q0eiI + q

×
ei

)
ωT

i J
∗
i ωi −

1

2
ζTi Qiζi + ζ

T
i PiBiωi

}
=

n∑
i=1

{
− ρKpiq

T
eiqei − ωT

i Miωi −Kdiω
T
i ωi +

1

2
ρ
(
q0eiI + q

×
ei

)
ωT

i J
∗
i ωi

− 1

2
ζTi Qiζi − ρqTeiω

×
i J

∗
i ωi − ρqTeiMiωi + ρqTeiLiζi − ρqTeiω

×
i Hiζi

+ ωT
i Liζi + ζ

T
i PiBiωi − (ωi + ρqei)

n∑
j=1

Kdij (ωij + ρqij)

}

(26)

In light of (26), it can be derived that

V̇ =
n∑

i=1

{
−ξTi Ξiξi − (ωi + ρqei)

n∑
j=1

Kdij (ωij + ρqij)

}

= −
n∑

i=1

ξTi Ξiξi −
1

2

n∑
i=1

n∑
j=1

Kdij (ωij + ρqij)
T (ωij + ρqij)

≤ −
n∑

i=1

ξTi Ξiξi

(27)

with

Ξi =

 ρKpiI
1
2
ρMi −1

2
ρLi

1
2
ρMi KdiI +Mi − 1

2
ρJ∗

i −1
2

(
Li +B

T
i Pi

)
− 1

2
ρHi

−1
2
ρLi −1

2

(
Li +B

T
i Pi

)
− 1

2
ρHi

1
2
Qi

 =

(
Di Ei

ET
i Fi

)
(28)

where Di =

(
ρKpiI

1
2
ρMi

1
2
ρMi KdiI +Mi − 1

2
ρJ∗

i

)
, Ei =

(
−1

2
ρLi

−1
2

(
Li +B

T
i Pi

)
− 1

2
ρHi

)
, and

Fi =
1
2
Qi.

According to Lemma 2.1, if the following inequality holds,

ρKpiI

(
KdiI +Mi −

1

2
ρJ∗

i

)
− 1

4
ρ2MT

i Mi > 0 (29)
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andDi−EiF
−1
i ET

i is positive definite, then Ξi is positive definite. As forDi−EiF
−1
i ET

i ,
we have the following inequality

δT
(
Di −EiF

−1
i ET

i

)
δ ≥ ‖δ‖2

(
σmin (Di)−

σ2
max (Ei)

σmin (Fi)

)
, ∀δ ∈ Rn (30)

Therefore, if

σmin (Di) σmin (Fi) > σ2
max (Ei) (31)

then, Di − EiF
−1
i ET

i is positive definite. From (29) and the expressions of Di, Ei and
Fi, it can be seen that there always exist appropriate parameters ρ, Kpi and Kdi such
that (29) and (31) hold. Then, (27) can be restated as

V̇ ≤ −
n∑

i=1

σmin (Ξi) ξ
T
i ξi (32)

According to Lemma 2.2, {ωi → 0, qei → 0, ζi → 0} as t → ∞ can be achieved. Hence,
the proof of Theorem 3.1 is completed.

Remark 3.2. It should be noted that in the previous analysis we have used

n∑
i=1

n∑
j=1

Kdij (ωi + ρqei) (ωij + ρqij) =
1

2

n∑
i=1

n∑
j=1

Kdij (ωij + ρqij)
T (ωij + ρqij) (33)

for Kdij = Kdji, which is a similar analysis with that in [10].

Remark 3.3. The communication topology of the formation is an undirected graph, be-
cause we assume that the formation-keeping weight parameters satisfy Kpij = Kpji > 0,
Kdij = Kdji > 0 in the controller design. That means if the ith spacecraft within the
formation is able to get the knowledge of the jth spacecraft, then the converse is also true.

4. Main Result. In SFF, the information is transmitted over a network, so the commu-
nication delays are ineluctable and the communication topologies are not fixed as undi-
rected graphs. In addition, there are always unexpected disturbances in practice, which
should be considered in the control laws design. In this section, we propose a class of im-
proved control schemes by taking into account external disturbances and communication
delays simultaneously. The improved control strategies can overcome the effects of both
disturbances and communication delays subject to arbitrary communication topologies.

4.1. Problem statement. We assume that the external disturbances are bounded as
|(d)k| ≤ υ, k = 1, 2, 3, where υ > 0; the communication delay τij from jth spacecraft to
ith spacecraft is slowly time-varying and satisfies τ̇ij < 1. The attitude maneuver problem
in this section is to design the control torque ui for each spacecraft within the formation,
so that the attitude states of each spacecraft can converge to the desired state in the
presence of external disturbances and communication delays.

4.2. Improved control laws. We proposed the improved behavior-based attitude con-
trol laws as follows:

ui = u
sk
i + ufk

i = −Kpiqei −Kdiωi −Ksisgn (si)−
n∑

j=1

(
Ki

ijsi −Kj
ijsj (t− τij)

)
(34)

where si = ωi + ρqei; Ksi > 0, Ki
ij > 0 and Kj

ij > 0 are weight parameters.
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Theorem 4.1. The controller (34) can solve the attitude maneuver problem of a flexible
spacecraft formation in the presence of external disturbances and communication delays
with arbitrary communication topologies, if 1) the parameters Kpi, Kdi, ρ are chosen

properly; 2) Ksi > υ; 3) Ki
ij > βij; 4) 4βij

(
Ki

ij − βij

)
(1− τ̇ij) >

(
Kj

ij

)2
, where βij is a

positive constant that will be involved in the following stability analysis.

Proof: Consider the following Lyapunov function:

V = V1 + V2 (35)

where

V1 =
n∑

i=1

Vi (36)

V2 =
n∑

i=1

n∑
j=1

∫ t

t−τij

βijs
T
i sidx (37)

In (36),

Vi = 2 (Kpi + ρiKdi) (1− q0ei) +
1

2
ωT

i J
∗
i ωi + ρiq

T
eiJ

∗
i ωei +

1

2
ζTi Piζi (38)

Similar with the proof of Theorem 3.1, we have

V̇i ≤ −
n∑

i=1

ξTi Ξiξi −
n∑

i=1

sTi

(
Ksisgn (si) +

n∑
j=1

(
Ki

ijsi −Kj
ijsj (t− τij)

)
− di

)
(39)

Because Ksi > υ, (39) can be rewritten as

V̇i ≤ −
n∑

i=1

ξTi Ξiξi −
n∑

i=1

(Ksi − υ) ‖si‖ −
n∑

i=1

sTi

n∑
j=1

(
Ki

ijsi −Kj
ijsj (t− τij)

)
(40)

In light of (40), the first-order derivative of (35) can be calculated as

V̇ = V̇1 + V̇2

≤ −
n∑

i=1

(
ξTi Ξiξi + (Ksi − υ) ‖si‖

)
−

n∑
i=1

n∑
j=1

sTi
(
Ki

ijsi −Kj
ijsj (t− τij)

)
+

n∑
i=1

n∑
j=1

βij

(
sTi si − (1− τ̇ij) s

T
j (t− τij) sj (t− τij)

)
= −

n∑
i=1

(
ξTi Ξiξi + (Ksi − υ) ‖si‖

)
−

n∑
i=1

n∑
j=1

(
ςT ς +

(
βij (1− τ̇ij)−

(
ki
j

)2
4 (ki

i − βij)

)
sTj (t− τij) sj (t− τij)

)

≤ −
n∑

i=1

(
ξTi Ξiξi + (Ksi − υ) ‖si‖

)
−

n∑
i=1

n∑
j=1

ςT ς

(41)

where ς =
√

Ki
ij − βijsi −

Kj
ij

2
√

Ki
ij−βij

sj (t− τij).

If ρ, Kpi and Kdi are chosen properly such that the matrices Ξi for i = 1, . . . n are
positive definite, then Theorem 4.1 holds obviously. If the parameters are chosen such
that Ξi are positive semi-definite, then V̇ is negative semi-definite and V is bounded which
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means (qei,ωi) ∈ L6
∞ and si ∈ L3

∞. According to (2), (3), (11) and (12), (q̇ei, ω̇i) ∈ L6
∞

and ṡi ∈ L3
∞ can be obtained. Integrating both sides of (41) from 0 to ∞ yields si ∈ L3

1.
Then according to Lemma 2.3, lim

t→∞
si → 0 and it follows that lim

t→∞
(qei,ωi) → 0 [20].

From (12), lim
t→∞

ζi → 0 with lim
t→∞

ωi → 0 can be obtained. This completes the proof.

Remark 4.1. Note that the control schemes presented in [1-12] are not effective when
flexible spacecraft are taken into account. In this study, attitude coordination problem
of a flexible spacecraft formation with disturbances and communication delays are solved.
Furthermore, both the basic controllers proposed in Section 3 and the improved controllers
developed in Section 4 have simple and intuitive structures. The basic control laws are in
PD-control form, and the improved control laws are designed by adding a variable structure
term to the basic ones. In this setting, the controllers are simple to be implemented to
pursue a low cost in practice. In addition, although the control problem of a single flexible
spacecraft is solved in [13-16], the system investigated herein is a formation composed of
multiple flexible spacecraft in the presence of external disturbances, communication delays
and time-varying topologies, which has not been addressed before.

Remark 4.2. The control objective lim
t→∞

(qei,ωi, ζi) → 0 is asymptotically stable pro-

vided that the parameters Kpi, Kdi, ρ are chosen properly, Ksi > υ, Ki
ij > βij, and

4βij

(
Ki

ij − βij

)
(1− τ̇ij) >

(
Kj

ij

)2
. In the stability analysis, the positive definiteness of the

matrix Ξi can be guaranteed by choosing the parameters Kpi, Kdi, ρ properly according to
Lemma 2.1 and the expression of the matrix Ξi. Furthermore, by virtue of the parameter
ρ, one can not only select relatively large Kpi and Kdi to guarantee the positive definite-
ness of this matrix, but also choose small enough ρ with moderate Kpi and Kdi. This is
easier for practical implementation. Ksi > υ where υ is the upper bound of external dis-
turbances can guarantee the robustness of the control schemes. In this setting, the attitude
of the formation can be stabilized and synchronized in the presence of bounded disturbance
torques. The effectiveness of the proposed control laws with non-uniform communication

delays is guaranteed by the conditions Ki
ij > βij and 4βij

(
Ki

ij − βij

)
(1− τ̇ij) >

(
Kj

ij

)2
. It

should be noted that there always exist parameters Ki
ij and Kj

ij such that the inequalities
hold because (1− τ̇ij) is positive. In addition, the attitude states can always converge to
the desired attitude if the time interval of non-positive (1− τ̇ij) is finite. Because these

inequalities will hold after a finite time interval, V̇ will be negative semi-definite again,
and then the control objective lim

t→∞
(qei,ωi, ζi) → 0 can be achieved.

Remark 4.3. The proposed behavior-based control schemes are effective subject to arbi-
trary communication topologies. When Kj

ij = 0, it means no information transmission

from the jth spacecraft to the ith spacecraft. In this sense, the weight parameter Kj
ij is

able to describe the communication topology. Furthermore, if the parameter Kj
ij switches

between zero and a positive constant during the maneuver process, then the communica-
tion topology will be a time-varying type. Hence, the weight parameter Kj

ij can achieve
the dual objectives of representing the weight of the formation-keeping control action and
describing the communication topology simultaneously.

Remark 4.4. Note that the control schemes (34) are discontinuous due to the sign func-
tions. We propose a class of modified ones as follows

ui = −Kpiqei −Kdiωi −Ksicont (si)−
n∑

j=1

(
Ki

ijsi −Kj
ijsj (t− τij)

)
(42)
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with cont (si) =
si

|si|+ψi
where (ψi)k > 0, k = 1, 2, 3 satisfies

∫∞
0

(
3∑

k=1

Ksi (ψi)k

)
dt = M <

+∞ where M is a constant. Using the same Lyapunov function (35), it can be proven
that

V̇ ≤ −
n∑

i=1

(
σmin (Ξi) ξ

T
i ξi + s

T
i Ksi

si
|si|+ψi

− sTi di

)

≤ −
n∑

i=1

(
σmin (Ξi) ξ

T
i ξi + (Ksi − υ) |si| −Ksiψi

) (43)

Integrating both sides of (43), we can obtain that V is bounded, which leads to (qei,ωi) ∈
L6
∞ and si ∈ L3

∞. With the similar analysis of Theorem 4.1, the control objective
lim
t→∞

(qei,ωi, ζi) → 0 can be achieved asymptotically.

Remark 4.5. The sign function in control laws (31) will cause chattering in control
signals. Chattering is a harmful phenomenon for spacecraft formations, which should be
eliminated for the controllers to perform properly. To alleviate the chattering, we can
replace the sign function by the saturation function or the hyperbolic tangent function
below.

sgn (x) → sat (x) =

 1 x > µ
x/µ |x| ≤ µ
−1 x < µ

or sgn (x) → tanh

(
x

µ

)
(44)

where sat (∗) denotes the saturation function and tanh (∗) denotes the hyperbolic tangent
function; µ is a small positive constant.

5. Numerical Simulations. In this section, numerical simulations of a five-spacecraft
formation are provided to investigate the effectiveness of the proposed control schemes
(34). The simulations will test the validity of the controller with large disturbances, time-
varying communication delays, time-varying communication topologies and control input
saturation.
The model parameters of each flexible spacecraft within the formation are chosen as

[14]

J∗
i =

 350 3 4
23 280 10
4 10 190

 kg ·m2, for i = 1, 2, 3, 4, 5

with the coupling matrices, the natural frequencies in rad/s and the dampings associated
to the first four natural modes:

δi =


6.45637 1.27814 2.15629
−1.25619 0.91756 −1.67264
1.11687 2.48901 −0.83674
1.23637 −2.6581 −1.12503

 kg
1
2m,

ω1i = 0.7681, ω2i = 1.1038, ω3i = 1.8733, ω4i = 2.5496,

ϑ1i = 0.005607, ϑ2i = 0.00862, ϑ3i = 0.01283, ϑ4i = 0.02516.

The desired attitude states are given by q̄d = (0 0 0 1)T , ωd = 0, ζd = 0.
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In order to highlight the performance of the control laws, the initial attitude states of
the spacecraft are chosen to be the following large values,

ω1 (0) = (0.02 0.04 −0.03)T rad/s, q̄1 (0) = (0.7 0.5 0.5 0.1)T

ω2 (0) = (0.01 −0.03 0.02)T rad/s, q̄2 (0) = (0.5 −0.7 0.1 0.5)T

ω3 (0) = (−0.01 0.02 −0.01)T rad/s, q̄3 (0) = (−0.5 0.7 −0.1 −0.5)T

ω4 (0) = (0.04 −0.01 −0.03)T rad/s, q̄4 (0) = (−0.7 0.5 −0.5 −0.1)T

ω5 (0) = (−0.02 0.03 0.01)T rad/s, q̄5 (0) = (−0.1 −0.5 −0.5 0.7)T

and the external disturbances are chosen as di =

 0.2 + 0.08 sin (t/5) cos (t/i)
−0.15− 0.02 sin (t/5) cos (t/i)
0.1 + 0.06 sin (t/5) cos (t/i)

N ·m

which is larger in magnitude than that in the practical situations. We also bound the
magnitude of the control torque as |(ui)k| ≤ 2N ·m with the consideration that the control
torque provided by the actuator is limited in practice. The actuators can be implemented
by thrusters.

We suppose the delays in communication links take the time-varying form that

T12 + 0.2 = T21 = 0.9 + 0.3 sin (t/10) , T13 − 0.1 = T31 = 1.5 + 0.7 sin (t/14)
T14 + 0.2 = T41 = 1.2 + 0.4 sin (t/14) , T15 − 0.1 = T51 = 1.1 + 0.5 sin (t/20)
T23 + 0.2 = T32 = 0.6 + 0.6 sin (t/8) , T24 − 0.1 = T42 = 0.8 + 0.3 sin (t/12)
T25 + 0.2 = T52 = 0.3 + 0.5 sin (t/16) , T34 − 0.1 = T43 = 1.2 + 0.4 sin (t/7)
T35 + 0.2 = T53 = 0.4 + 0.7 sin (t/6) , T45 − 0.1 = T54 = 0.5 + 0.6 sin (t/15)

In the simulations, the control parameters are chosen through numerical trial-and-error.
Kpi = 100, Kdi = 800, Ksi = 0.5, ρ = 0.2, Ki

ij = 6 and Kj
ij is chosen as Table 1 to describe

a time-varying communication topology.

Table 1. The parameter Kj
ij

with K2
12 (t) =

{
4 for mod (t, 8) ≤ 4
0 for mod (t, 8) > 4

where mod (x, y) denotes the remainder of dividing

x by y.

The performance of the flexible spacecraft formation is measured by station-keeping
error metrics and formation-keeping error metrics. The station-keeping error metrics are

defined as SKqe =
1
n

n∑
i=1

√
3∑

k=1

(qei)
2
k, SKωe =

1
n

n∑
i=1

√
3∑

k=1

(ωi)
2
k, and SKηe =

1
n

n∑
i=1

√
3∑

k=1

(ηi)
2
k

with n = 5 for a five-flexible-spacecraft formation. The formation-keeping error metrics

are calculated using FKqe =
1
10

n∑
i=1

n∑
j=1

(√
3∑

k=1

(qij)
2
k

)
and FKωe =

1
10

n∑
i=1

n∑
j=1

(√
3∑

k=1

(ωij)
2
k

)
.
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Simulations are presented in Figures 1-5. Figures 1-3 show the station-keeping error
metrics SKqe, SKωe, SKηe of the spacecraft formation. The formation-keeping error
metrics FKqe, FKωe of the spacecraft formation are shown in Figures 4 and 5, respectively.
The simulation results validate the stability and convergence analysis. In the pres-

ence of external disturbances, communication delays and time-varying communication
topologies, Figures 1 and 2 show rapid transient response and high steady accuracy of
the station-keeping errors. Fine control performance of the formation-keeping attitude
errors and the formation-keeping angular velocity errors are illustrated in Figures 4 and
5. Both the station-keeping errors and the formation-keeping errors fall to the tolerance
in approximately 100s. In Figure 3, the response of the modal displacements is presented.
It can be seen that the vibration magnitudes of the flexible attachments keep on a low
level.

6. Conclusions. In this paper, we have solved the attitude maneuver control problem of
a flexible spacecraft formation via behavior-based control approach. The presented robust
behavior-based control schemes could guarantee asymptotical convergence of the attitude
states of the formation in the presence of external disturbances and communication delays.
Besides, by virtue of a weight parameter, the communication network could be switched
arbitrarily: full-connected or not, directed or undirected, fixed or time-varying. Finally,
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Figure 1. The station-keep-
ing attitude error metrics
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angular velocity metrics
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Figure 3. Station-keeping
modal displacement metrics
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ing attitude error metrics
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Figure 5. Formation-keeping angular velocity error metrics

numerical simulations were performed to support the theoretical analysis. The numerical
simulation of a five-spacecraft formation demonstrated ideal control performance and
superior robustness, and validated the effectiveness of the proposed control strategies.
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